UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
|
|
|
- Martha Thorbjørnsen
- 9 år siden
- Visninger:
Transkript
1 Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: Sensur kunngjøres: Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler: Alle trykte og skrevne hjelpemidler er tillatt. I tillegg kan du ta med lommekalkulator som ikke kan brukes til å kommunisere med andre. Eksamen blir vurdert etter ECTS-skalaen. A-F, der A er beste karakter og E er dårligste ståkarakter. F er ikke bestått.
2 1 ECON2130: ESAEN 2015v Oppgave 1 En klasse på 25 elever på videregående består av 15 jenter og 10 gutter. 4 av jentene og 2 av guttene røyker. En elev trekkes ut rent tilfeldig (slik at alle 25 har samme sannsynlighet). A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn Røyker Ikke - røyker Sum Jente Gutt Sum 25 ii) Definer begivenhetene G og R ved, G = «den uttrukne er gutt» og R = «den uttrukne røyker». Finn følgende 4 sannsynligheter P( G), P( G R), P( G R) og P( G R) B. Det trekkes 3 elever fra klassen til en komité rent tilfeldig (dvs. slik at alle ikkeordnete utvalg på 3 er like sannsynlige). La X være antallet i komiteen som røyker. i) Forklar hvorfor X er hypergeometrisk fordelt. ii) Beregn PX ( 2) (med 3 desimalers nøyaktighet). 25 [Hint: For å lette regningen oppgis ] iii) Bruk kjente egenskaper ved den hypergeometriske fordelingen til å vise at E( X ) 0.72 og Var( X ) C. I tillegg til X innfører vi Y = antall jenter i komiteen. Den simultane fordelingen for ( XY, ), bestemt ved f ( x, y) P( X x Y y), er gitt i tabell 1 (som du ikke trenger å vise):
3 2 Tabell 1 Tabell over f ( x, y ) x y sum sum i) Forklar hvorfor f (3,0) 0. ii) Beregn P( X Y ). iii) Anta vi vet at det er 2 jenter og 1 gutt i den uttrukne komiteen, men ikke om de røyker eller ikke. Hva er da sannsynligheten for at høyst en av dem røyker? [Hint: Finn P( X 1 Y 2) ] D. Beregn korrelasjonskoeffisienten mellom X og Y. [Hint: For å lette regningen oppgis 3 3 ] E( Y ) 1.8, Var( Y ) 0.7 og xyf ( x, y) 1.34 x 0 y 0 E. Utvalget i punkt B blir trukket uten tilbakelegging på følgende måte. Alle elevene skriver navnet sitt på en lapp som legges i en kurv (til sammen 25 navnelapper). Utvalget trekkes så ved å trekke en og en navnelapp av gangen uten å legge den uttrukne lappen tilbake i kurven før neste trekning. Anta vi i stedet trekker 3 elever med tilbakelegging (dvs. vi trekker lappene en og en, men legger hver lapp som blir trukket tilbake i kurven før neste trekning). ed denne metoden er det naturligvis en viss risiko for at en og samme elev (dvs. navnelapp) blir trukket ut flere ganger. Finn sannsynligheten for at de 3 navnelappene (trukket ut med tilbakelegging) er forskjellige. [Hint: Det er flere måter å finne denne sannsynligheten på. Du kan selve velge den du synes er best. En av dem er å beregne antall gunstige utfall og antall mulige utfall. En annen metode er følgende: La A være begivenheten at de to første navnelappene som blir trukket er forskjellige, og B begivenheten at alle tre er forskjellige (der altså B er den begivenheten vi ønsker sannsynligheten for). Forklar hvorfor B A B og PA ( ) Bruk så multiplikasjonssetningen på P( A B). ]
4 3 Oppgave 2 I 2014 ble det i Sverige trukket et representativt utvalg på n 1313 ungdommer i aldersklassen år. Av disse var det 107 som røykte jevnlig. I 2012 røykte 10% av ungdommer i denne aldersklassen i Sverige. Vi ønsker å teste om tallene tyder på at røyking blant ungdommer i Sverige har gått ned fra 2012 til La X være antall som røyker jevnlig i et representativt utvalg på n ungdommer. Anta at X er binomisk fordelt med parametre n og p (kort: X ~ bin( n, p ) ), der p er andelen av ungdommer i Sverige som røyker jevnlig i 2014, og som tolkes som sannsynligheten for at en tilfeldig valgt ungdom i Sverige røyker. A. i) Sett opp en test med signifikansnivå 5% for H0: p 0.1 mot H1: p 0.1. Skriv testen på formen, «Forkast H 0 hvis X k» og bestem den kritiske verdien k. ii) Beregn p-verdien (tilnærmet) for testen i i) basert på tallene i innledningen og formuler en konklusjon. Bruk heltallskorreksjon ved beregning av p-verdien. B. i) Utled en tilnærmet formel for styrkefunksjonen for testen din i punkt Ai, der du tilnærmer den binomiske fordelingen med en normalfordeling. ii) iii) Forklar kort hva som menes med begrepet «feil av type 2» ved bruk av en test. Beregn (tilnærmet) sannsynligheten for feil av type 2 for testen din i punkt Ai dersom den ukjente p er lik 0.095, og dersom p Oppgave 3 Resultatene fra den svenske undersøkelsen i oppgave 2 er splittet opp på kvinner og menn som vist i tabell 2.
5 4 Tabell 2 Antall kvinner og menn, år, som røyker - basert på et representativt utvalg fra Sverige vinner enn sum Røyker Røyker ikke sum Vi kan se på dette som to utvalg, et for kvinner ( n 741 personer), og et for menn ( n 572 personer). La X, X betegne henholdsvis antall kvinner som røyker og antall menn som røyker i to slike utvalg. De observerte verdiene av X, Xi utvalget er 67 og 40 henholdsvis. Anta X, X er uavhengige stokastiske variable som begge er binomisk fordelte, X ~ bin( n, p ) og X ~ bin( n, p ), der p, p er andelen henholdsvis av kvinner og menn i alderen år i Sverige som røyker i Andelene p, p betraktes som ukjente, og tallene n, n som gitte tall (ikke-stokastiske). Vi ønsker å bruke data til å estimere forskjellen i andel, p p, samt beregne et konfidensintervall for. A. i) Vis at ˆ X X n n er en forventningsrett estimator for. Beregn estimatet ˆobs (der indeksen obs indikerer den observerte verdien). ii) iii) Vis at standardavviket (SD) for ˆ er gitt ved ˆ p (1 p ) p (1 p ) SD( ) n n Forklar hvorfor ˆ er tilnærmet normalfordelt. B. i) ˆ Det kan vises (som du ikke trenger å gjøre) at W er tilnærmet standard SE( ˆ ) normalfordelt (N(0,1)) uansett, der standardfeilen, SE( ˆ ), er estimert standardavvik som i punkt Aii, der de ukjente p, p er erstattet med estimater. Bruk dette til å utlede en formel for et konfidensintervall for med konfidensgrad tilnærmet ii) Beregn det observerte konfidensintervallet utledet i punkt Bi ut fra data.
A. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte
betyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1
ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom
Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom << >>. Oppgave 1
ECON 0 EKSMEN 007 VÅR SENSORVEILEDNING Oppgaven består av 9 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom >. Oppgave. La begivenhetene BC,, være slik at og
Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 29. november 1993. Tid for eksamen: 09.00 15.00. Oppgavesettet
Merk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
Eksamensoppgave i SØK1004 - Statistikk for økonomer
Institutt for samfunnsøkonomi Eksamensoppgave i SØK1004 - Statistikk for økonomer Faglig kontakt under eksamen: Hildegunn E. Stokke, tlf 73591665 Bjarne Strøm, tlf 73591933 Eksamensdato: 01.12.2014 Eksamenstid
EKSAMEN. EMNEANSVARLIG: Terje Bokalrud og Hans Petter Hornæs. TILLATTE HJELPEMIDLER: Kalkulator og alle trykte og skrevne hjelpemidler.
KANDIDATNUMMER: EKSAMEN EMNENAVN: EMNENUMMER: Kvalitetsledelse med Statistikk. SMF2121 EKSAMENSDATO: 14. mai 2009 KLASSE: Ingeniørutdanning TID: kl. 9.00 13.00. EMNEANSVARLIG: Terje Bokalrud og Hans Petter
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
a ) Forventningen estimeres med gjennomsnittet: x = 1 12 (x 1 + + x 12 ) = 1 (755 + 708 + + 748) = 8813/12 = 734.4
ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 011, s. 1 (Det tas forbehold om feil i løsningsforslaget. Oppgave 1 Vi betrakter dataene x 1,..., x 1 somutfall av n = 1 u.i.f.
Binomisk fordeling. Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilfeldige variabler Når vi kaster to terninger er det 36 utfall Vi ser på X = «sum antall øyne» De mulige verdiene
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 20. desember 2016 Eksamenstid (fra til): 09:00
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Løsningsforslag til seminar 4 Undervisningsfri uke
Løsningsforslag til seminar 4 Undervisningsfri uke Iman Ghayoornia February 22, 2016 Oppgave 2.1 Se Excel-filen som er tilgjengelig på emnesiden. Hvis du lurer på hvordan jeg fikk verdiene i cellene så
EKSAMEN I SOS4020 KVANTITATIV METODE (MASTER) 14. MAI 2004 (4 timer)
EKSAMEN I SOS4020 KVANTITATIV METODE (MASTER) 14. MAI 2004 (4 timer) Bruk av ikke-programmerbar kalkulator er tillatt under eksamen. Utover det er ingen hjelpemidler tillatt. Sensur faller mandag 7. juni
Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.
1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling
EKSAMEN I TMA4245 Statistikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Turid Follestad (98 06 68 80/73 59 35 37) Hugo Hammer (45 21 01 84/73 59 77 74) Eirik
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 22 18 96, b 99 40 33 30 Eksamensdato: 30. november 2017 Eksamenstid
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
TMA4240 Statistikk 2014
TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten
Emnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Jo Eidsvik og Arild Brandrud Næss Tlf: 90 12 74 72 og 99 53 82 94 Eksamensdato: 9. desember 2013 Eksamenstid
Løsningskisse seminaroppgaver uke 11 ( mars)
HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert
TMA4240 Statistikk Høst 2012
TMA424 Statistikk Høst 212 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving blokk II Oppgave 1 Oppgave 11.3 fra læreboka. Oppgave 2 Oppgave 11.19 fra læreboka. Oppgave
TMA4240 Statistikk Høst 2016
TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER VARIGHET: 4 TIMER DATO: 27. FEBRUAR 2004 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ 5
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 1. juni 2006. Tid for eksamen: 09.00 12.00. Oppgavesettet er på
i x i
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale
Eksamensoppgave i ST1201/ST6201 Statistiske metoder
Institutt for matematiske fag Eksamensoppgave i ST1201/ST6201 Statistiske metoder Faglig kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: 04. desember 2015 Eksamenstid (fra til): 09:00
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1120 Statistiske metoder og dataanalyse 2. Eksamensdag: Tirsdag 2. juni 2009. Tid for eksamen: 14.30 17.30. Oppgavesettet
Hypotesetesting. Notat til STK1110. Ørnulf Borgan Matematisk institutt Universitetet i Oslo. September 2007
Hypotesetesting Notat til STK1110 Ørnulf Borgan Matematisk institutt Universitetet i Oslo September 2007 Teorien for hypotesetesting er beskrevet i kapittel 9 læreboka til Rice. I STK1110 tar vi bare for
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST0 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Torsdag 9. mai 994. Tid for eksamen: 09.00 5.00. Oppgavesettet
NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap
NTNU Norges teknisk-naturvitenskapelige universitet Institutt for sosiologi og statsvitenskap EKSAMENSOPPGAVE I SVSOS107 SAMFUNNSVITENSKAPELIG FORSKNINGSMETODE Eksamensdato: 18. mai 001 Eksamenssted: Idrettsbygget
STK1100 våren 2019 Mere om konfidensintevaller
STK1100 våren 2019 Mere om konfidensintevaller Svarer til avsnitt 8.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 Konfidensintervall for µ i store utvalg Anta at de stokastiske
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
Løsningsforslag Til Statlab 5
Løsningsforslag Til Statlab 5 Jimmy Paul September 6, 007 Oppgave 8.1 Vi skal se på ukentlige forbruk av søtsaker blant barn i et visst område. En pilotstudie gir at standardavviket til det ukentige forbruket
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK2120 Statistiske metoder og dataanalyse 2. Eksamensdag: Fredag 7. juni 2013. Tid for eksamen: 14.30 18.30. Oppgavesettet er
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b7 Oppgave 1 Automatisert laboratorium Eksamen november 2002, oppgave 3 av 3 I eit
EKSAMENSOPPGAVE. Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9
FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: STA- 0001 Brukerkurs i statistikk 1 Dato: Tid: Sted: Mandag 03. juni 2013 Kl 09:00 13:00 Åsgårdvegen 9 Tillatte hjelpemidler: Alle trykte
TMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
Econ 2130 uke 16 (HG)
Econ 213 uke 16 (HG) Hypotesetesting I Løvås: 6.4.1 6, 6.5.1-2 1 Testing av µ i uid modellen (situasjon I Z-test ). Grunnbegreper. Eksempel. En lege står overfor følgende problemstilling. Standardbehandling
Eksamen i. MAT110 Statistikk 1
Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Tirsdag 22. mai 2018 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde + Kristiansund: Per Kristian Rekdal / 924 97 051 Hjelpemidler
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen
ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!
a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik.
Løsningsforslag utsatt eksamen Matematikk 2, 4MX25-10 (GLU2 5-10) 5.desember 2013 Oppgave 1 a) Ved avlesning på graf får man. Dermed er hastighet ved tid sekund lik. Ved å bruke tangentlinja i punktet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: STK Sannsynlighetsregning og statistisk modellering Eksamensdag: Mandag 4. mars 26 Tid for eksamen: 5. 7. Oppgavesettet er
TMA4240 Statistikk Høst 2015
TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler På Del 1 av eksamen kan du få bruk for formlene nedenfor Binomisk fordeling: ( ) n k P X k p (1 p k ) n k Antall uavhengige forsøk er n X er antall ganger A inntreffer p i hvert
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Sara Martino a, Torstein Fjeldstad b Tlf: a 994 03 330, b 962 09 710 Eksamensdato: 28. november 2018 Eksamenstid
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG
Statistikk, FO242N, AMMT, HiST 2. årskurs, 30. mai 2007 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr: Eksamensdato:
Inferens. STK Repetisjon av relevant stoff fra STK1100. Eksempler. Punktestimering - "Fornuftig verdi"
Inferens STK1110 - Repetisjon av relevant stoff fra STK1100 Geir Storvik 12. august 2015 Data x 1,..., x n evt også y 1,..., y n Ukjente parametre θ kan være flere Vi ønsker å si noe om θ basert på data.
TMA4240 Statistikk Høst 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 0, blokk II Løsningsskisse Oppgave Surhetsgrad i ferskvann Eksamen august 00, oppgave av 3 a) En god estimator
Eksamensoppgave i ST0103 Brukerkurs i statistikk
Institutt for matematiske fag Eksamensoppgave i ST0103 Brukerkurs i statistikk Faglig kontakt under eksamen: Jarle Tufto Tlf: 99 70 55 19 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00-13:00
UNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
Oppgave 1. Det oppgis at dersom y ij er observasjon nummer j fra laboratorium i så er SSA = (y ij ȳ i ) 2 = 3.6080.
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 28. FEBRUAR 2005 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 4 OPPGAVER PÅ
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon
ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere
Oppgave 1. . Vi baserer oss på at p 47 1 og p 2 er tilnærmet normalfordelte (brukbar tilnærming). Vi har tilnærmet at (n 1 = n 2 = 47)
MOT310 tatistiske metoder 1 Løsningsforslag til eksamen vår 006, s. 1 Oppgave 1 a) En tilfeldig utvalgt besvarelse får F av sensor 1 med sannsynlighet p 1 ; resultatene for ulike besvarelser er uavhengige.
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (2 poeng) I en klasse er det 20 elever. Nedenfor ser du hvor mange dager hver av elevene var borte fra skolen i løpet av skoleåret. 0 3 2 7 2 0 0 11 4 3 28 1 0 3 2 1 1
Eksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Gunnar Taraldsen a, Torstein Fjeldstad b Tlf: a 464 32 506, b 962 09 710 Eksamensdato: 23. mai 2018 Eksamenstid
Matematikk 2, 4MX25-10
Skriftlig eksamen i Matematikk 2, 4MX25-10 30 studiepoeng ORDINÆR EKSAMEN 5. mai 2014. Sensurfrist: 26. mai 2014. BOKMÅL Resultatet blir gjort tilgjengelig fortløpende på studentweb., senest første virkedag
HØGSKOLEN I STAVANGER
EKSAMEN I: MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 25. NOVEMBER 2003 TILLATTE HJELPEMIDLER: KALKULATOR, TABELLER OG FORMLER I STATISTIKK (TAPIR FORLAG) OPPGAVESETTET BESTÅR AV 3 OPPGAVER PÅ
b) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.
Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Kp. 6, del 4 Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 27. mars Bjørn H. Auestad Kp. 6: Hypotesetesting
Løsningskisse seminaroppgaver uke 15
HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er
EKSAMEN I HSTAT1101, 22. NOVEMBER 2018: LØSNINGSFORSLAG. Knut R. Wangen, Innledning
EKSAMEN I HSTAT1101 22. NOVEMBER 2018: LØSNINGSFORSLAG Knut R. Wangen 10.12.2018 [email protected] Innledning Eksamen ble arrangert digitalt på plattformen Inspera. Eksamenssettet besto av 9 oppgaver
HØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Kap. 10: Inferens om to populasjoner Situasjon: Det er to populasjoner som vi ønsker å sammenligne. Vi trekker da et utvalg
Emnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard
Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emnenavn: Metodekurs 1: statistikk, deleksamen Dato: Eksamenstid: 4. januar 2017 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling m/tabeller Faglærer:
Oppgave 1. X 1 B(n 1, p 1 ) X 2. Vi er interessert i forskjellen i andeler p 1 p 2, som vi estimerer med. p 1 p 2 = X 1. n 1 n 2.
Løsningsforslag til eksamen i MOT310 STATISTISKE METODER 1 VARIGHET: 4 TIMER DATO: 17 november 2008 TILLATTE HJELPEMIDLER: Kalkulator: HP30S, Casio FX82 eller TI-30 Tabeller og formler i statistikk Tapir
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK 1000 Innføring i anvendt statistikk. Eksamensdag: Mandag 4. desember 2006. Tid for eksamen: 14.30 17.30. Oppgavesettet er
Formelsamling V-2014 MAT110. Statistikk 1. Per Kristian Rekdal
Formelsamling V-2014 MAT110 Statistikk 1 Per Kristian Rekdal 2 Forord Dette er formelsamlingen i emnet MAT110 Statistikk 1 ved høgskolen i Molde. Formlene i denne formelsamlingen er stort sett de formlene
Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere
Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for
Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
Faktor - en eksamensavis utgitt av ECONnect
Faktor - en eksamensavis utgitt av ECONnect Løsningsforslag: SØK1004 Statistikk for økonomer Eksamen: Våren 009 Antall sider: 16 SØK1004 - Løsningsforslag Om ECONnect: ECONnect er en frivillig studentorganisasjon
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 Ei bedrift produserer ein type medisin i pulverform Medisinen seljast på flasker
Eksamensoppgåve i ST0103 Brukarkurs i statistikk
Institutt for matematiske fag Eksamensoppgåve i ST0103 Brukarkurs i statistikk Fagleg kontakt under eksamen: Nikolai Ushakov Tlf: 45128897 Eksamensdato: August 2018 Eksamenstid (frå til): 09:00 13:00 Hjelpemiddelkode/Tillatne
TMA4240 Statistikk Høst 2009
TMA4240 Statistikk Høst 2009 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer b6 Oppgave 1 Oppgave 11.5 fra læreboka. Oppgave 2 Oppgave 11.21 fra læreboka. Oppgave
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. 12 (s. 34)
ÅMA 110 SANNSYNLIGHETSREGNING MED STATISTIKK Løsningsforslag til regneøving nr. s. 34 Oppgave.1 Situasjon betraktes som 7 Bernoulliforsøk; Suksess: dyr velger belønning 1, motsatt fiasko. P suksess = p;
Eksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
Statistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
Formelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
