ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

Størrelse: px
Begynne med side:

Download "ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon"

Transkript

1 ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag

2 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger om den tilhørende populasjonsparameter. 1) Estimering. Hva er størrelsen på parameteren? Punktestimering: Gitt ved ett enkelt tall Intervallestimering: Gitt ved et intervall der parameteren antas å ligge med høy sannsynlighet. 2) Hypotesetesting: Velger mellom to konkurrerende påstander om størrelsen på parameteren, for eksempel om den er større eller mindre enn en gitt verdi.

3 3 Inferens om µ når σ er ukjent Hvis σ er ukjent bytter vi ut σ med s i Ny observator blir t = x µ s/ n z = x µ σ/ n der s = Σx 2 (Σx) 2 /n n 1 t kalles for Students t-observator Fordelingen til t kalles t-fordelingen og er avhengig av utvalgsstørrelsen n via antall frihetsgrader som er df = n 1 (df = degrees of freedom ).

4 1. t-fordelingen er symmetrisk rundt t-fordelingen har en form som avhenger av antall df (som er n 1). 3. t-fordelingen nærmer seg standard normalfordelingen når df øker 4. t-fordelingen har lavere topp og tykkere haler enn standard normalfordeling

5 5 Tabell 6: Kritiske verdier for t-fordelingen t(df, α) er t-verdien slik at areal α ligger til høyre, dvs. P(t > t(df, α)) = α der t er t-fordelt med df frihetsgrader.

6 6 Tabell 7: p-verdier for t-fordelingen Tabellen inneholder arealer av typen nedenfor for ulike df.

7 7 Inferens om µ når σ er ukjent (9.1) Antagelse: x er tilnærmet normalfordelt, dvs. populasjonen er normalfordelt eller n er stor. Vi bruker at t = x µ s/ n er t-fordelt med df = n 1 frihetsgrader.

8 8 Konfidensintervall for µ når σ er ukjent Vi husker fra kapittel 8, der σ var kjent at et 1 α konfidensintervall for µ var: x ± E = x ± z(α/2) σ n der vi kalte E for maksimal feil. For å gå fra kjent til ukjent σ bytter vi ut σ med s z(α/2) med (det alltid noe større) t(n 1, α/2) F.eks. er z(0.025) = 1.96 mens t(9, 0.025) = 2.26, t(19, 0.025) = 2.09 og t(29, 0.025) = 2.05 og t(1000, 0.025) = 1.96.

9 9 Konfidensintervall for µ når σ er ukjent Et 1 α konfidensintervall for µ når σ er ukjent er gitt ved x ± E = x ± t(n 1, α/2) s n

10 10 Hands-on Vi skal studere IQ i en spesiell populasjon. Vi antar at IQ for en tilfeldig valgt person i populasjonen er normalfordelt med ukjent populasjonsgjennomsnitt µ og ukjent populasjonsstandardavvik σ. Vi har trukket et tilfeldig utvalg av 10 personer fra populasjonen og disse har gjennomført en IQ-test, med følgende resultater Vi har med utvalgsgjennomsnitt x = og utvalgsstandardavvik s = Finn et punktestimat for populasjonsparameteren µ Finn et intervallestimat for populasjonsparameteren µ. Bruk 90% konfidensnivå.

11 11 Hypotesetesting om µ (σ ukjent) Eksempel: Språktest for ungdomsskoleelever. Anta at score på spåktest for en tilfeldig valgt elev fra en skole er normalfordelt med populasjonsgjennomsnitt µ og populasjonsstandardavvik σ. Vi vil teste H 0 : µ = 125 mot H a : µ > 125. Fra populasjonen trekker vi et utvalg av n = 22 elever. Vi observerer x = Vi skal gjennomføre en hypotesetest og velger signifikansnivå 5%. Merk at populasjonsstandardavviket σ ikke er kjent. Vi må da regne ut utvalgsstandardavviket s som viser seg å bli s = 15.2.

12 Vi bruker testobservatoren t = x 125 s/ n Store verdier av t tyder på at H a gjelder. Poenget med å bruke t er at når H 0 er riktig, er t t-fordelt med antall frihetsgrader df = 22 1 = 21. Vi kan derfor forkaste H 0 hvis den beregnede verdi for t er så stor at den er urimelig for en t-fordeling med df = 21. Her blir t = / 22 = 1.08 så spørsmålet er om dette er for høyt til rimeligvis å kunne komme fra en t-fordeling med df = 21.

13 13 Metode med p-verdi med ukjent σ Vi finner fra Tabell 7 i kolonnen med df = 21 P(t > 1.08) er mellom og og kan beregnes til Da dette er større enn signifikansnivået α = 0.05, forkaster vi ikke H 0. Den beregnede sannsynlighet P(t > 1.08) kan generelt skrives P(t > t ) og er nå p-verdien for testen.

14 14 Klassisk metode med ukjent σ Situasjonen er som før og vi bruker samme testobservator, nemlig t = x 125 s/ n Å velge signifikansnivå α betyr at vi krever P(forkaste H 0 ) = α hvis H 0 er sann Dette får vi til ved å forkaste H 0 hvis t > t(n 1, α), der t(df, α) er den kritiske verdi) og finnes i Tabell 6.

15 Vi forkaster da H 0 dersom t = x 125 s/ n > t(n 1, α) Med α = 0.05 og n = 22 får vi fra Tabell 6: t(21, 0.05) = 1.72 mens vi beregner t = 15.2/ = 1.08 < så vi forkaster ikke H 0 med signifikansnivå α = 0.05.

16 16 Hands-on fortsettelse av IQ oppgaven Vi skal studere IQ i en spesiell populasjon. Vi antar at IQ for en tilfeldig valgt person i populasjonen er normalfordelt med ukjent populasjonsgjennomsnitt µ og ukjent populasjonsstandardavvik σ. Vi har trukket et tilfeldig utvalg av 10 personer fra populasjonen og disse har gjennomført en IQ-test. Jeg påstår at µ = 100 for populasjonen. Ta stilling til dette utsagnet med en hypotesetest. Bruk signifikansnivå α = 0.1. Hva blir de kritiske verdier? Finn også p-verdien. Utvalget gav: med utvalgsgjennomsnitt x = og utvalgsstandardavvik s = 13.33

17

18

19 19 Inferens om andelen p Eksempel: Det har vært antatt at 60% av studentene på et universitet har deltidsjobb utenom studiene. Etter at Kvalitetsreformen har virket en stund, tror studieledelsen at tallet er lavere og ønsker å undersøke dette ved å spørre et utvalg på n = 500 studenter. Det viser seg at x = 260 av disse har deltidsjobb. Populasjonen er nå alle studenter ved universitetet, mens parameteren som er av interesse er p, andelen av studenter som har deltidsjobb. Fra utvalget på n = 500 ønsker man å gjøre inferens om p. Spesielt vil man teste hypotesen H 0 : p = 0.60 mot H a : p < 0.60

20 20 Binomisk sannsynlighetsfordeling Et binomisk eksperiment består av gjentatte forsøk med følgende egenskaper: 1. Det er n uavhengige forsøk. 2. Hvert forsøk har to mulige utfall, ofte kalt suksess og fiasko. 3. P(suksess)=p, P(fiasko)=q, p + q = Den binomiske tilfeldige variabelen x er antallet suksessfulle utfall som inntreffer, og x kan anta enhver heltallsverdi fra 0 til n. Videre er forventning til x lik µ x = np og standardavvik for x er σ x = npq.

21 21 Inferens om den binomiske sannsynlighet for suksess p (9.2) p fortolkes som andelen med egenskapen suksess i populasjonen, slik at p er sannsynligheten for å trekke en enhet med suksess. Utvalget består i å gjøre n forsøk, dvs. tilfeldige trekninger fra populasjonen, og registrere antallet x med suksess. Andel med suksess i utvalget er da p = x n som kan kalles utvalgs-suksess-sannsynligheten ( sample binomial probability ). p er punktestimatet for p basert på vårt utvalg.

22 22 Forventning µ p og standardfeil σ p for p :

23 23 Utvalgsfordeling for p Hvis et utvalg av størrelse n trekkes fra en populasjon med p = P( suksess ), så vil utvalgsfordelingen for p ha: 1. forventning µ p = p (dvs. punktestimatet p er forventningsrett) 2. standardfeil (dvs. standardavvik for punktestimatet) σ p = pq n 3. tilnærmet normalfordeling (hvis både np og nq er større enn 5)

24 Statistisk inferens om p kan derfor bygges på den (tilnærmet) standard normalfordelte z = p p pq n Merk analogien med z = x µ σ n

25 Et konfidensintervall for p med konfidensnivå 1 α er da gitt ved ( ) pq pq p z(α/2) n, p + z(α/2) n som er analogt med ( x z(α/2) σ n, x + z(α/2) σ n ) MEN siden konfidensintervallet for p ovenfor inneholder den ukjente p (og q), vil vi bruke konfidensintervallet: p z(α/2) p q n, p + z(α/2) der q = 1 p er utvalgs-fiasko-sannsynligheten. p q n

26 26 Eksempel: Deltidsjobbing Av et utvalg på n = 500 hadde x = 260 deltidsjobb. Et punktestimat for andelen p i populasjonen som har deltidsjobb er da p = 260/500 = Et konfidensintervall for p med konfidensnivå 0.90 er dvs. (0.483,0.557) ,

27 27 Utvalgsstørrelse 1 α-konfidensintervallet for suksess-sannsynligheten p i populasjonen er altså definert ved p p z(α/2) q n, p p + z(α/2) q n der maksimal feil for estimatet er E = z(α/2) p q n Hvor stor må vi velge n for å få en bestemt maksimal feil E? n = [z(α/2)]2 p q E 2 der p og q er foreløpige verdier for p og q som brukes under planleggingen.

28 28 Utvalgsstørrelse (forts.) Formel: n = [z(α/2)]2 p q E 2 Det viser seg at n i formelen blir størst hvis p og q begge er 0.5. Så hvis vi ikke har forhåndskjennskap til p, og ønsker å være på den sikre siden, regner vi ut n med p = q = 0.5.

29 Eksempel: Hva må n være for at feilen E skal være mindre enn eller lik 0.01 med konfidensnivå 0.95? Hvis vi ikke har forhåndsviten om p: n = [z(α/2)]2 p q E 2 = [z(0.025)] = = 9604 Hvis vi har forhåndsviten om at p er i størrelesorden 0.15, setter vi p = 0.15 og q = 0.85 og får n = = 4898

30 30 Testobservator for å teste en andel p Vi vil teste H 0 : p = p 0 for et spesifisert tall p 0. Bruk da z = p p 0 p0 q 0 n I eksempel med deltidsjobbing: med p = x n H 0 : p = 0.60 mot H a : p < 0.60 og n = 500: z = p som hvis H 0 gjelder er standard normalfordelt, og som i vårt eksempel blir lik z = = 3.65

31 p-verdi blir dermed (som for testene om µ) p verdi = P(z < 3.65) = P(z > 3.65) = fra Tabell 5 (som vi ikke har brukt til nå). Dette er svært lavt, og fører til forkastning av H 0 for f.eks. α =0.01 eller Klassisk metode er også som for testene om µ: H 0 skal forkastes med signifikansnivå α hvis z < z(α). Med α = 0.01 blir det å forkaste om z < z(0.01) = 2.33 dvs. vi forkaster H 0.

32 32 Merknad om konfidensintervall og testing av hypoteser om p Anta vi skal teste nullhypotesen H 0 : p = p 0 der p 0 er et gitt tall, f.eks i vårt eksempel. I testobservatoren brukes da p 0 og q 0 = 1 p 0 i uttrykket for standardfeilen til p i nevneren z = p p 0 p0 q 0 n med p = x n Til sammenligning, i et (1 α) konfidensintervall for p basert på p, dvs. p z(α/2) p q n, p + z(α/2) p q n brukes uttrykket p q n for å representere standardfeilen for p

33 33 Hands-on: bilkjøring Populasjon: studenter på NTNU. Spørsmål: Er du flinkere enn gjennomsnittet (i Norge) til å kjøre bil? Ja (suksess) eller nei (fiasko). Populasjonsparameter: p =P(en student synes han/hun er flinkere enn gjsn. til å kjøre bil)= suksess-sannsynligheten. Utvalget: n = 139 studenter som tok faget TMA4245 våren Av disse svarte x = 59 ja. Svar på: Tyder dataene på at færre enn 50% av studenten ved NTNU synes at de er flinkere til å kjøre bil enn Norges-gjennomsnittet? Sett opp H 0 og H a, regn ut p-verdi. Konkluder. I en landsomfattende undersøkelse blant norske bilførere i 2009 mente 67% av de spurte at de er bedre sjafører enn gjennomsnittet.

34 34 Keramiske gulvfliser Keramiske gulvfliser skal gjerne se ut som naturlig stein, og dermed må overflaten ikke være helt flat - men må variere.

35 35 Keramiske gulvfliser Vi ønsker at variasjonen i overflatehøyde er stor nok til at flisen ser ut som naturlig stein, men liten nok til at det ikke medfører et sikkerhetsproblem.

36 36 Keramiske gulvfliser Spesifikasjonen for en type keramiske gulvfliser sier: Gjennomsnittlig overflatehøyde må ikke være større enn inch (0.064 cm = 0.64 mm). Produksjonsprosessen sies å være under kontroll hvis standardavviket til overflatehøyden ikke er større enn 0.01 inch ( cm = mm). Data fra 26 tilfeldig valgte punkter: Oppgaver: 9.145,

37 37 Keramiske gulvfliser Min. 1st Qu. Median Mean SD 3rd Qu. Max.

38 38 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.3) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den greske bokstaven χ. Fordelingen kan også skrives χ 2 -fordelingen.)

39 39 Kjikvadrat-fordelingen 1. χ 2 er positiv 2. χ 2 er ikke symmetrisk, men skjev mot høyre. 3. En bestemt χ 2 -fordeling identifiseres ved en parameter df som kalles antall frihetsgrader ( degrees of freedom ). 4. Forventning µ = df 5. Varians σ 2 = 2df

40 40 Kjikvadratfordelinger med ulik df

41 41 Tabell 8 χ 2 (df, α) er χ 2 -verdien slik at areal α ligger til høyre, dvs P(χ 2 > χ 2 (df, α)) = α der χ 2 er χ 2 -fordelt med df frihetsgrader.

42 42 Hands-on: Tabell 8 Finn kritisk verdi: χ 2 (9, 0.05) χ 2 (9, 0.95) Hva er α: χ 2 (9, α) = 3.92 χ 2 (9, α) = 16.9

43 43 Inferens om σ Antagelse: Utvalget er trukket fra en populasjon som er normalfordelt. Vi skal teste hypoteser om σ. (Punktestimat er s). Vi bruker testobservatoren χ 2 = (n 1)s2 σ 2 som kan vises å være χ 2 -fordelt med df=n-1 frihetsgrader når σ har den korrekte verdien. Merk: Dette er analogt med at vi ved inferens om µ har brukt observatorer z = x µ σ/ n fordelinger. og t = x µ s/ n som har kjente, tabellerte

44 Eksempel: Jeg har trukket 10 tall fra en populasjon som er normalfordelt med forventning µ og standardavvik σ. Tallene ble med s=2.64. Finn et punktestimat for σ Jeg sier at σ = 4 for populasjonen. Ta stilling til utsagnet gjennom en hypotesetest. Bruk signifikansnivå α = 0.1. Finn p-verdien.

45 Punktestimat for σ er s = Nullhypotesten H 0 er at σ = 4 mens alternativ hypotese H a er at σ 4. Testobservatoren blir da χ 2 = (n 1)s2 (n 1)s2 σ 2 = 4 2 som er χ 2 -fordelt med df=n-1=9 frihetsgrader under nullhypotesen. Her blir χ 2 (n 1)s2 (10 1)2.642 = σ 2 = 4 2 = 3.92 Spørsmålet er om dette er en urimelig størrelse for en variabel som er kjikvadrat-fordelt med df = 9. Vi vil forkaste H 0 hvis testobservatoren χ 2 blir enten for liten eller for stor.

46 Klassisk metode: Finn kritiske verdier slik at vi forkaster hvis χ 2 ligger utenfor et sentralt område av kjikvadratfordelingen. Vi har at P(χ 2 < χ 2 (df, 1 α/2)) = α/2 P(χ 2 > χ 2 (df, α/2)) = α/2 I eksempel, med α = 0.10, blir disse kritiske verdiene (Tabell 8) χ 2 (9, 0.95) = 3.33 χ 2 (9, 0.05) = 16.9 dvs. vi skal forkaste hvis χ 2 < 3.33 eller χ 2 > Dermed forkaster vi ikke H 0, siden vi beregnet testobservatoren χ 2 = 3.92.

47 Metode med p-verdi: Beregner først P(χ 2 9 < 3.92) = 1 P(χ2 9 > 3.92) = = 0.08 Her har vi først brukt Tabell 8 til å finne P(χ 2 9 > 3.33) = 0.95 og P(χ 2 9 > 4.17) = Dermed vet vi at P(χ2 9 > 3.92) er mellom 0.90 og På øyemål har vi da anslått at P(χ 2 9 > 3.92) = 0.92 (som vi også ville få ved formell interpolasjon). Siden alternativ hypotese er at σ 4 er p-verdien lik arealet av begge halene, dvs p-verdi= = Siden p-verdi>α=0.1 kan vi ikke forkaste nullhypotesen. (σ for populasjonen som jeg trakk fra var σ = 2, med andre ord beholdt vi feilaktig nullhypotesen, dvs. gjorde en feil av type II.)

48 48 Hands-on: keramiske fliser Vi ser på måling av overflatehøyde for keramiske fliser. Et tilfeldig utvalg av 26 målepunkter ble valgt, med følgende måleresultater. Vi oppgir at utvalgsgjennomsnittet er x = og utvalgets standardavvik er s = Er det statistisk bevis for at prosessen brukt i tilvirkningen av flisene har et standardavvik som er større enn 0.01 inch?

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 10: Inferens om to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Kapittel 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis

Detaljer

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere

Notasjon og Tabell 8. ST0202 Statistikk for samfunnsvitere 2 Inferens om varians og standardavvik for ett normalfordelt utvalg (9.4) Inferens om variansen til en normalfordelt populasjon bruker kjikvadrat-fordelingen ( chi-square distribution ) (der kji er den

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon I Kapittel 8 brukte vi observatoren z = x µ σ/ n for å trekke konklusjoner om µ. Dette

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Å analysere en utvalgsobservator for å trekke slutninger

Detaljer

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere

Statistisk inferens (kap. 8) Hovedtyper av statistisk inferens. ST0202 Statistikk for samfunnsvitere 2 Statistisk inferens (kap. 8) Statistisk inferens er å tolke/analysere resultater fra utvalget for å finne ut mest mulig om populasjonen. Konkret: Analysere en observator for å finne ut noe om korresponderende

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent

1 Section 7-2: Estimere populasjonsandelen. 2 Section 7-4: Estimere µ når σ er ukjent 1 Section 7-2: Estimere populasjonsandelen 2 Section 7-4: Estimere µ når σ er ukjent Kapittel 7 Nå begynner vi med statistisk inferens! Bruke stikkprøven til å 1 Estimere verdien til en parameter i populasjonen.

Detaljer

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper

ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper ST0103 Brukerkurs i statistikk Forelesning 26, 18. november 2016 Kapittel 8: Sammenligning av grupper Bo Lindqvist Institutt for matematiske fag 2 Kapittel 8: Sammenligning av grupper Situasjon: Vi ønsker

Detaljer

7.2 Sammenligning av to forventinger

7.2 Sammenligning av to forventinger 7.2 Sammenligning av to forventinger To-utvalgs z-observator To-utvalgs t-prosedyrer To-utvalgs t-tester To-utvalgs t-konfidensintervall Robusthet To-utvalgs t-prosedyrerår variansene er like Sammenlikning

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte

Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte Hypotesetesting. 10 og fore- Dekkes av pensumsidene i kap. lesingsnotatene. Hypotesetesting er en systematisk fremgangsmåte for å undersøke hypoteser (påstander) knyttet til parametre i sannsynlighetsfordelinger.

Detaljer

Fra første forelesning:

Fra første forelesning: 2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen

Detaljer

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet

1 8-1: Oversikt. 2 8-2: Grunnleggende hypotesetesting. 3 Section 8-3: Å teste påstander om andeler. 4 Section 8-5: Teste en påstand om gjennomsnittet 1 8-1: Oversikt 2 8-2: Grunnleggende hypotesetesting 3 Section 8-3: Å teste påstander om andeler 4 Section 8-5: Teste en påstand om gjennomsnittet Definisjoner Hypotese En hypotese er en påstand om noe

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg

Detaljer

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG

Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:

Detaljer

Binomisk sannsynlighetsfunksjon

Binomisk sannsynlighetsfunksjon ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige

Detaljer

Statistikk og dataanalyse

Statistikk og dataanalyse Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel

Detaljer

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005.

Krysstabellanalyse (forts.) SOS1120 Kvantitativ metode. 4. Statistisk generalisering. Forelesningsnotater 9. forelesning høsten 2005. SOS112 Kvantitativ metode Krysstabellanalyse (forts.) Forelesningsnotater 9. forelesning høsten 25 4. Statistisk generalisering Per Arne Tufte Eksempel: Hypoteser Eksempel: observerte frekvenser (O) Hvordan

Detaljer

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde

Page 1 EN DAG PÅ HELSESTASJONEN. Lises klassevenninnner. Formelen: Du har en hypotese om vanlig høyde 1 E DAG PÅ HELSESTASJOE Lises klassevenninnner Lise er veldig liten Hva gjør at du sier at hun er liten? Du har en hypotese om vanlig høyde Du har en hypotese om vanlig høyde Du sammenligner Lises høyde

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.

Detaljer

Tilfeldige variable (5.2)

Tilfeldige variable (5.2) Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Hypotesetesting. mot. mot. mot. ˆ x

Hypotesetesting. mot. mot. mot. ˆ x Kapittel 6.4-6.5: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

TMA4240 Statistikk H2010 (20)

TMA4240 Statistikk H2010 (20) TMA4240 Statistikk H2010 (20) 10.5: Ett normalfordelt utvalg, kjent varians (repetisjon) 10.4: P-verdi 10.6: Konfidensintervall vs. hypotesetest 10.7: Ett normalfordelt utvalg, ukjent varians Mette Langaas

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST00 STATISTIKK FOR SAMFUNNSVITERE Torsdag

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Løsningsforslag Til Statlab 5

Løsningsforslag Til Statlab 5 Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Regler i statistikk STAT 100

Regler i statistikk STAT 100 TORIL FJELDAAS RYGG - VÅREN 2010 Regler i statistikk STAT 100 Innhold side Sannsynlighetsregning 3 - Uttrykk 3 - Betinget sannsynlighet 4 - Regler for sannsynlighet 4 - Bayes teorem 4 - Uavhengige begivenheter

Detaljer

Kapittel 3: Studieopplegg

Kapittel 3: Studieopplegg Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere

Detaljer

Testobservator for kjikvadrattester

Testobservator for kjikvadrattester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: t tilfeldig utvalg av n individer er trukket

Detaljer

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger

Analyse av kontinuerlige data. Intro til hypotesetesting. 21. april 2005. Seksjon for medisinsk statistikk, UIO. Tron Anders Moger Intro til hypotesetesting Analyse av kontinuerlige data 21. april 2005 Tron Anders Moger Seksjon for medisinsk statistikk, UIO 1 Repetisjon fra i går: Normalfordelingen Variasjon i målinger kan ofte beskrives

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens

ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens ST0202 Statistikk for samfunnsvitere Kapittel 8: Introduksjon til statistisk inferens Bo Lindqvist Institutt for matematiske fag 2 Statistisk inferens (kap. 8) Statistisk inferens har som mål å tolke/analysere

Detaljer

Kapittel 10: Hypotesetesting

Kapittel 10: Hypotesetesting Kapittel 10: Hypotesetesting TMA445 Statistikk 10.1, 10., 10.3: Introduksjon, 10.5, 10.6, 10.7: Test for µ i normalfordeling, 10.4: p-verdi Turid.Follestad@math.ntnu.no p.1/19 Estimering og hypotesetesting

Detaljer

EKSAMENSOPPGAVER STAT100 Vår 2011

EKSAMENSOPPGAVER STAT100 Vår 2011 EKSAMENSOPPGAVER STAT100 Vår 2011 Løsningsforslag Oppgave 1 (Med referanse til Tabell 1) a) De 3 fiskene på 2 år hadde lengder på henholdsvis 48, 46 og 35 cm. Finn de manglende tallene i Tabell 1. Test

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner

ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner ST0202 Statistikk for samfunnsvitere Kapittel 9-10 (oversikt): Inferens om én og to populasjoner Bo Lindqvist Institutt for matematiske fag 2 Inferens med EN populasjon 3 Oppgave: H2002 # 3 I følge Nielsen

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Mer om hypotesetesting

Mer om hypotesetesting Mer om hypotesetesting I underkapittel 36 i læreboka gir vi en kort innføring i tankegangen ved hypotesetesting Vi gir her en grundigere framstilling av temaet Problemstilling Vi forklarer problemstillingen

Detaljer

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: IKBM STAT100 Torsdag 13.des 2012 STATISTIKK 09.00-12.30 (3.5 timer) Emneansvarlig: Solve Sæbø ( 90065281) Tillatte hjelpemidler: C3: alle typer kalkulator, alle

Detaljer

TMA4240 Statistikk H2010

TMA4240 Statistikk H2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010

Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010 TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Inferens i fordelinger

Inferens i fordelinger Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen

Detaljer

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413

> 6 7 ) = 1 Φ( 1) = 1 0.1587 = 0.8413 P (X < 7 X < 8) P (X < 8) < 7 6 1 ) < 8 6 1 ) = Φ(2) = 0.8413 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Oppgave Sykkelruter a) P (Y > 6) P (Y > 6) P ( Y 7 > 6 7 ) Φ( ) 0.587 0.843 b) Hypoteser: H 0 : µ µ 2 H : µ < µ 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: Hypotesetesting Hypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen

Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen Simulering med Applet fra boken, av z og t basert på en rekke utvalg av en gitt størrelse n fra N(μ,σ). Illustrerer hvordan estimering av variansen gir testobservatoren t mer spredning enn testobservatoren

Detaljer

6.2 Signifikanstester

6.2 Signifikanstester 6.2 Signifikanstester Konfidensintervaller er nyttige når vi ønsker å estimere en populasjonsparameter Signifikanstester er nyttige dersom vi ønsker å teste en hypotese om en parameter i en populasjon

Detaljer

Kapittel 7: Inferens for forventningerukjent standardavvik

Kapittel 7: Inferens for forventningerukjent standardavvik Kapittel 7: Inferens for forventningerukjent standardavvik 7.1: Inferens for forventningen i en populasjon 7.2: Inferens for å sammenligne to forventninger 7.1 Inferens for forventningen i en populasjon

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 13: Lineær korrelasjons- og regresjonsanalyse Kap. 13.1-13.3: Lineær korrelasjonsanalyse. Disse avsnitt er ikke pensum,

Detaljer

TMA4240 Statistikk H2010 (19)

TMA4240 Statistikk H2010 (19) TMA4240 Statistikk H2010 (19) Hypotesetesting 10.1-10.3: Generelt om statistiske hypoteser 10.5: Ett normalfordelt utvalg Mette Langaas Foreleses mandag 25.oktober, 2010 2 Estimering og hypotesetesting

Detaljer

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk

Hypotesetesting (kp. 6) ÅMA110 Sannsynlighetsregning med statistikk, våren Tre deler av faget/kurset: 1. Beskrivende statistikk ÅMA Sannsynlighetsregning med statistikk, våren 2 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk 2. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans

Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner

Detaljer

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32).

Oppgave 1. og t α/2,n 1 = 2.262, så er et 95% konfidensintervall for µ D (se kap 9.9 i læreboka): = ( 0.12, 3.32). Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 16. november 2009 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk (Tapir

Detaljer

TMA4240 Statistikk H2010 (22)

TMA4240 Statistikk H2010 (22) TMA4240 Statistikk H2010 (22) 10.11-10.12: Testing av andelser 10.13: Testing av varians i ett N utvalg Mette Langaas Foreleses onsdag 3.november, 2010 2 Laban strakk seg ikke lenger, men smaker den bedre?

Detaljer

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger

TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger TMA4240/TMA4245 Statistikk: Oppsummering kontinuerlige sannsynlighetsfordelinger Kontinuerlig uniform fordeling f() = B A, A B. En kontinuerlig størrelse (vekt, lengde, tid), som aldri kan bli mindre enn

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA)

ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) ST0202 Statistikk for samfunnsvitere Kapittel 11: Anvendelser av kjikvadratfordelingen Kapittel 12: Variansanalyse (ANOVA) Bo Lindqvist Institutt for matematiske fag Bo Lindqvist, ST0202 2 Skittles (oppgave

Detaljer

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE

EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag

Detaljer

HØGSKOLEN I STAVANGER

HØGSKOLEN I STAVANGER EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ

Detaljer

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12.

MASTER I IDRETTSVITENSKAP 2014/2016. Utsatt individuell skriftlig eksamen. STA 400- Statistikk. Mandag 24. august 2015 kl. 10.00-12. MASTR I IDRTTSVITNSKAP 2014/2016 Utsatt individuell skriftlig eksamen i STA 400- Statistikk Mandag 24. august 2015 kl. 10.00-12.00 Hjelpemidler: kalkulator ksamensoppgaven består av 10 sider inkludert

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

TMA4240 Statistikk Høst 2007

TMA4240 Statistikk Høst 2007 TMA4240 Statistikk Høst 2007 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b4 Løsningsskisse Oppgave 1 Eksamen juni 1999, oppgave 3 av 3 a) µ populasjonsgjennomsnitt,

Detaljer

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler

Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler EKSAMENSOPPGAVER Institutt: Eksamen i: Tid: Emneansvarlig: IKBM STAT100 Tirsdag 28.mai 2013 Solve Sæbø STATISTIKK 09.00-12.30 (3.5 timer) Tillatte hjelpemidler: C3: alle typer kalkulator, alle andre hjelpemidler

Detaljer

Fasit for tilleggsoppgaver

Fasit for tilleggsoppgaver Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x

Detaljer

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK

EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 BOKMÅL EKSAMEN I FAG TMA4255 ANVENDT STATISTIKK Onsdag

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf:

Hypotesetesting. Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: Hypotesetesting Hvorfor og hvordan? Gardermoen 21. april 2016 Ørnulf Borgan H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no 1 Oversikt Sannsynlighetsregning og statistikk

Detaljer

Hypotesetest: generell fremgangsmåte

Hypotesetest: generell fremgangsmåte TMA4240 Statistikk H2010 (21) 10.8, 10.10: To normalfordelte utvalg 10.9: Teststyrke og antall observasjoner Mette Langaas Foreleses mandag 1.november, 2010 2 Hypotesetest: generell fremgangsmåte Generell

Detaljer

Oppgaver til Studentveiledning 3 MET 3431 Statistikk

Oppgaver til Studentveiledning 3 MET 3431 Statistikk Oppgaver til Studentveiledning 3 MET 3431 Statistikk 24. april 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 01/06/2011: Oppgave 1-7. Eksamensoppgaven fra 06/2011

Detaljer

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen

Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:

Detaljer

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver

1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver. 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 1 9-3: Sammenligne gjennomsnitt for to uavhengige stikkprøver 2 9-4: Sammenligne gjennomsnitt for to relaterte stikkprøver 3 Oppvarming til kap 10: Rette linjer Sammenligne to populasjoner Data fra to

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon

ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon ST0202 Statistikk for samfunnsvitere Kapittel 13: Lineær regresjon og korrelasjon Bo Lindqvist Institutt for matematiske fag http://wiki.math.ntnu.no/st0202/2012h/start 2 Kap. 13: Lineær korrelasjons-

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004

LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Norges tekisk aturviteskapelige uiversitet Istitutt for matematiske fag Side av 0 LØSNINGSFORSLAG TIL EKSAMEN I FAG TMA4245 STATISTIKK 6.august 2004 Oppgave Midtveiseksame a) X er e stokastisk variabel

Detaljer

Kap. 9: Inferens om én populasjon

Kap. 9: Inferens om én populasjon 2 ST0202 Statistikk for samfusvitere Bo Lidqvist Istitutt for matematiske fag Ka. 9: Iferes om é oulasjo Hvis σ er ukjet bytter vi ut σ med s i Ny observator blir t = x μ s/ z = x μ σ/ der s = Σx 2 (Σx)

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4

ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting

Detaljer

Innledning. Noen relevante statistiske konsepter. Utvalg og populasjon, estimat og parameter

Innledning. Noen relevante statistiske konsepter. Utvalg og populasjon, estimat og parameter Innhold Innledning... 3 Noen relevante statistiske konsepter... 3 Utvalg og populasjon, estimat og parameter... 3 Gjennomsnittsverdier med tilhørende konfidensintervaller Studieprogrammene fra pilotundersøkelsen...

Detaljer

TMA4240 Statistikk Høst 2009

TMA4240 Statistikk Høst 2009 TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b5 Løsningsskisse Oppgave 1 Vi ønsker å finne ut om et nytt serum kan stanse leukemi.

Detaljer

Oppgaver til Studentveiledning 4 MET 3431 Statistikk

Oppgaver til Studentveiledning 4 MET 3431 Statistikk Oppgaver til Studentveiledning 4 MET 3431 Statistikk 8. mai 2012 kl 17.15-20.15 i B2 Handelshøyskolen BI 2 Oppgaver 1. Eksamensoppgaver: Eksamen 22/11/2011: Oppgave 1-7. Eksamensoppgaven fra 11/2011 er

Detaljer

Introduksjon til inferens

Introduksjon til inferens Introduksjon til inferens Hittil: Populasjon der verdien til et individ/enhet beskrives med en fordeling. Her inngår vanligvis ukjente parametre, μ, p,... Enkelt tilfeldig utvalg (SRS), observator p =

Detaljer

ECON240 VÅR / 2016 BOKMÅL

ECON240 VÅR / 2016 BOKMÅL ECON240 VÅR / 2016 BOKMÅL UNIVERSITETET I BERGEN EKSAMEN UNDER SAMFUNNSVITENSKAPELIG GRAD [ DATO og KLOKKESLETT FOR EKSAMEN (START OG SLUTT) ] Tillatte hjelpemidler: Matematisk formelsamling av K. Sydsæter,

Detaljer

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.

Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer. Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg

Detaljer

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96

Sted Gj.snitt Median St.avvik Varians Trondheim 6.86 7.50 6.52 42.49 Værnes 7.07 7.20 6.79 46.05 Oppdal 4.98 5.80 7.00 48.96 Vår 213 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 8, blokk II Matlabøving Løsningsskisse Oppgave 1 a) Ingen løsningsskisse. b) Finn, for hvert datasett,

Detaljer

ST0202 Statistikk for samfunnsvitere

ST0202 Statistikk for samfunnsvitere ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 11: Anvendelser av kjikvadratfordelingen: Kjikvadrattester Situasjon: Et tilfeldig utvalg av n individer er trukket

Detaljer

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/

Verdens statistikk-dag. Signifikanstester. Eksempel studentlån. http://unstats.un.org/unsd/wsd/ Verdens statistikk-dag http://unstats.un.org/unsd/wsd/ Signifikanstester Ønsker å teste hypotese om populasjon Bruker data til å teste hypotese Typisk prosedyre Beregn sannsynlighet for utfall av observator

Detaljer

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4

a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4 ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 011, s. 1 (Det tas forbehold om feil i løsningsforslaget. Oppgave 1 Vi betrakter dataene x 1,..., x 1 somutfall av n = 1 u.i.f.

Detaljer

Kap. 12: Variansanalyse

Kap. 12: Variansanalyse 2 Kap. 12: Variansanalyse Situasjon: c populasjoner, hver med sitt populasjonsgjennomsnitt μ i. Vi tester ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag H 0 : Alle populasjonene

Detaljer