Arbeid og potensiell energi
|
|
|
- Inge Birkeland
- 8 år siden
- Visninger:
Transkript
1 Arbed og potensell energ.3.7 YS- MEK.3.7
2 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d energbevarng vertkal kast: mg d mg fjær: k k d atom krstall: b π cos π b b d π sn b YS- MEK.3.7
3 kraft er bare possjonsavhengg én dmensjon arbed uavhengg av veen mekansk energ er kraft er bevart d konservatv potensell energ: potensal tl kraften d v kan velge potensal nullpunktet uten konsekvens for kraften arbed-energ teorem: W, d K K K K E mekansk energ er bevart YS- MEK.3.7 3
4 access number: En partkkel beveger seg langs -aksen med potensell energ som vst. Kraften på partkkelen når den er 4 m er:. 4 N. N 3. N 4. - N 5. - N YS- MEK.3.7 4
5 access number: Kraften vrker på en partkkel som beveger seg langs -aksen. Ved hvlket av de avmerkede verdene for er den potenselle energen maksmal?. Ved og 5. Ved 4 3. Ved, 3, 5 og 7 4. Ved og 6 5. Ved 3 og 7 O potensell energ har ekstremverd ved: d d maksmum hvs: < d d d d d d d d < d d > stgnng av postv 3 og 7 YS- MEK.3.7 5
6 lere krefter flere konservatve krefter vrker på et legeme langs -aksen: net W, net d d d sden kreftene er konservatv: d W d, d d d arbed-energ teorem: W, K K K K med: energbevarng: K K YS- MEK.3.7 6
7 YS- MEK Eksempel: jærkanon fjær med lkevektslengde og fjærkonstant k Hvor høt kommer klossen? krefter: gravtasjon, fjærkraft begge er konservatv > k mg k G v kan drekte sammenlgne energ ved td t og t : K K mg k mg mg k
8 Hvordan fnner v potensalet tl en konservatv kraft? d d d d d d eksempel: fjærkraft k k d k ʹ dʹ k v kan velge, f. eks. k hva hvs Ø kraften er meget komplsert Ø v kjenner kraften fra målng numersk ntegrasjon d YS- MEK.3.7 8
9 YS- MEK B A d numersk ntegrasjon v deler ntervallet n små ntervaller: n A B Δ A Δ n B A d d Δ n bedre tlnærmng enn rektangel: trapes Δ n d B A
10 eksempel: sn e I n Δ cumulatve trapezodal ntegraton π sn e d ʹ dʹ π.55396? ekstremverd tl YS- MEK.3.7
11 access number: Grafen vser den potenselle energen tl en partkkel som beveger seg langs -aksen. Partkkelen starter ved 4 og beveger seg negatv -retnng. Ved hvlket av de merkede punktene er kraften på partkkelen null? O 3 4. Ved både og 3. Kun ved 3. Kun ved 4 4. Ved både og 4 d stgnng for funksjonen er null og 4 YS- MEK.3.7
12 access number: Grafen vser den potenselle energen tl en partkkel som beveger seg langs -aksen. Partkkelen starter ved 4 og beveger seg negatv -retnng. Ved hvlket av de merkede punktene er farten størst? O 3 4. Ved. Ved 3. Ved 3 4. Ved 4 E K konstant knetsk energ er maksmal når potensell energ er mnmal ved YS- MEK.3.7
13 Energdagrammer energbevarng: E K K hvs K K mg YS- MEK.3.7 3
14 E K > ma E K < ma K > b knetsk energ kan bl null atom er fanget potensalet og svnger frem og tlbake b atomet kan bevege seg overalt YS- MEK.3.7 4
15 access number: En partkkel befnner seg possjon a med total energ E og beveger seg mot høre. Hva kommer tl å skje?. Partkkelen svnger om possjon a.. Partkkelen stanser og forblr ved c. 3. Partkkelen slpper unna mot uendelg negatv retnng. 4. Ikke nok nformasjon for å avgjøre. c a: v > E K konstant K E partkkelen beveger seg mot høre c: K v d < kraft mot venstre partkkelen snu og har negatv hastghet fremover YS- MEK.3.7 5
16 Lkevekt partkkel med v d partkkel blr d ltt knetsk energ partkkel svnger med små ampltude rund partkkel 3 med v d d partkkel blr 3 mnmum potensell energ stablt lkevektspunkt d d > ltt knetsk energ partkkel beveger seg enten mot eller mot og fjerner seg langt fra 3 maksmum potensell energ d ustablt lkevektspunkt < d YS- MEK.3.7 6
17 Potensal tre dmensjoner konservatv kraft:! arbed: W, t!!! v dt dr!!! ntegral uavhengg av veen, r r bare avhengg av start og sluttpossjon t! potensell energ: r,, z én dmensjon: tre dmensjoner: d,, z z! ˆ ˆj z kˆ ˆ ˆ j kˆ ˆ ˆj kˆ z z! konservatv kraft!! arbed uavhengg av veen YS- MEK.3.7 7
Arbeid og potensiell energi
Arbed og potensell energ 5.3.4 YS-MEK 5.3.4 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg d d mg fjær: k d k d atom krstall: b cos b b d d sn b YS-MEK 5.3.4
Arbeid og potensiell energi
Arbed og potensell energ 4.3.5 Mdtveseksamen: 6.3. Pensum: Kap. boken flere lærer på data-lab YS-MEK 4.3.5 Konservatve krefter: v kan fnne en potensalfunksjon slk at: d d energbevarng vertkal kast: mg
Stivt legemers dynamikk
Stvt legemers dynamkk 8.04.06 FYS-MEK 0 8.04.06 otasjon av et stvt legeme: defnsjon: z m treghetsmoment for legemet om aksen z (som går gjennom punktet O) kontnuerlg legeme med massetetthet (r) m ) dv
Flerpartikkelsystemer Rotasjonsbevegelser
lerpartkkelsystemer otasjonsbevegelser 8.03.05 YS-EK 0 8.03.05 Program vere reag 0.3.: ngen ata-verkste este uke: ngen unervsnng ngen forelesnng ngen gruppetme ngen ata-verkste Torsag 6.3: veseksamen este
Stivt legemers dynamikk
Stvt legeers dnakk 7.04.05 Resultater fra veseksaen på seestersden. Eneste krav for å ta slutteksaen: 7 av 0 oblger. Gruppete dag: Gruppe 5 (Ø394) slås saen ed gruppe 7 på Ø443 FYS-MEK 0 7.04.05 kraftoent:
Oppsummering Mekanikk. Newtons 2. lov: masse akselerasjon = kraft (total ytre kraft) Posisjon x [m] dx dt. v x. a x () t dt. Hastighet v x [m/s]
Oppsummerng Mekankk Sde av 6 Newtons. lov: masse akselerasjon kraft (total ytre kraft) Possjon x [m] Hastghet v x [m/s] Akselerasjon a x [m/s ] v x dx ----- dx v x x() t x( 0) a x t 0 v x () t dv -------
Stivt legemers dynamikk
Stvt legeers dynakk 9.4. FYS-EK 9.4. Repetsjon Newtons andre lov for flerpartkkelsysteer: F ext hvor: r R d R (assesenter) dt separasjon: bevegelse tl assesenter bevegelse relatv tl assesenter K V N v
4 Energibalanse. TKT4124 Mekanikk 3, høst Energibalanse
4 Energbalanse Innhold: Potensell energ Konservatve krefter Konserverng av energ Vrtuelt arbed for deformerbare legemer Vrtuelle forskvnngers prnspp Vrtuelle krefters prnspp Ltteratur: Irgens, Fasthetslære,
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 1.05.016 FYS-MEK 1110 1.05.016 1 Ekvvalenspnsppet gavtasjonskaft: gavtasjonell masse m m F G G m G 1 F g G FG R Gm J J Newtons ande lov: netalmasse m
Stivt legemers dynamikk
Stvt legemes dnamkk 1.04.016 YS-MEK 1110 1.04.016 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) d ( t) d vnkelhastghet akseleasjon a( t) dv d ( t) d d vnkelakseleasjon 1
Stivt legemers dynamikk
Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)
Stivt legemers dynamikk
Stvt legemes dnamkk 03.04.017 snubleguppen må avlses mogen, 4.apl. v plane flee snubleguppe / eksamensvekstede ette Påske YS-MEK 1110 03.04.017 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel
Stivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn.4.5 FYS-MEK.4.5 Poblemløsnng dentfse sstem og omgvelse defne et koodnatsstem fnn massesente, otasjonsakse og teghetsmoment f N cm G fnn ntalbetngelse: possjon, hastghet, vnkel,
Magnetisk nivåregulering. Prosjektoppgave i faget TTK 4150 Ulineære systemer. Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland
Magnetsk nvåregulerng Prosjektoppgave faget TTK 45 Ulneære systemer Gruppe 4: Rune Haugom Pål-Jørgen Kyllesø Jon Kåre Solås Frode Efteland Innholdsfortegnelse Innholdsfortegnelse... Innlednng... Oppgave
Keplers lover. Statikk og likevekt
Keples love Statkk og lkevekt 4.5.7 Spnntu-deltakee få en eksta oblg godkjent Devly: deltok passed / deltok kke faled Eksta snubleguppe dag kl.6-8 Ogo: gjennomgang av spnn Fyssk Fagutvalg gjennomføe en
Stivt legemers dynamikk. Spinn
Stvt legees nakk Spnn 9.4.14 ngen ata-vekste enne uke FYS-MEK 111 9.4.14 1 Eksepel R Et legee av asse M, aus R, og teghetsoent ulle ne et skåplan. koonatsste e aksen langs planet ogo assesenteet otasjon
Stivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn 5.4.6 FYS-MEK 5.4.6 kaftmoment: F F sn F T F F R F T F sn NL fo otasjone:, I fo et stvt legeme med teghetsmoment I tanslasjon og otasjon: F et MA cm Icm ullebetngelse: ksk eneg:
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt.5.3 YS-MEK.5.3 otensell eneg tl tyngdekaften en masse m bevege seg tyngdefeltet tl massen M fa punkt tl B Newtons gavtasjonslov abed: W B G d mm G ˆ
Gravitasjon og planetenes bevegelser. Statikk og likevekt
Gavtasjon og planetenes bevegelse Statkk og lkevekt 05.05.04 FYS-MEK 0 05.05.04 Ekvvalenspnsppet gavtasjonelle masse = netelle masse F G m m F ma på joden: F hvo: mg m g G R J J Galleo: Alle legeme falle
Eksamensoppgave i TFY4125 Fysikk
de av 3 Insttutt for fyskk Eksamensoppgave TFY45 Fyskk Faglg kontakt under eksamen: Evnd Hs Hauge Tlf.: 98 5 3 Eksamensdato: 8. jun 3 Eksamenstd (fra-tl): 9: 3: Hjelpemddelkode/Tllatte hjelpemdler: Kode
Klassisk Mekanikk IVER H. BREVIK. KOMPENDIUM i faget TEP4145 Til L A TEXved Simen Ellingsen
Klasssk Mekankk IVER H. BREVIK KOMPENDIUM faget TEP4145 Tl L A TEXved Smen Ellngsen Insttutt for Energ og Prosessteknkk, Norges Teknsk Naturvtenskapelge Unverstet Mars 2006 Klasssk Mekankk Iver H. Brevk
Løsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Martn Grønsleth, tlf 93772 KONTINUASJONSEKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Fredag 13. august, 2004
Spinntur 2017 Rotasjonsbevegelse
Spnntur 2017 Rotasjonsbevegelse August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets
EKSAMEN ny og utsatt løsningsforslag
8.. EKSAMEN n og utsatt løsnngsorslag Emnekode: ITD Dato:. jun Hjelpemdler: - To A-ark med valgrtt nnhold på begge sder. Emnenavn: Matematkk ørste deleksamen Eksamenstd: 9.. Faglærer: Chrstan F Hede -
Fiktive krefter
Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)
Fiktive krefter
Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L
Fourieranalyse. Fourierrekker på reell form. Eksempel La. TMA4135 Matematikk 4D. En funksjon sies å ha periode p > 0 dersom
TMA435 Matematkk 4D Foureranalyse Fourerrekker på reell form En funksjon ses å ha perode p > dersom f(x + p) = f(x) () for alle x defnsjonsmengden tl f. Den mnste p slk at () holder, kalles fundamentalperoden
Fiktive krefter. Gravitasjon og planetenes bevegelser
iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i
Stivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza
Potensiell energi Bevegelsesmengde
Poensell energ eegelsesengde 2.3.23 YS-MEK 2.3.23 konsera kraf kraf so bare ahenger a possjon arbed ahenger bare a sar- og slupossjon, kke a een ello arbed er null hs sar- og slupossjon er densk kan fnne
Eksamen ECON 2200, Sensorveiledning Våren Deriver følgende funksjoner. Deriver med hensyn på begge argumenter i e) og f).
Eksamen ECON 00, Sensorvelednng Våren 0 Oppgave (8 poeng ) Derver følgende funksjoner. Derver med hensyn på begge argumenter e) og f). (Ett poeng per dervasjon, dvs, poeng e og f) a) f( x) = 3x x + ln
Fiktive krefter. Gravitasjon og ekvivalensprinsippet
iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en
Stivt legemers dynamikk
Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et
IT1105 Algoritmer og datastrukturer
Løsnngsforslag, Eksamen IT1105 Algortmer og datastrukturer 1 jun 2004 0900-1300 Tllatte hjelpemdler: Godkjent kalkulator og matematsk formelsamlng Skrv svarene på oppgavearket Skrv studentnummer på alle
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
Anvendelser. Kapittel 12. Minste kvadraters metode
Kapttel Anvendelser I dette kaptlet skal v se på forskjellge anvendelser av teknkke v har utvklet løpet av de sste ukene Avsnttene og eksemplene v skal se på er derfor forholdsvs uavhengge Mnste kvadraters
Automatisk koplingspåsats Komfort Bruksanvisning
Bruksanvsnng System 2000 Art. Nr.: 0661 xx /0671 xx Innholdsfortegnelse 1. rmasjon om farer 2. Funksjon 2.1. Funksjonsprnspp 2.2. Regstrerngsområde versjon med 1,10 m lnse 2.3. Regstrerngsområde versjon
5. Bevegelsesmengde. Fysikk for ingeniører. 5. Bevegelsesmengde og massesenter. Side 5-1
5 eegelsesmengde Fyskk for ngenører 5 eegelsesmengde og massesenter Sde 5 - Httl har forutsatt at åre legemer kan oppfattes som partkler Stort sett har behandlet dsse partklene som solerte legemer som
Appendiks 1: Organisering av Riksdagsdata i SPSS. Sannerstedt- og Sjölins data er klargjort for logitanalyse i SPSS filen på følgende måte:
Appendks 1: Organserng av Rksdagsdata SPSS Sannerstedt- og Sjölns data er klargjort for logtanalyse SPSS flen på følgende måte: Enhet År SKJEBNE BASIS ANTALL FARGE 1 1972 1 0 47 1 0 2 1972 1 0 47 1 0 67
Stivt legemers dynamikk
Stvt legees dnakk 8.04.06 FYS-MEK 0 8.04.06 Spnn spnn o punkt fo en patkkel ed asse og bevegelsesengde p: l p spnnsats: net d l Newtons ande lov: F net d p uten netto kaftoent e spnn bevat l kˆ l kˆ ˆj
TMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
Tema for forelesningen var Carnot-sykel (Carnot-maskin) og entropibegrepet.
FORELESNING I ERMOYNMIKK ONSG 29.03.00 ema for forelesnngen var arnot-sykel (arnot-maskn) og entropbegrepet. En arnot-maskn produserer arbed ved at varme overføres fra et sted med en øy temperatur ( )
Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.18).
Econ 2130 HG mars 2012 Supplement tl forelesnngen 19. mars Illustrasjon av regel 5.19 om sentralgrenseteoremet og ltt om heltallskorreksjon (som eksempel 5.18). Regel 5.19 ser at summer, Y = X1+ X2 + +
Eksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
Sluttrapport. utprøvingen av
Fagenhet vderegående opplærng Sluttrapport utprøvngen av Gjennomgående dokumenterng fag- og yrkesopplærngen Februar 2012 Det å ha lett tlgjengelg dokumentasjon er en verd seg selv. Dokumentasjon gr ungedommene
Spinntur 2018 ROTASJONSBEVEGLSE
Spnntur 2018 ROTASJONSBEVEGLSE August Geelmuyden Unverstetet Oslo Teor I. Defnsjon og bevarng Newtons andre lov konstaterer at summen av kreftene F = F som vrker på et legeme med masse m er lk legemets
EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
EKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, Tillatte hjelpemidler : K.Rottman, Matematisk formelsamling
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglg kontakt under eksamen: Professor Asle Sudbø, tlf 93403 EKSAMEN I TFY4210 ANVENDT KVANTEMEKANIKK Torsdag 11. august, 2005 09.00-13.00
Løsningsforslag øving 10 TMA4110 høsten 2018
Løsnngsforslag øvng TMA4 høsten 8 [ + + Projeksjonen av u på v er: u v v u v v v + ( 5) [ + u v v u [ 8/5 6/5 For å fnne ut om en matrse P representerer en projeksjon, må v sjekke om P P a) b) c) [ d)
Bevegelse i én dimensjon (2)
Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer
Newtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
Bevegelse i én dimensjon
Beegelse én dmensjon 21.1.215 FYS-MEK 111 21.1.216 1 Gruppeundersnng og daalab begynner mandag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/16/plan216web.hm Oppgaer og forelesnngene legges
Alternerende rekker og absolutt konvergens
Alternerende rekker og absolutt konvergens Forelest: 0. Sept, 2004 Sst forelesnng så v på rekker der alle termene var postve. Mange av de kraftgste metodene er utvklet for akkurat den typen rekker. I denne
Stivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
Generell likevekt med skjermet og konkurranseutsatt sektor 1
1 Jon Vsle; februar 2018 ECON 3735 vår 2018 Forelesnngsnotat #1 Generell lkevekt med skjermet og konkurranseutsatt sektor 1 V betrakter en økonom med to sektorer; en skjermet sektor («-sektor») som produserer
Løsningsskisse til eksamen i TFY112 Elektromagnetisme,
Løsnngssksse tl eksamen TFY11 Elektromagnetsme, høst 003 (med forbehold om fel) Oppgave 1 a) Ved elektrostatsk lkevekt har v E = 0 nne metall. Ellers bruker v Gauss lov med gaussflate konsentrsk om lederkulen.
Oppgaver. Multiple regresjon. Forelesning 3 MET3592 Økonometri ved David Kreiberg Vår 2011
Forelesnng 3 MET359 Økonometr ved Davd Kreberg Vår 0 Oppgaver Alle oppgaver er merket ut fra vanskelghetsgrad på følgende måte: * Enkel ** Mddels vanskelg *** Vanskelg Multple regresjon Oppgave.* Ta utgangspunkt
Stivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
Rotasjonsbevegelser 13.04.2015
Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen
12 Løsningsmetoder i elastisitetsteori
12 Løsnngsmetoder elaststetsteor Innhold: Eksakt løsnng lnærmede løsnnger Prnsppet om vrtuelt arbed 3D Prnsppet om stasjonær potensell energ 3D Raylegh-Rtz metode 2D og 3D kver kontra plater Eksakte skveløsnnger
Simpleksmetoden. Initiell basistabell Fase I for å skaffe initiell, brukbar løsning. Fase II: Iterativ prosess for å finne optimal løsning Pivotering
Lekson 3 Smpleksmetoden generell metode for å løse LP utgangspunkt: LP på standardform Intell basstabell Fase I for å skaffe ntell, brukbar løsnng løse helpeproblem hvs optmale løsnng gr brukbar løsnng
Bevegelse i én dimensjon
Beegelse én dmensjon 19.1.217 FYS-MEK 111 19.1.217 1 Gruppeundersnng begynner onsdag, 25.januar. hp://www.uo.no/suder/emner/mana/fys/fys-mek111/17/plan217.hm Oppgaer og forelesnngene legges u på semesersden.
SIF4012 og MNFFY103 høst 2002: Sammendrag uke 44 (Alonso&Finn )
SIF402 og MNFFY03 høst 2002: Sammendrag uke 44 (Alonso&Fnn 26.4-26.6) Magnetsme To effekter når et materale påvrkes av et ytre magnetfelt B:. nnrettng av permanente atomære (evt. molekylære) magnetske
Repetisjon
Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t
Studieprogramundersøkelsen 2013
1 Studeprogramundersøkelsen 2013 Alle studer skal henhold tl høgskolens kvaltetssystem være gjenstand for studentevaluerng mnst hvert tredje år. Alle studentene på studene under er oppfordret tl å delta
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Kap. 6+7 Arbeid og energi. Energibevaring.
Kap. 6+7 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. F F x Arbeid = areal under
Repetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
Newtons lover i to og tre dimensjoner
Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +
Newtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
Løsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 av 11 Løsningsforslag Eksamen i ys-mek111 våren 8 Oppgave 1 Vi skal i denne oppgaven studere bevegelsen til en (fugle-)fjær i en tornado. Vi begynner med å finne ut hvordan vi kan modellere fjæras
TMA4240/4245 Statistikk Eksamen august 2016
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA44/445 Statstkk Eksamen august 6 Løsnngssksse Oppgave a) Ved kast av to ternnger er det 36 mulge utfall: (, ),..., (6, 6). La Y
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
UNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
Løsningsforslag Eksamen i Fys-mek1110 våren 2009
Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematsk-naturvtenskapelge fakultet Deleksamen MAT-INF Modellerng og beregnnger. Eksamensdag: Onsdag 7. oktober 29. Td for eksamen: 5: 7:. Oppgavesettet er på 6 sder. Vedlegg:
Forelesning nr.3 INF 1411 Elektroniske systemer. Parallelle og parallell-serielle kretser Kirchhoffs strømlov
Forelesnng nr.3 INF 4 Elektronske systemer Parallelle og parallell-serelle kretser Krchhoffs strømlov Dagens temaer Parallelle kretser Kretser med parallelle og serelle ster Effekt parallelle kretser Krchhoffs
Newtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
ØVINGER 2017 Løsninger til oppgaver
ØVINGER 017 Løsnnger tl oppgaver Øvng 1 7.1. Med utgangspunkt de n 5 observasjonsparene (x 1, y 1 ), (x, y ),..., (x 5, y 5 ) beregner v først mddelverdene x 1 5 Estmert kovarans blr x 3. ȳ 1 5 s XY 1
Seleksjon og uttak av alderspensjon fra Folketrygden
ato: 07.01.2008 aksbehandler: DH Seleksjon og uttak av alderspensjon fra Folketrygden Dette notatet presenterer en enkel framstllng av problemet med seleksjon mot uttakstdpunkt av alderspensjon av folketrygden.
UNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
Arbeid og kinetisk energi
Arbeid og kineisk energi 3..7 YS-MEK 3..7 kineisk energi: K m arbeid:, ne (,, ) d arbeid-energi eorem:, K K arbeid er ilfør mekanisk energi. arbeid his krafen er bare posisjonsahengig:, ne ( ) d ne ( )
