EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00

Størrelse: px
Begynne med side:

Download "EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00"

Transkript

1 Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td: 09:00 14:00 Hjelpemdler: C1 Alle trykte og håndskrevne hjelpemdler tllatt. Alle kalkulatortyper tllatt. Sensuren faller uke 23. Besvarelsen skal nneholde så mange mellomregnnger at det tydelg går fram hvlke metoder og mellomresultater som er anvt. Oppgave 1 av funksjonen I denne oppgaven skal v se på polynom-nterpolasjon og splne-nterpolasjon fx) = e x 1)3 x), 0 x 3. V skal nterpolere funksjonen punktene x = 0, 1, 2, 3, d.v.s., v har datasettet: x f a) Fnn nterpolasjonspolynomet px) av lavest mulg grad som nterpolerer funksjonen fx) punktene x = 0, 1, 2, 3. Fast: Lagrange nterpolasjonsformel gr xx 2)x 3) xx 1)x 3) px) = )1 3) 22 1)2 3) = 1.715xx 2)x 3) 6.39xx 1)x 3). Hvs man vl skrve ut polynomet, da blr det : [ ] px) = xx 3) 1.715x 2) 6.39x 1) = x x x.

2 SIF5040 Numerske Metoder. Sde 2 av 9 Eller ved Newtons dvderte dfferenser: x k f x f[,] f[,,] f[,,,] d.v.s., px) = 3.43x 0.24xx 1) 1.47xx 1)x 2). Dette er egentlg det samme polynomet som man fnner ved Lagrange fromlen. b) Fnn den naturlge kubske splne Sx) som nterpolerer funksjonen fx) punktene x = 0, 1, 2, 3. Du begynner med å beregne z = S x ). Splnes funksjonen Sx) kan skrves ved utrykk av z.) Hva blr S2.5)? Fast: Splnes Sx) defneres slkt: Sx) = S x), for x < x < x +1, = 0, 1, 2. La z = S x ), = 0, 1, 2, 3. For naturlg kubsk splnes, har v z 0 = 0 og z 3 = 0, derfor trenger v bare å beregne z 1, z 2. Ifølge algortmen læreboka Cheney og Kncad s , trenger v å løse et lneært lngnngssystem: h 1 z 1 + 2h + h 1 )z + h z +1 = 6b b 1 ), = 1, 2, hvor Skrv ut systemet: h = x x 1 = 1, b = f +1 f )/h = f +1 f. 4z 1 + z 2 = 6f 2 2f 1 + f 0 ) = 2.88 z 1 + 4z 2 = 6f 3 2f 2 + f 1 ) = Løsnngen er z 1 = 2.964, z 2 = Formel 5) læreboka s.334 gr S x) = z +1 6h x x ) 3 z 6h x x +1 ) 3 + Sett nn h = 1, x =, v får: S x) = z +1 6 x )3 z 6 x 1)3 + f+1 h z ) +1h f x x ) z ) h x x +1 ). 6 h 6 f +1 z +1 6 ) x ) For x = 2.5, lgger punktet mellon x 2 og x 3, derfor må S 2 brukes. V får: S2.5) = S 2 2.5) = f z 6 ) x 1).

3 SIF5040 Numerske Metoder. Sde 3 av 9 Oppgave 2 Strømmen et krets er gtt som en funksjon av tden It) = A snt)) B e Ct, 1) hvor A, B, C er konstante parametre. I et eksperment målte v følge data: t It) Konstantene A, B, C bestemmes slk at funksjonen 1) tlpasser dataene best mulg. Omskrv funksjonen 1), beregn deretter konstantene A, B, C ved bruk av lneær mnste kvadraters metode. Hva blr strømmen når t? Fast: Ta logartmen på begge sder av lgnngen: lni) = ln A + B lnsn t) + Ct La a 0 = ln A, a 1 = B, og a 2 = C. Normallgnngene blr a 0 a 0 5a 0 + a 1 lnsn t k ) + a 2 t k = lnsn t k ) + a 1 lnsn t k )) 2 + a 2 t k lnsn t k ) = t k + a 1 t k lnsn t k ) + a 2 tk ) 2 = ln I k lnsn t k ) ln I k t k ln I k. Sett nn verdene av t k og I k, 5a a a 2 = a a a 2 = a a a 2 = som gr løsnngen d.v.s. a 0 = , a 1 = , a 2 = A = , B = , C = Sden C er negatv, går strømmen mot 0 når t. Oppgave 3 V skal fnne null-punkter tl funksjonen fx) = snx) ved numerske metoder. V ser at x 1 = 0 og x 2 = π er begge eksakt løsnngen tl fx) = 0.

4 SIF5040 Numerske Metoder. Sde 4 av 9 a) Først, skal v løse problemmet ved fkspunkt terasjon. La Sett opp terasjons-skjema. x = g F x) hvor g F x) = x + sn x. La startverd x 0 = 3.0 som lgger nær løsnngen x 2 = π) og kjør 2 terasjoner. La nå startverd x 0 = 0.1 som lgger nær løsnngen x 1 = 0) og kjør 6 terasjoner. Hva får du? Forklar resultatet. Fast: Iterasjons-skjemaet blr: For x 0 = 3.0 gr 2 terasjoner For x 0 = 0.1 gr 6 terasjoner x k+1 = g F x k ) = x k + sn x k, k = 0, 1, 2,. x 1 = , x 2 = x 1 = , x 2 = , x 3 = , x 4 = , x 5 = , x 6 = , V ser at v fnner alltd løsnngen x 2 = π, selvom v velger startverd veldg nær x 1 = 0. Dette er ford g f x) > 1 nær x 1, og derfor fkspunkt terasjon konvergerer aldr mot x 1. Men g f x) < 1 nær x 2, og derfor fkspunkt terasjon konvergerer mot x 2. b) V bruker nå Newtons metode. Sett opp terasjons-skjemaet og kjør 2 terasjoner med de to startverdene x 0 = 3.0 og x 0 = 0.1. Hva fnner du nå? Forklar hvorfor resultatet er forskjellge fra fkspunkt-terasjonene Fast: Iterasjons-skjemaet for Newtons metode er For x 0 = 3.0, 2-terasjoner gr For x 0 = 0.1, 2-terasjoner gr x k+1 = g N x k ) = x k fxk ) f x k ) = sn xk xk cos x k. x 1 = , x 2 = x 1 = e 04, x 2 = e 11. V ser at v fnner x 2 = π ved startverden x 0 = 3.0, og v fnner x 1 = 0 ved startverden x 0 = 0.1. Dette er ford Newtons metode konvergerer alltd hvs startverd lgger nær løsnngen.

5 SIF5040 Numerske Metoder. Sde 5 av 9 c) I denne oppgaven skal v se på fel. La e k være felen terasjons-steg nr. k, d.v.s., e k = s x k hvor s er eksakt løsnngen. Man kan vse at, du skal IKKE vse det!) for fkspunkt terasjon har v lneær konvergens, d.v.s., e k+1 me k, hvor m = g F x), mens for Newtons metode har v kvadratsk konvergens, d.v.s., e k+1 Me k ) 2, hvor M = f x) 2 mn f x). og g N x) = x fx)/f x) er terasjonsfunksjonen for Newtons metode. Sett x 0 = 3.0 for begge metoder. Hvor mange terasjoner trengs for fkspunkt terasjon og Newtons metode, slk at v er garantert en fel på mndre enn ε = 10 10? Kommenter resultatet. Fast: For fkspunk terasjon, ut fra felestmatoren e k+1 me k kan man lett utlede at e k m k e 0. Sden g F x) = 1 + cos x, derfor for x lgger mellon 3 og π, er g < 1 + cos 3 = Da kan v bruke m = Vdere er e 0 = π 3 < Kravet e k ε gr d.v.s., v må kjøre mnst 5 terasjoner. For Newtons metode, skal v først fnne M k ln e0 ln ε ln m = 4.685, M = sn3) 2 cos3) = V har også e 0 < Ut fra felestmatoren tl Newtons metoden e k+1 Me k ) 2, har v e 1 Me 0 ) 2 e 2 Me 1 ) 2 MMe 0 ) 2 ) 2 = M 1+2 e 0 ) 2 2 e 3 Me 2 ) 2 MM 1+2 e 0 ) 2 2 ) 2 = M e 0 ) Ved nduksjon kan man lett vse at Kravet e k ε gr e k M k 1 e 0 ) 2k = M 2k 1 e 0 ) 2k = Me 0 ) 2k /M. Me 0 ) 2k Mε, 2 k lnmε)/ lnme 0 ) k ln Sett nn verdene for M, e 0 og ε, fnner v k ) lnmε) lnme 0 / ln2). ) d.v.s., v trenger mnst 3 terasjoner. V ser at Newtons metode har kvadratsk konvergens, derfor konvergerer metoden raskere enn fkspunkt terasjon.

6 SIF5040 Numerske Metoder. Sde 6 av 9 Oppgave 4 La ux, t) være løsnngen tl adveksjon-dffusjons lknngen Her er a, b postve konstanter, a > 0, b > 0. u t + au x = bu xx, 0 x 1, t 0) u0, t) = 0, u1, t) = 0, t 0) ux, 0) = ūx), 0 < x < 1) V ønsker å fnne numerske løsnnger tl dfferensallknngen. La u n være den numerske tlnærmelsen tl ux, t n ) hvor x = h, t n = n k, og h og k er gtte størrelser x og t retnnger tl et unformt gtter. V dskretserer x retnngen med sentral dfferenser. a) Bruk forlengs Euler tdsdskretserngen og sett opp et eksplstt numersk skjema. Vs at under følge stabltetsbetngelsene k /2b), og h 2b/a oppfyller skjemaet maksmumsprnsppet, d.v.s., u n. Fast: Eksplstt skjema ser som ut: eller etter ryddng = u n k + a un +1 un 1 = b un +1 2un + un 1 ak + bk ) u n bk ) bk u n + ak ) u n +1. Nå skal v sjekke stabltetsbetngelsene. Ta absolut verd på begge sde og bruk trekant ulkhet: u n+1 = ak + bk ) u n bk ) bk u n + ak ) u n +1 ak + bk ) u n bk ) u n + bk ak ) u n +1 Bytt ut u n, u n 1 og u n +1 med den største de kan være, kan v beholde ulkheten ak + bk ) u n + 1 2bk ) bk u n + ak ) u n. Under betngelsene 2bk, h 2b/a, er alle konstantene absolutverd-tegn postve, og v har [ u n+1 ak + bk ) + 1 2bk ) bk + ak )] u n = u n. Sden ulkheten gjelder for alle, gjelder den også for når har maksmum verd. Derfor har v u n+1 u n som er maksmumsprnsppet.

7 SIF5040 Numerske Metoder. Sde 7 av 9 b) Bruk baklengs Euler tdsdskretserngen og sett opp et mplstt numersk skjema. Vs at skjemaet oppfyller maksmumsprnsppet hvs h < 2b/a. Forklar hvorfor denne betngelsen er mye bedre enn det tlsvare for det eksplstte skjemaet. Fast: Implstt skjema ser som ut: u n k + a un+1 +1 un+1 1 = b un un eller etter ryddng ak + bk ) bk ) ak + bk ) +1 = un. Her trenger man å løse et trdagonal lneært lknngssystem hvert tdssteg. Skjemaet kan også skrves som 1 + 2bk ) = u n + Under betngelsen h 2b/a er bk bruker trekant ulkhet: 1 + 2bk ) u n+1 ak ak u n + + bk u n + = u n + 2bk ak + bk ) bk 1 + ak ) V tar absolutverd på begge sder og deretter ) u n+1 ak + bk 1 ) bk + ak. ) +1 u n+1 bk + ak ) u n+1 Sden ulkheten gjelder for alle, gjelder den også når v tar maksmum på venstre sde. V har: 1 + 2bk ) u n+1 u n + 2bk u n+1. som gr maksmumsprnsppet u n. V ser at betngelsen h 2b/a er felles for begge skjema, som egentlg kke er en streng betngelse. Den bare krever at roms-ntervallet må være mndre enn en konstant 2b/a. Men for eksplstt skjema, kreves tllegg at k /2b), som setter strengt krav på tds-ntervallet. V ser at hvs h er lte, er mye mndre, derfor må v bruke en veldg lte k og mange tdsteg for å få garantert stablteten. Dette er et uønskelgt krav. Implstt skjema unngår dette kravet, og man kan velge stor k. Men hvert tdssteg må man løse et trdagonal lneært lknngssystem. c) Skrv et Matlab program som beregner den numerske løsnngen tl dfferensallknngen, med både eksplstt og mplstt skjema. La ux, 0) = ūx) = sn4πx). Programmet skal sjekke stabltetsbetngelsene og g meldng hvs dette kke er oppfylt. Den skal også plotte løsnngen. Programmet kan begynne med:

8 SIF5040 Numerske Metoder. Sde 8 av 9 functon u=adv_dffa,b,t,h,k,metode) % functon u=adv_dffa,b,t,h,k,metode) % loesnnger av adveksjon-dffusjons lknngen ved numerske metoder % nput parameter: % a, b: koeffsenter tl dff.lkngnen % T: tden v skal beregne loesnngen, t=t. % h: gtter stoerrelse x % k: gtter stoerrelse t % metode: hvlken metode skal brukes. % hvs metode==1, bruk eksplstt metode, % hvs metode==2, bruk mplstt metode. % % resultat: % u: numersk loesnng tdspunkt t=t. Fast: Et forslag for Matlab programmet er gtt: functon u=adv_dffa,b,t,h,k,metode) % functon u=adv_dffa,b,t,h,k,metode) % loesnnger av adveksjon dffusjons lknngen ved numerske metoder % nput parameter: % a, b: koeffsenter tl dff.lkngnen % T: tden v skal beregne loesnngen, t=t. % h: gtter stoerrelse x % k: gtter stoerrelse t % metode: hvlken metode skal brukes. % hvs metode==1, bruk eksplstt metode, % hvs metode==2, bruk mplstt metode. % % resultat: % u: numersk loesnng tdspunkt t=t. N = 1/h; % antall nterval x M = T/k; % antall nterval t x=[0:h:1] ; up=zerosszex)); u=zerosszex)); up=sn4*p*x); % sett ntal data m1=a*k/2/h; m2=b*k/h/h; f metode==1) % bruk eksplstt skjema f m1>m2) 2*m2>1)) % sjekk stabltetsbetngelsene dsp Warnng: stabl.bet. kke oppfylt for eksplstt skjema! ) for n=1:1:m, for =2:1:N, u) = m1+m2)*up-1) + 1-2*m2)*up) + m2-m1)*up+1); up=u;

9 SIF5040 Numerske Metoder. Sde 9 av 9 plotx,u), ttle Loesnng med eksplstt metode ), elsef metode==2) % bruk mplstt skjema f m1>m2) % sjekk stabltetsbetngelsene dsp Warnng: stabltetsbet. kke oppfylt for mplstt skjema! ) % sett opp lgnngssystemet A = zerosn-1,n-1); d=1+2*m2; % dagonal d1=m1-m2; % upper dag d2=-m1-m2; % lower dag A=dagonesN-1,1)*d) + dagonesn-2,1)*d1,1) +... dagonesn-2,1)*d2,-1); % trdagonal matrse for n=1:1:m, u2:n)=a\up2:n); up=u; plotx,u), ttle Loesnng med mplstt metode ),

TMA4240/4245 Statistikk Eksamen august 2016

TMA4240/4245 Statistikk Eksamen august 2016 Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y

Detaljer

Anvendelser. Kapittel 12. Minste kvadraters metode

Anvendelser. Kapittel 12. Minste kvadraters metode Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag . desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg

Detaljer

Løsningsforslag øving 10 TMA4110 høsten 2018

Løsningsforslag øving 10 TMA4110 høsten 2018 Løsnngsforslag øvng TMA4 høsten 8 [ + + Projeksjonen av u på v er: u v v u v v v + ( 5) [ + u v v u [ 8/5 6/5 For å fnne ut om en matrse P representerer en projeksjon, må v sjekke om P P a) b) c) [ d)

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.

Detaljer

Alternerende rekker og absolutt konvergens

Alternerende rekker og absolutt konvergens Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne

Detaljer

EKSAMEN Ny og utsatt Løsningsforslag

EKSAMEN Ny og utsatt Løsningsforslag . jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er

Detaljer

EKSAMEN ny og utsatt løsningsforslag

EKSAMEN ny og utsatt løsningsforslag 8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -

Detaljer

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0.

X ijk = µ+α i +β j +γ ij +ǫ ijk ; k = 1,2; j = 1,2,3; i = 1,2,3; i=1 γ ij = 3. i=1 α i = 3. j=1 β j = 3. j=1 γ ij = 0. UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : Eksamensdag: 7. jun 2013. Td for eksamen: 14.30 18.30. Oppgavesettet er på 8 sder. Vedlegg: Tllatte hjelpemdler: STK2120 LØSNINGSFORSLAG

Detaljer

IT1105 Algoritmer og datastrukturer

IT1105 Algoritmer og datastrukturer Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle

Detaljer

TMA4265 Stokastiske prosesser

TMA4265 Stokastiske prosesser Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,

Detaljer

ØVINGER 2017 Løsninger til oppgaver

ØVINGER 2017 Løsninger til oppgaver ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1

Detaljer

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:

Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte: Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Hvlke problemer? Metoden ble formalsert av Rchard Bellmann (RAND Corporaton) på -tallet. Har ngen tng med programmerng å gøre. Dynamsk er et ord som kan aldr brukes negatvt. Skal v

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>. ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer

Detaljer

Løsningsforslag ST2301 Øving 8

Løsningsforslag ST2301 Øving 8 Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de

Detaljer

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering

Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng

Detaljer

MA1301 Tallteori Høsten 2014

MA1301 Tallteori Høsten 2014 MA1301 Tallteor Høsten 014 Rchard Wllamson 3. desember 014 Innhold Forord 1 Induksjon og rekursjon 7 1.1 Naturlge tall og heltall............................ 7 1. Bevs.......................................

Detaljer

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet

Dynamisk programmering. Hvilke problemer? Overlappende delproblemer. Optimalitetsprinsippet Dynamsk programmerng Metoden ble formalsert av Rchard Bellmann (RAND Corporaton på -tallet. Programmerng betydnngen planlegge, ta beslutnnger. (Har kke noe med kode eller å skrve kode å gøre. Dynamsk for

Detaljer

Forelesning nr.3 INF 1410

Forelesning nr.3 INF 1410 Forelesnng nr. INF 40 009 Node og mesh-analyse 6.0.009 INF 40 Oerskt dagens temaer Bakgrunn Nodeanalyse og motasjon Meshanalyse 009 Supernode Bruksområder og supermesh for node- og meshanalyse 6.0.009

Detaljer

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper

SIF5072 Stokastske prosesser Sde 2 av 6 b) Hva vl det s at en Markov-kjede er rredusbel? Er Markov-kjeden fx n g denne oppgaven rredusbel? Er den aper Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 6 Faglg kontakt under eksamen: Bo Lndqvst 73 59 35 20 EKSAMEN I FAG SIF5072 STOKASTISKE PROSESSER Mandag 13. august 2001 Td:

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. mai, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Mandag 23. ma, 2005 09.00-13.00 Tllatte

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 27.2.27 Kap. 9 (samt 5.5.2) Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,) tl

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON130 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 15.0.015 Sensur kunngjøres senest: 0.07.015 Td for eksamen: kl. 09:00 1:00 Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00

Detaljer

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland

Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave

Detaljer

Fourieranalyse. Fourierrekker på reell form. Eksempel La. TMA4135 Matematikk 4D. En funksjon sies å ha periode p > 0 dersom

Fourieranalyse. Fourierrekker på reell form. Eksempel La. TMA4135 Matematikk 4D. En funksjon sies å ha periode p > 0 dersom TMA435 Matematkk 4D Foureranalyse Fourerrekker på reell form En funksjon ses å ha perode p > dersom f(x + p) = f(x) () for alle x defnsjonsmengden tl f. Den mnste p slk at () holder, kalles fundamentalperoden

Detaljer

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS

Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73

Detaljer

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling

KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, 2004

Detaljer

Geometriske operasjoner

Geometriske operasjoner Geometrske operasjoner INF 23 29..28 Kap. 2.4.4 og 2.6.5 DIP Geometrske operasjoner Affne transformer Interpolasjon Samregstrerng av blder Endrer på pkslenes possjoner ransformerer pkselkoordnatene (x,)

Detaljer

TMA4300 Mod. stat. metoder

TMA4300 Mod. stat. metoder TMA4300 Mod stat metoder Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag Løsnngsforslag - Eksamen jun 2007 Oppgave Pseudokode for å evaluere θ: Generer uavhengge realsasjoner x,,x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Løsnngsforslag UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Trsdag 9. mars 3 Td for eksamen : 5: 9: Løsnngsforslaget er på : sder Vedlegg

Detaljer

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk.

Sparing gir mulighet for å forskyve forbruk over tid; spesielt kan ujevne inntekter transformeres til jevnere forbruk. ECON 0 Forbruker, bedrft og marked Forelesnngsnotater 09.0.07 Nls-Henrk von der Fehr FORBRUK OG SPARING Innlednng I denne delen skal v anvende det generelle modellapparatet for konsumentens tlpasnng tl

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov

Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs

Detaljer

Eksamensoppgave i SØK Statistikk for økonomer

Eksamensoppgave i SØK Statistikk for økonomer Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):

Detaljer

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså:

(iii) Når 5 er blitt trukket ut, er det tre igjen som kan blir trukket ut til den siste plassen, altså: A-besvarelse ECON2130- Statstkk 1 vår 2009 Oppgave 1 A) () Antall kke-ordnede utvalg: () P(Arne nummer 1) = () Når 5 er bltt trukket ut, er det tre gjen som kan blr trukket ut tl den sste plassen, altså:

Detaljer

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).

Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18). Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +

Detaljer

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).

Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f). Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln

Detaljer

Sluttrapport. utprøvingen av

Sluttrapport. utprøvingen av Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene

Detaljer

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2

i kjemiske forbindelser 5. Hydrogen har oksidasjonstall Oksygen har oksidsjonstall -2 Repetsjon 4 (16.09.06) Regler for oksdasjonstall 1. Oksdasjonstall for alle fre element er 0 (O, N, C 60 ). Oksdasjonstall for enkle monoatomske on er lk ladnngen tl onet (Na + : +1, Cl - : -1, Mg + :

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:

Detaljer

Forelesning nr.3 INF 1411 Elektroniske systemer

Forelesning nr.3 INF 1411 Elektroniske systemer Forelesnng nr.3 INF 4 Elektronske systemer 009 04 Parallelle og parallell-serelle kretser Krchhoffs strømlov 30.0.04 INF 4 Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksmen : ECON00 Mtemtkk /Mkro (MM) Eksmensdg: 7.05.05 Sensur kunngjøres: 7.06.05 Td for eksmen: kl. 09:00 5:00 Oppgvesettet er på 4 sder Tlltte hjelpemdler: Det

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON30: EKSAMEN 05 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING ONSDAG 11. DESEMBER 2002 KL LØSNINGSFORSLAG Sde a 9 TU orges teknsk-natrtenskapelge nerstet Fakltet for fyskk nformatkk og matematkk Instttt for datateknkk og nformasjonstenskap EKSAME I FAG SIF85 VISUALISERIG OSDAG. DESEMER KL. 9. 4. LØSIGSFORSLAG

Detaljer

MoD233 - Geir Hasle - Leksjon 10 2

MoD233 - Geir Hasle - Leksjon 10 2 Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt

Detaljer

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG

EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001 KL LØSNINGSFORSLAG Sde 1 av 5 NTNU Norges teknsk-naturvtenskapelge unverstet Fakultet for fyskk, nformatkk og matematkk Insttutt for datateknkk og nformasjonsvtenskap EKSAMEN I FAG SIF8052 VISUALISERING MANDAG 21. MAI 2001

Detaljer

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL

NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL NÆRINGSSTRUKTUR OG INTERNASJONAL HANDEL Norman & Orvedal, kap. 1-5 Bævre & Vsle Generell lkevekt En lten, åpen økonom Nærngsstruktur Skjermet versus konkurranseutsatt vrksomhet Handel og komparatve fortrnn

Detaljer

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011

Forelesning 4 og 5 MET3592 Økonometri ved David Kreiberg Vår 2011 Løsnnger lle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Hypotesetestng testng av enkelthypoteser Oppgave 1.* Når v tester enkelthypoteser ved hjelp

Detaljer

Seleksjon og uttak av alderspensjon fra Folketrygden

Seleksjon og uttak av alderspensjon fra Folketrygden ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.

Detaljer

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm

COLUMBUS. Lærerveiledning Norge og fylkene. ved Rolf Mikkelsen. Cappelen Damm COLUMBUS Lærervelednng Norge og fylkene ved Rolf Mkkelsen Cappelen Damm Innlednng Columbus Norge er et nteraktvt emddel som nneholder kart over Norge, fylkene og Svalbard, samt øvelser og oppgaver. Det

Detaljer

Forelesning 17 torsdag den 16. oktober

Forelesning 17 torsdag den 16. oktober Forelesnng 17 torsdag den 16. oktober 4.12 Orden modulo et prmtall Defnsjon 4.12.1. La p være et prmtall. La x være et heltall slk at det kke er sant at x 0 Et naturlg tall t er ordenen tl a modulo p dersom

Detaljer

UNIVERSITETET I OSLO.

UNIVERSITETET I OSLO. UNIVERSITETET I OSO. Det matematsk - naturvtenskapelge fakultet. Eksamen : FY-IN 204 Eksamensdag : 13 jun 2001 Td for eksamen : l.0900-1500 Oppgavesettet er på 5 sder. Vedlegg Tllatte hjelpemdler : ogartmepapr

Detaljer

Studieprogramundersøkelsen 2013

Studieprogramundersøkelsen 2013 1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta

Detaljer

STK desember 2007

STK desember 2007 Løsnngsfrslag tl eksamen STK0 5. desember 2007 Oppgave a V antar at slaktevektene tl kalkunene fra Vrgna er bserverte verder av stkastske varabler X, X 2, X, X 4 sm er uavhengge g Nµ, σ 2 -frdelte, g at

Detaljer

Statistikk og økonomi, våren 2017

Statistikk og økonomi, våren 2017 Statstkk og økonom, våren 7 Oblgatorsk oppgave Løsnngsforslag Oppgave Anta at forbruket av ntrogen norsk landbruk årene 987 99 var følgende målt tonn: 987: 9 87 988: 8 989: 8 99: 8 99: 79 99: 87 99: 9

Detaljer

Veiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som

Veiledning til obligatorisk oppgave i ECON 3610/4610 høsten N. Vi skal bestemme den fordeling av denne gitte arbeidsstyrken som Jon sle; oktober 07 Ogave a. elednng tl oblgatorsk ogave ECO 60/60 høsten 07 har nå at samlet arbedskraftmengde er gtt lk, slk at ressurskravet er. skal bestemme den fordelng av denne gtte arbedsstyrken

Detaljer

TMA4245 Statistikk Eksamen august 2014

TMA4245 Statistikk Eksamen august 2014 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Y 5 PY > 53) PY 53) P ) 53 5 Φ5) 933 668 Vekte av e fylt flaske, X + Y, er e leærkombasjo av uavhegge ormalfordelte

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4

Detaljer

MA2501 Numeriske metoder

MA2501 Numeriske metoder MA501 Numeriske metoder Vår 009 Øving 9 Oppgave 1 Bruk vedlagte matlab-program skyt.m til å løse randverdiproblemet x + e x = 0, x(0) = x(1) = 0 Oppgave Gitt startverdiproblemet x = t(x ), x(0) = 1, x

Detaljer

Oppgave 3, SØK400 våren 2002, v/d. Lund

Oppgave 3, SØK400 våren 2002, v/d. Lund Oppgave 3, SØK400 våren 00, v/d. Lnd En bonde bonde dyrker poteter. Hvs det blr mldvær, blr avlngen 0. Hvs det blr frost, blr avlngen. Naboen bonde, som vl være tsatt for samme vær, dyrker også poteter,

Detaljer

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011

Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011 Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ.3.7 YS- MEK.3.7 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7 kraft

Detaljer

Arbeid og potensiell energi

Arbeid og potensiell energi Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg

Detaljer

Norske CO 2 -avgifter - differensiert eller uniform skatt?

Norske CO 2 -avgifter - differensiert eller uniform skatt? Norske CO 2 -avgfter - dfferensert eller unform skatt? av Sven Egl Ueland Masteroppgave Masteroppgaven er levert for å fullføre graden Master samfunnsøkonom Unverstetet Bergen, Insttutt for økonom Oktober

Detaljer

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder

2007/30. Notater. Nina Hagesæther. Notater. Bruk av applikasjonen Struktur. Stabsavdeling/Seksjon for statistiske metoder og standarder 007/30 Notater Nna Hagesæter Notater Bruk av applkasjonen Struktur Stabsavdelng/Seksjon for statstske metoder og standarder Innold 1. Innlednng... 1.1 Hva er Struktur, og va kan applkasjonen brukes tl?...

Detaljer

Løsningskisse for oppgaver til uke 15 ( april)

Løsningskisse for oppgaver til uke 15 ( april) HG Aprl 01 Løsnngsksse for oppgaver tl uke 15 (10.-13. aprl) Innledende merknad. Flere oppgaver denne uka er øvelser bruk av den vktge regel 5.0, som er sentral dette kurset, og som det forventes at studentene

Detaljer

Spinntur 2017 Rotasjonsbevegelse

Spinntur 2017 Rotasjonsbevegelse Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets

Detaljer

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.

TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>. ECON: EKSAMEN 6 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt

Detaljer

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17

Eksamen 31.05.2016. Nynorsk side 2 4. Bokmål side 5 7. Felles vedlegg side 9 17 Eksamen 31.05.2016 NOR1211-NOR1231 Norsk hovudmål/hovedmål NOR1218-NOR1238 Norsk elev samsk som andrespråk Elevar og prvatstar / Elev og prvatst Nynorsk sde 2 4. Bokmål sde 5 7. Felles vedlegg sde 9 17

Detaljer

Løsningsskisse til eksamen i TFY112 Elektromagnetisme,

Løsningsskisse til eksamen i TFY112 Elektromagnetisme, Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Eksamen : STK1000 Innførng anvendt statstkk Eksamensdag: Trsdag 12. desember 2017 Td for eksamen: 14.30 18.30 Oppgavesettet er på 5 sder Tllatte

Detaljer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer

Dynamisk programmering. Hvilke problemer? Optimalitetsprinsippet. Overlappende delproblemer ynask prograerng Metoden ble foralsert av Rchard Bellann (RAN Corporaton på -tallet. Prograerng betydnngen planlegge, ta beslutnnger. (Har kke noe ed kode eller å skrve kode å gøre. ynask for å ndkere

Detaljer

14 Systemer av differensiallikninger TMA4110 høsten 2018

14 Systemer av differensiallikninger TMA4110 høsten 2018 Systemer v fferensllknnger TMA høsten 8 I ette kptlet skl v ruke et v hr lært om lneær lger tl å løse fferensllknnger Det fnnes fferensllknnger for nesten lt, men et er kun e ller enkleste som er mulg

Detaljer

v a~iii~ raitaii. ij ~ Kontaktperson i eksamensdag: Eugenia Sandru

v a~iii~ raitaii. ij ~ Kontaktperson i eksamensdag: Eugenia Sandru NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITE~ INSTITUTr FOR KJEMI Faglg kontakt under eksamen: Insttutt for kjem, Realfagbygget ~ fl...,.i:. T~ Cfl C~ LVI v a~~ rata. j ~ Kontaktperson eksamensdag: Eugena

Detaljer

Gauss-Krüger-projeksjonen ved analytiske funksjoner

Gauss-Krüger-projeksjonen ved analytiske funksjoner Gauss-Krüger-projeksjonen ved analytske funksjoner Vtenskapelg bedømt (refereed) artkkel : The Gauss-Krüger projecton by analytc functons KART OG PLAN, Vol. 7, pp. 39 44, P.O.B. 53, NO-43 Ås, ISSN 47-378

Detaljer

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002

Samfunnsøkonomi andre avdeling, mikroøkonomi, Diderik Lund, 18. mars 2002 Samfunnsøkonom andre avdelng, mkroøkonom, Dderk Lund, 8. mars 00 Markeder under uskkerhet Uskkerhet vktg mange (de fleste? markeder Uskkerhet omkrng framtdge prser og leverngsskkerhet (f.eks. om leverandør

Detaljer

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1

Oppgaven består av 9 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1 ECON 213 EKSAMEN 26 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å vee lke mye, Kommentarer og tallsvar er skrevet nn mellom , Oppgave 1 I en by med 1 stemmeberettgete nnbyggere

Detaljer

Automatisk koplingspåsats Komfort Bruksanvisning

Automatisk koplingspåsats Komfort Bruksanvisning Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon

Detaljer

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)

Balanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985) alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,

Detaljer

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.

Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet. FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )

Detaljer

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015

Fleksibelt arbeidsliv. Befolkningsundersøkelse utført for Manpower September 2015 Fleksbelt arbedslv Befolknngsundersøkelse utført for Manpower September 015 Antall dager med hjemmekontor Spørsmål: Omtrent hvor mange dager jobber du hjemmefra løpet av en gjennomsnttsmåned (n=63) Prosent

Detaljer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer

NA Dok. 52 Angivelse av måleusikkerhet ved kalibreringer Sde: av 7 orsk akkredterng Dok.d.: VII..5 A Dok. 5: Angvelse av måleuskkerhet ved kalbrernger Utarbedet av: Saeed Behdad Godkjent av: ICL Versjon:.00 Mandatory/Krav Gjelder fra: 09.05.008 Sdenr: av 7 A

Detaljer

Tillegg 7 7. Innledning til FY2045/TFY4250

Tillegg 7 7. Innledning til FY2045/TFY4250 FY1006/TFY4215 Tllegg 7 1 Dette notatet repeterer noen punkter fra Tllegg 2, og dekker detalj målng av degenererte egenverder samt mpulsrepresentasjonen av kvantemekankk. Tllegg 7 7. Innlednng tl FY2045/TFY4250

Detaljer

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU

SOS3003 Anvendt statistisk dataanalyse i samfunnsvitenskap Forelesingsnotat 07. Erling Berge Institutt for sosiologi og statsvitenskap NTNU SOS3003 Anvendt statstsk dataanalyse samfunnsvtenskap Forelesngsnotat 07 Erlng Berge Insttutt for sosolog og statsvtenskap NTNU Erlng Berge 2004 Forelesng VII Logstsk regresjon I Hamlton Kap 7 s27-234

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO øsnngsforslag UNIVERSIEE I OSO Det matematsk-naturvtenskaelge fakultet Eksamen : INF3 Dgtal bldebehandlng Eksamensdag : Onsdag 6. jun d for eksamen : 9: 3: øsnngsforslaget er å : sder Vedlegg : Ingen llatte

Detaljer

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212)

EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER MED DIFFERANSEMETODER (TMA4212) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Faglig kontakt under eksamen: Navn: Bård Skaflestad (946867) EKSAMEN I NUMERISK LØSNING AV DIFFERENSIALLIGNINGER

Detaljer

Eksamensoppgave i TFY4125 Fysikk

Eksamensoppgave i TFY4125 Fysikk de av 3 Insttutt for fyskk Eksamensoppgave TFY45 Fyskk Faglg kontakt under eksamen: Evnd Hs Hauge Tlf.: 98 5 3 Eksamensdato: 8. jun 3 Eksamenstd (fra-tl): 9: 3: Hjelpemddelkode/Tllatte hjelpemdler: Kode

Detaljer

1653B/1654B. Installasjonstest på et IT anlegg i drift

1653B/1654B. Installasjonstest på et IT anlegg i drift 65B/654B Installasjonstest på et IT anlegg drft Utførng av testene Spennngsmålnger Testeren kan brkes som et ac voltmeter hvor spennng og frekvens kan vses samtdg ved å sette rotasjonsbryteren tl V. Alle

Detaljer

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse)

C(s) + 2 H 2 (g) CH 4 (g) f H m = -74,85 kj/mol ( angir standardtilstand, m angir molar størrelse) Fyskk / ermodynamkk Våren 2001 5. ermokjem 5.1. ermokjem I termokjemen ser v på de energendrnger som fnner sted kjemske reaksjoner. Hver reaktant og hvert produkt som nngår en kjemsk reaksjon kan beskrves

Detaljer

Korteste-vei problemet Nettverksflyt med øvre begrensninger Maksimum-flyt problemet Teorem: Maksimum-flyt Minimum-kutt

Korteste-vei problemet Nettverksflyt med øvre begrensninger Maksimum-flyt problemet Teorem: Maksimum-flyt Minimum-kutt Lekson 11 Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt MoD233 - Ger Hasle - Lekson 11 2 Heltallsprogrammerng Tdsplanleggng (skedulerng,

Detaljer

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst

Kapittel og Appendix A, Bævre og Vislie (2007): Næringsstruktur, internasjonal handel og vekst 1 Frelesnng 9 Kapttel.6-3.1 g Appendx A, Bævre g Vsle (007: Nærngsstruktur, nternasjnal handel g vekst Egenskaper ved betngete etterspørselsfunksjner Hmgentet Kstnadsfunksjnen er hmgen av grad 1 faktrprsene,

Detaljer

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00

MASTER I IDRETTSVITENSKAP 2012/2014. Individuell skriftlig eksamen. MAS 402- Statistikk. Tirsdag 9. oktober 2012 kl. 10.00-12.00 MASTER I IDRETTSVITESKAP 0/04 Indvduell skrftlg eksamen MAS 40- Statstkk Trsdag 9. oktober 0 kl. 0.00-.00 Hjelpemdler: kalkulator Eksamensoppgaven består av 9 sder nkludert forsden Sensurfrst: 30. oktober

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet

Detaljer

2006/27 Notater 2006 Om samordning av utvalg ved bruk av PRN-tall

2006/27 Notater 2006 Om samordning av utvalg ved bruk av PRN-tall 2006/27 Notater 2006 Johan Heldal og Audun Rust Notater Om samordnng av utvalg ved bruk av PRN-tall Seksjon for statstske metoder og standarder Forord Dette notatet beskrver hvordan permanente tlfeldge

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Prøveeksamen 1 Eksamensdag: Onsdag 14. November 2014. Tid for eksamen:

Detaljer

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler

Formler og regler i statistikk ifølge lærebok Gunnar Løvås: Statistikk for universiteter og høgskoler Formler og regler statstkk følge lærebok Guar Løvås: tatstkk for uversteter og høgskoler Kap. Hva er fakta om utvalget etralmål Meda: mdterste verd etter sorterg Modus: hyppgst forekommede verd Gjeomstt:

Detaljer

TMA4245 Statistikk Eksamen mai 2016

TMA4245 Statistikk Eksamen mai 2016 Norges teksk-aturvteskapelge uverstet Isttutt for matematske fag Løsgssksse Oppgave a) Lar X være kvadratprse. Har da at X N(µ, σ 2 ), med µ 30 og σ 2 2, 5 2. P (X < 30) P (X < µ) 0.5 ( X 30 P (X > 25)

Detaljer