Kinematikk i to og tre dimensjoner
|
|
- Oddbjørg Hedda Jørgensen
- 7 år siden
- Visninger:
Transkript
1 Kinematikk i to og tre dimensjoner Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza ved spørsmål (men ikke garantert at du får hjelp søndag kveld...) Gruppetimer: ledige plasser i Gr. 4 (re Ø394) Gr. 8 (Tor Ø358) Snuble-gruppe: Tir Origo neste gang: vektorer, koordinatsystemer,... YS-MEK
2 v [m/s] [m] Eksempel: En masse er festet til en fjær og beveger seg uten friksjon og luftmotstand. kraft fra fjær til massen: k N2L: a d dt 2 k m 2 initialbetingelser: ( t v( t ) m ) 1m/s.2.1 Svingning: t [s] 2 1 v ( t) sin( t) v( t) v cos( t) t [s] Svingningsfrekvens: k m YS-MEK
3 access number: I hvilket tilfelle er tauspenningen større? Snordraget i tau 1 er større enn i tau 2 Snordraget i tau 1 er like stort som i tau 2 Snordraget i tau 1 er mindre enn i tau 2 YS-MEK
4 Newtons tredje lov: Enhver virkning har alltid og tilsvarende en motvirkning, eller den gjensidige påvirkning av to legemer på hverandre er alltid lik, og motsatt rettet. fra A påb fra B påa Newtons tredje lov forbinder krefter mellom legemer: Hvis jeg dytter på veggen, dytter veggen tilbake på meg med like stor kraft. essensiell for å beskrive systemer som består av flere legemer krefter kommer i par: kraft og motkraft kreftene i paret virker på forskjellige legemer YS-MEK
5 Eksempel: En kloss ligger i ro på bakken. N fra J på K Oppskrift: kloss tegn alle legemer som separate systemer finn alle krefter på alle objekter W fra K på J uttrykk kreftene som A på B finn kraft motkraft par sjekk: hver kraft har en unik motkraft W fra J på K jorden N fra K på J YS-MEK
6 Eksempel: Mann som går W og N er ikke et kraft-motkraft par. bevegelse fremover på grunn av friksjonskraft: mannen dytter jorden bakover jorden dytter mannen fremover YS-MEK
7 YS-MEK Eksempel: En bil dytter en lastebil med konstant kraft. kinematisk betingelse: biler er i kontakt a a a v v v L A B A B A B N2L for A: B påa a m g m N a m A A A y A y A W A N A B på A y B W B N B A på B N2L for B: A påb a m g m N a m B B B y B y N3L: A påb påa B a m m B A B A på B påa ) ( System oppfører seg som ett legeme med masse m A +m B Vi trenger ikke se på indre krefter, bare på krefter mellom systemet og omgivelsen.
8 access number: En kvinne trekker med = 1 N i en 6-kilos eske som igjen er forbundet med en 4-kilos eske med en lett strikk. Begge strikkene forblir stramm og overflaten er friksjonsfritt. Sammenliknet med 6-kilos esken er 4-kilos esken: utsatt for en større netto kraft. utsatt for samme netto kraft. utsatt for en mindre netto kraft. YS-MEK
9 v1 v ; a a strikkene forblir stramm vi ser bare på horisontale krefter: m 1 = 4 kg m 2 = 6 kg T T = 1 N tauspenning T: T 1 m a T m2a m m ) a ( 1 2 ( m m 1 2) T m 1 T m m m N T 6 N YS-MEK
10 Bevegelse i to og tre dimensjoner YS-MEK
11 Bevegelsesdiagram i to dimensjoner bevegelsen er todimensjonal, vi kan beskrive posisjon med: r t = t i + y t j = (t) y(t) med enhetsvektorer i, j i i = j j = 1 i j = posisjon i tre dimensjoner: r t = t i + y t j + z(t)k = (t) y(t) z(t) med enhetsvektorer i, j, k i i = j j = k k = 1 i j = j k = k i = YS-MEK
12 vi kan se på (t) og y(t) hver for seg hastighet og akselerasjon i og y retning: todimensjonal bevegelsesdiagram: vi analysere bevegelsen videre: hastighet? akselerasjon? r t = t i + y t j = (t) y(t) v t = d t, dt v y t = d y t dt v t = v t i + v y t j = v (t) v y (t) a t = d dt v t, a y t = d dt v y t a t = a t i + a y t j = a (t) a y (t) YS-MEK
13 4 s 5 s 3 s 6 s 7 s v v 1 v 2 s s v 1 s v 1 r( ti 1) r( ti ) v( ti ) t a v( ti ) v( ti ) ti ) t ( 1 YS-MEK
14 hastighetsvektor: v t = lim t r t + t r(t) t = dr dt = d dt t i + y t j + z(t)k = d dt i + dy dt j + dz dt k = v t i + v y t j + v z (t)k hastighet: v(t) fart: v t = v(t) akselerasjonsvektor: a t = lim t v t + t v(t) t = dv dt = d dt v t i + v y t j + v z (t)k = dv dt i + dv y dt j + dv z dt k = a t i + a y t j + a z (t)k YS-MEK
15 Bevegningsligninger i tre dimensjoner La oss anta at vi har gitt a( t) og v( t) v akkurat de samme som i én dimensjon bare at vi må bruke vektorer og det er gyldig for hver komponent YS-MEK
16 access number: En pendel svinger fra punkt P til punkt R. Hvilken pil angir retningen på akselerasjonen til pendelloddet i punktet Q (det laveste punktet i banen)? Pil #1 Pil # Pil #3 Pil #4 P #1 #2 Q #3 R #4 YS-MEK
17 access number: En pendel svinger frem og tilbake med et maksimalutslag på 45 fra vertikalen. Hvilken pil angir retningen på akselerasjonen til pendelloddet i punktet P (punktet lengst til venstre i banen)? Pil #1 Pil #2 Pil #3 #1 # Pil #4 Pil #5 akselerasjonen i P er null P #5 #4 #3 Q R YS-MEK
18 Skalarer og vektorer skalar: størrelse, men ingen retning eksempel: masse, temperatur, lengde, fart,... notasjon: m, T, l, v vektor: størrelse og retning eksempel: posisjon, hastighet, akselerasjon, kraft,... r, v, a, vektorkomponenter: A y A y A A i kartesisk koordinatsystem: A = A i + A y j + A z k = A = A 2 +A y 2 +A z 2 A A y A z i = j = k = Vi kommer å bruke også sfæriske og sylindriske koordinatsystemer senere. YS-MEK
19 Regne med vektorer: addisjon: a b b c a c kommutativ: a b b a assosiativ: a b c a b c c b a multiplikasjon med en skalar: b 2a a a b i Matlab: YS-MEK
20 Skalarprodukt (=indreprodukt) a b = a b cos α lineær: kommutativ: a + b c = a c + b c a b b a i komponenter: a b a b a y b y a z b z a = a i, a y = a j, a z = a k i Matlab: a a a YS-MEK
21 tidssekvenser av vektorer matriser v: 3d-vektor konstant over tiden (13) matrise n: antall tidsskritter skalar r: 3d-vektor evaluert ved n tider (n3) matrise t: skalar evaluert ved n tider (n1) matrise r(1,:) første tid (linje) i (n3) matrise = 3d-vektor dt: tidsskritt skalar linje i (n3) matrise = vektor = vektor + vektor * skalar linje i (n1) matrise = skalar = skalar + skalar YS-MEK
22 access number: Du kaster en ball i en vinkel på 45 i forhold til horisontal. Vi ser bort fra luftmotstanden. Hvilket utsagn er riktig i høyeste punkt på banen? y A. art og akselerasjon er null. B. arten er på et minimum, men ikke null, og akselerasjonen er konstant. C. arten er null, og akselerasjonen er konstant, men ikke null. D. arten er på et minimum, men ikke null, og akselerasjonen øker. eneste kraft: gravitasjon a g ˆj fart: v v 2 2 v v y ingen kraft i retning: v v i høyeste punkt: v y, YS-MEK
23 ri-legeme diagram i 3 dimensjoner Tegn et fri-legeme diagram for den øverste ballen. system: øvre ballen omgivelse: nedre ballen, karet kontaktpunkter kontaktkrefter: normalkraft fra vegg på ball normalkraft fra nedre ball på øvre ball langtrekkende kraft: gravitasjon system er i ro: et Nw Nb G ma N b N w G YS-MEK
24 YS-MEK access number: En kjede festet til bilen holder bilen i ro på den friksjonsfrie rampen (vinkel ). Rampen utøver en normalkraft på bilen. Hvor stor er normalkraften N i forhold til vekten W av bilen? tan cos sin W N W N W N W N W N T sin cos W T W N W T N
Kinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerKinematikk i to og tre dimensjoner
Kinemtikk i to og tre dimensjoner 3.1.218 Innleveringsfrist oblig 1: Mndg, 5.eb. kl.18 Innlevering kun vi: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Pizz ved spørsmål
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
DetaljerRepetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerFiktive krefter
Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 0.0.015 oblig #1: innlevering: mandag, 9.feb. kl.1 papir: boks på ekspedisjonskontoret elektronisk: Devilry (ikke ennå åpen) YS-MEK 1110 0.0.015 1 Identifikasjon av kreftene:
DetaljerFiktive krefter
Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerKeplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerFiktive krefter. Gravitasjon og ekvivalensprinsippet
iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en
DetaljerNewtons lover i to og tre dimensjoner
Newtons loer i to og tre dimensjoner 6..17 FYS-MEK 111 6..17 1 Beegelse i tre dimensjoner Beegelsen er karakterisert ed posisjon, hastighet og akselerasjon. Vi må bruker ektorer: posisjon: r( = x t i +
DetaljerRepetisjon
Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerFiktive krefter. Gravitasjon og planetenes bevegelser
iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i
DetaljerUNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerVektorstørrelser (har størrelse og retning):
Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerLøsningsforslag. Eksamen i Fys-mek1110 våren 2011
Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
DetaljerEKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2009
Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.
DetaljerFYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
DetaljerRF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.
RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. NITH 11. oktober 013 Oppgave 1 Skissér kraftutvekslingen i følgende situasjoner: En mann som dytter en bil: (b) En traktor som trekker en kjerre
DetaljerLøsningsforslag Obligatorisk oppgave 1 i FO340E
Løsningsforslag Obligatorisk oppgave i FO340E 0. februar 2009 Det er nt om dere har laget gurer hvor kreftene er tegnet inn, selv om det er utelatt i dette notatet av praktiske årsaker. En oppgave kan
DetaljerRepetisjonsoppgaver kapittel 3 - løsningsforslag
Repetisjonsoppgaer kapittel 3 - løsningsforslag Krefter Oppgae 1 a) De tre setningene er 1. En kraft irker på et legeme fra et annet legeme.. En kraft som irker på et legeme, kan endre beegelsen til legemet
DetaljerNewtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerT 1 = (m k + m s ) a (1)
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
Detaljer5.201 Modellering av bøyning
RST 2 5 Kraft og bevegelse 26 5.201 Modellering av bøyning lage en modell for nedbøyning av plastikklinjaler teste modellen Eksperimenter Fest en lang plastikklinjal til en benk med en tvinge e.l. slik
DetaljerØving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
DetaljerKap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
DetaljerLøsningsforslag til midtveiseksamen i FYS1001, 26/3 2019
Løsningsforslag til midtveiseksamen i FYS1001, 26/3 2019 Oppgave 1 Løve og sebraen starter en avstand s 0 = 50 m fra hverandre. De tar hverandre igjen når løven har løpt en avstand s l = s f og sebraen
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 1.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 1. Oppgave 1 Ranger - fra kortest til lengst - distansene d 1 = 10 35 A, d 2 = 1000 ly, d 3 = 10 20 nautiske mil og d 4 = 10 23 yd. Her er: 1 A = 1 angstrm
DetaljerStatikk og likevekt. Elastisitetsteori
Statikk og likevekt Elastisitetsteori.05.05 YS-MEK 0.05.05 man uke 0 3 forelesning: 8 5 elastisitetsteori gruppe: gravitasjon+likevekt innlev. oblig 0 forelesning: spes. relativitet gruppe: spes. relativitet
DetaljerKap Newtons lover. Newtons 3.lov. Kraft og motkraft. kap 4+5 <file> Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. +3). (Rekapitulasjon) Newtons lover (kap. 4+5) Svingninger (kap. 14) Energi, bevegelsesmengde, kollisjoner (kap.
DetaljerStatikk og likevekt. Elastisitetsteori
Statikk og likevekt Elastisitetsteori 07.05.04 YS-MEK 0 07.05.04 man tir ons tor fre uke 9 0 3 5 9 6 forelesning: likevekt innlev. oblig 9 innlev. oblig 0 6 3 0 7 3 gruppe: gravitasjon+likevekt 7 4 8 4
DetaljerFY0001 Brukerkurs i fysikk
NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F
DetaljerFiktive krefter
Fiktie krefter 5.04.013 FYS-MEK 1110 5.04.013 1 Fiktie krefter problem: Newtons loer gjelder bare i inertialsystemer hordan analyserer i en beegelse i et akselerert system? z z x y transformasjon transformasjon
DetaljerObligatorisk oppgave i fysikk våren 2002
Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger
DetaljerForelesningsnotat, lørdagsverksted i fysikk
Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =
DetaljerNewtons lover i én dimensjon (2)
Newtons love i én dimensjon () 9.1.13 husk: data lab fedag 1-16 FYS-MEK 111 9.1.13 1 Identifikasjon av keftene: 1. Del poblemet inn i system og omgivelse.. Tegn figu av objektet og alt som beøe det. 3.
DetaljerLøsningsforslag. Eksamen i Fys-mek1110 våren !"!!!. Du kan se bort fra luftmotstand.
Side av 6 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,
DetaljerLøsningsforslag til eksamen FY0001 Brukerkurs i fysikk Fredag 29. mai 2009
Løsningsforslag til eksamen FY000 Brukerkurs i fysikk Fredag 9. mai 009 Oppgave a) Newtons. lov, F = m a sier at kraft og akselerasjon alltid peker i samme retning. Derfor er A umulig. Alle de andre er
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerEKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL
TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 av 11 Løsningsforslag Eksamen i ys-mek111 våren 8 Oppgave 1 Vi skal i denne oppgaven studere bevegelsen til en (fugle-)fjær i en tornado. Vi begynner med å finne ut hvordan vi kan modellere fjæras
DetaljerFysikkmotorer. Andreas Nakkerud. 9. mars Åpen Sone for Eksperimentell Informatikk
Åpen Sone for Eksperimentell Informatikk 9. mars 2012 Vektorer: posisjon og hastighet Posisjon og hastighet er gitt ved ( ) x r = y Ved konstant hastighet har vi som gir likningene v= r = r 0 + v t x =
DetaljerUniversitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN. Time Is)
Universitetet i Agder Fakultet for helse- og idrettsvitenskap EKSAMEN Emnekode: IDR104 Emnenavn: BioII,del B Dato: 22 mai 2011 Varighet: 3 timer Antallsider inkl.forside 6 Tillatte hjelpemidler: Kalkulator.Formelsamlingi
DetaljerLøsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerLøsningsforslag eksamen TFY desember 2010.
Løsningsforslag eksamen TFY4115 10. desember 010. Oppgave 1 a) Kreftene på klossene er vist under: Siden trinsene og snorene er masseløse er det bare to ulike snordrag T 1 og T. b) For å finne snordraget
DetaljerNTNU Fakultet for lærer- og tolkeutdanning
NTNU Fakultet for lærer- og tolkeutdanning Emnekode(r): LGU51007 Emnenavn: Naturfag 1 5-10, emne 1 Studiepoeng: 15 Eksamensdato: 26. mai 2016 Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og telefonnr
DetaljerLøsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
DetaljerLøsningsforslag til midtveiseksamen i FYS1000, 17/3 2016
Løsningsforslag til midtveiseksamen i FYS1000, 17/3 2016 Oppgave 1 Vi har v 0 =8,0 m/s, v = 0 og s = 11 m. Da blir a = v2 v 0 2 2s = 2, 9 m/s 2 Oppgave 2 Vi har v 0 = 5,0 m/s, v = 16 m/s, h = 37 m og m
DetaljerFYSIKK-OLYMPIADEN Andre runde: 2/2 2012
Norsk Fysikklærerforening Norsk Fysisk Selskaps faggruppe for undervisning FYSIKK-OLYPIADEN 0 0 Andre runde: / 0 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: 3 klokketimer Hjelpemidler:
DetaljerImpuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
DetaljerTFY4115 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. ) v 1 = p 2gL. S 1 m 1 g = L = 2m 1g ) S 1 = m 1 g + 2m 1 g = 3m 1 g.
TFY4 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 4. Ogave. a) Hastigheten v til kule like fr kollisjonen nnes lettest ved a bruke energibevarelse Riktig svar C. gl v ) v gl b) Like fr sttet
DetaljerKONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK
BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE
DetaljerNewtons lover i to og tre dimensjoner 09.02.2015
Newons loer i o og re dimensjoner 9..5 FYS-MEK 3..4 Innleering Oblig : på grunn a forsinkelse med deilry er frisen usa il onsdag,.., kl. Innleering Oblig : fris: mandag, 6.., kl. Mideiseksamen: 6. mars
DetaljerLøsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerLøsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)
DetaljerLøsningsforslag til eksamen i FYS1000, 14/8 2015
Løsningsforslag til eksamen i FYS000, 4/8 205 Oppgave a) For den første: t = 4 km 0 km/t For den andre: t 2 = = 0.4 t. 2 km 5 km/t + 2 km 5 km/t Den første kommer fortest fram. = 0.53 t. b) Dette er en
DetaljerFYSIKK-OLYMPIADEN
Norsk Fysikklærerforening I samarbeid med Skolelaboratoriet, Fysisk institutt, UiO FYSIKK-OLYMPIADEN 04 05 Andre runde: 5/ 05 Skriv øverst: Navn, fødselsdato, e-postadresse og skolens navn Varighet: klokketimer
Detaljer4 Differensiallikninger R2 Oppgaver
4 Differensiallikninger R2 Oppgaver 4.1 Førsteordens differensiallikninger... 2 4.2 Modellering... 7 4.3 Andreordens differensiallikninger... 13 Aktuelle eksamensoppgaver du finner på NDLA... 16 Øvingsoppgaver
Detaljer7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid
RST 1 7 Arbeid og energi 38 7.201 Levende pendel måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid Eksperimenter Ta en bevegelsessensor og logger med i gymnastikksalen eller et sted
DetaljerLøsningsforslag for øvningsoppgaver: Kapittel 14
Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et
DetaljerNewtons lover i to og tre dimensjoner
Newtons love i to og te dimensjone 9..17 Oblig e lagt ut. Innleveing: Mandag,.. FYS-MEK 111 9..17 1 Skått kast med luftmotstand F net F D G D v v mg ˆj hoisontal og vetikal bevegelse ikke lenge uavhengig:
DetaljerHøgskolen i Agder Avdeling for EKSAMEN
Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,
DetaljerVevsmekanikk og refleks 3
Seksjon 1 Vevsmekanikk og refleks 3 Definer stivhet og Youngs modul (elastisitetsmodul). Forklar hvorfor Youngs modul er nødvendig for å sammenligne forskjellige vev. Nevn og forklar 5 av de 8 faktorer
DetaljerSG: Spinn og fiktive krefter. Oppgaver
FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =
DetaljerLøsningsforslag Fys-mek1110 V2012
Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil
Detaljer