Løsningskisse seminaroppgaver uke 11 ( mars)
|
|
- Helle Christophersen
- 8 år siden
- Visninger:
Transkript
1 HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert spørsmål er det oppgitt fire svaralternativer hvorav kun ett er riktig, og studenten blir bedt om å angi det svaralternativet vedkommende mener er det riktige. Spørsmålene er uavhengige i den forstand at man ikke trenger å vite svaret på et av spørsmålene for å kunne svare riktig på et annet. a. En student som ikke vet svaret på noen av delspørsmålene bestemmer seg for å gjette helt vilkårlig. (i) Hva er sannsynligheten for at studenten gjetter riktig på et enkelt spørsmål? (ii) Hva er sannsynligheten for at studenten får riktig svar på alle de tre spørsmålene? (iii) Hva er sannsynligheten for at studenten gjetter galt på alle tre spørsmålene? Begrunn svarene dine. Svar: (i) P(riktig på et delspørsmål) = ¼ (ii) P(riktig på alle spørsmål) = = = 0, (iii) P(galt på alle spørsmål) = = 0,4 4 b. (i) Hva er sannsynligheten for at en student gjetter riktig på kun ett eneste av de tre spørsmålene, og galt på de to andre spørsmålene? For å bestå prøven må en student ha svart riktig på minst to av de tre spørsmålene. (ii) Hva er sannsynligheten for å bestå prøven for en student som gjetter helt vilkårlig på svaralternativet for alle spørsmålene? [Hint: Du kan bygge på besvarelsen din i punkt a og b(i) for å svare på punkt b(ii)] Svar: La X = antall riktig., Da er binomisk fordelt (, ¼). Vi får ( ) 4 PX= ( 0) = = 0.4, (i) PX ( = ) = = (ii) Vi har PX ( ) = og dermed P(Bestå) = P( X ) = 0.56.
2 c. Om en student vet vi at han gjettet helt vilkårlig på svaralternativet for alle spørsmålene. Vi vet også at han hadde minst ett riktig svar, men vi vet ikke om han hadde så mye som to eller tre riktige. Hva er sannsynligheten for at han besto prøven? PX ( X ) PX ( ) 0,56 Svar: PX ( X ) = = = = 0, 70 PX ( ) PX ( = 0) 0,578 Merk at vi har brukt at hvis A og B er begivenheter slik at A er inneholdt i B, så er A B = A. d. (Mer krevende). En annen student klarer å eliminere to svaralternativer fra spørsmål som hun vet er gale. Hun gjetter så vilkårlig på et av de to gjenværende svaralternativene. For spørsmål klarer hun å eliminere ett svaralternativ og gjetter vilkårlig på et av de tre gjenværende. På spørsmål gjetter hun helt vilkårlig på et av de fire alternative svarene. Hva er sannsynligheten for at hun består prøven, dvs. svarer rett på to eller tre spørsmål? Svar: La xyz, (der x,y,z er R (riktig) eller R (galt)), betegne utfallet for spm, og h.h.v. P(Bestå) er da summen av sannsynlighetene i tabellen: Utfall Sum Sannsynlighet = 4 4 = 4 4 = 4 4 = P (Bestå) = = 0,9 4 ECON 0 EKSAMEN 004 VÅR - UTSATT Oppgave I et lotteri er det fire lodd A, B, C og D. Det blir trukket ut to gevinster, først en på 00kr., så en på 00kr. Trekningen skjer uten tilbakelegging slik at samme lodd kan høyst vinne én gevinst. Petter eier loddene A og B. La G være Petters samlede gevinst. a. Still opp en passende sannsynlighetsmodell, og finn sannsynlighetsfordelingen for den stokastiske variabelen G.
3 Svar: Utfallet kan beskrives som xy der x er det første uttrukne loddet og y det andre. Hvert utfall har sannsynlighet /. G bestemmes ved følgende tabell Utfall G AB 00 BA 00 AC 00 CA 00 AD 00 DA 00 BC 00 CB 00 BD 00 DB 00 CD 0 DC 0 Dette gir følgende sannsynlighetsfordeling: g P(G = g) b. Skisser histogrammet som hører til fordelingen for G. Svar: F.eks.: Histogram Frequency More Frequency Bin c. Finn den forventete gevinsten for Petter. Finn også standardavviket for G.
4 4 Svar: EG ( ) = = EG ( ) = = = 666, var( G) = E( G ) 50 = 966,67 SD(G) = 966,67 = 95,74 d. Lotteriet blir, mot en gitt spilleavgift, tilbudt enkeltpersoner. Det er altså bare en person som har kjøpt lodd ved hver trekning. En person kan høyst kjøpe to lodd i en spilleomgang. Erfaringsmessig kjøper ca. 75% av spillerne ett lodd og 5% to lodd. I en gitt spilleomgang vant Eva 00kr. Vi vet ikke om hun hadde kjøpt ett eller to lodd. Finn sannsynligheten for at hun hadde kjøpt to lodd når vi vet at hun vant 00kr. [Hint: Du kan ha nytte av å vite at sannsynligheten for å vinne 00kr. for en spiller som bare har kjøpt ett lodd, er ¼. ] Svar: La, L betegne begivenhetene at Eva har kjøpt ett eller to lodd L h.h.v., og G gevinsten. Vi har PL ( ) = 0,75 = og PL ( ) = 0,5 =. 4 4 Dessuten PG ( = 00 L) = og PG ( = 00 L) = = 4 6 Dermed, siden PG ( = 00) = P[( G= 00) L] + P[( G= 00) L], får vi PG ( = 00) = PG ( = 00 L) PL ( ) + PG ( = 00 L) PL ( ) = + = og PG ( = 00 L) PL ( ) 4 4 PL ( G= 00) = = = = 0,. PG ( = 00) 48 ECON 0 EKSAMEN 004 HØST Oppgave.La X og Y være to uavhengige stokastiske variabler, som begge to har forventning lik 0 og varians lik. La Z være en ny stokastisk variabel definert som Z = ax + Y, med a et fast (dvs ikke stokastisk).tall med ukjent verdi. For hvilke a-verdier er korrelasjonen mellom Z og X større enn null? cov( X, Z) Svar: Siden correl( X, Z) =, der nevneren er positiv, er var( X) var( Z) correl(x,z) > 0 hvis og bare hvis cov(x,z) > 0. Siden E(X) = 0, får vi
5 5 cov( X, Z) = EXZ ( ) EXEZ ( ) ( ) = EXZ ( ) = EXaX [ ( + Y)] = aex ( ) + EXY ( ) Siden X og Y er uavhengige, er E( XY) = E( X) E( Y) = 0, slik at cov( X, Y) ae( X ) =, som er > 0 hvis og bare hvis a > 0 (siden EX ( ) > 0). Oppgave fra notatet Litt om forventet nytte og risikoaversjon a) Plott av U( a) = a+ : U( a ) er strengt konkav hvis U''( a ) < 0 for alle a >. Vi får U'( a) = = ( a+ ) a + og dermed U''( a) = ( a+ ) = 4 < 0 + ( a ) for alle a >. b) La X = antall 6-ere i kast med en rettferdig terning, og la A= 0X være fortjenesten. Fordelingen til X er gitt ved x 0 5 f ( x) = P( X = x) 0,694 6 = 0 0,78 6 = 0,08 6 =
6 6 De aktuelle verdiene for A og nytten er gitt i følgende tabell X 0 A U( A ), 4,58 Fordelingen til U = U( A) er dermed gitt ved u, 4,58 PU ( = u) 0,694 0,78 0,08 som gir nytten for det usikre spillet EU ( A ) =,74 På den annen side har vi fra før E( X ) =, hvorav forventet fortjeneste blir 4 μ = E( A) = 0 E( X) = 0 = 4 Nytten av det sikre spillet med verdi μ = er derfor 4 U( μ) = U =,08 som er større enn nytten for det usikre spillet med samme forventet verdi. c) Anta nyttefunksjonen er lineær, U( a) = c+ da, der c og d er konstanter. La A være et usikkert aktivum med forventet verdi μ = E( A). Nytten av A blir dermed EU( A) = E( c+ da) = c+ de( A) = c+ dμ = U( μ). Det usikre spillet A er altså like nyttig som det sikre spillet med verdi μ = E( A).
Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1
ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom
DetaljerLitt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians.
H. Goldstein Revidert januar 2008 Litt om forventet nytte og risikoaversjon. Eksempler på økonomisk anvendelse av forventning og varians. Dette notatet er ment å illustrere noen begreper fra Løvås, kapittel
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON30 Statistikk UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 03.06.06 Sensur kunngjøres: 4.06.06 Tid for eksamen: kl. 09:00 :00 Oppgavesettet er på 5 sider Tillatte hjelpemidler:
DetaljerLøsningskisse for oppgaver til undervisningsfri uke 8 ( februar 2012)
1 ECON 130 HG - februar 01 Løsningskisse for oppgaver til undervisningsfri uke 8 (0.-. februar 01) Oppg..1. Variabel: x = antall kundehenvendelser pr. dag 1. Antall observasjoner: n = 100 dager. I Excel
DetaljerLøsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
Detaljerbetyr begivenheten at det blir trukket en rød kule i første trekning og en hvit i andre, mens B1 B2
ECON30: EKSAMEN 06v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerLøsningskisse seminaroppgaver uke 15
HG April 0 Løsningskisse seminaroppgaver uke 5 Oppg. 5.6 La X = antall barn i utvalget som har lærevansker. Andel barn med lærevansker i populasjonen av barn antas å være p = 0,5. Utvalgsstørrelsen er
DetaljerOppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom <<, >>, Oppgave 1
ECON 130 EKSAMEN 005 VÅR SENSORVEILEDNING Oppgaven består av 10 delspørsmål som anbefales å veie like mye, Kommentarer og tallsvar er skrevet inn mellom , Oppgave 1 I denne oppgaven kan du anta at
DetaljerA. i) Sett opp en frekvenstabell over de fire mulige kombinasjonene av kjønn og røykestatus. Dvs. fyll inn. Ikke - røyker Sum Jente Gutt Sum 25
1 ECON21: ESAEN 215v SENSORVEILEDNING. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i > Grensen til bestått bør ligge på ca
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i <<< >>>.
1 ECON213: EKSAMEN 217 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Øvelsesoppgave i: ECON30- Statistikk Dato for utlevering: 5.03.06 Dato for innlevering: 05.04.06 innen kl. 5:00 Innleveringssted: Ekspedisjonen i. etasje ES hus
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
DetaljerLøsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
DetaljerTMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger : Uniform, binomisk, hypergeometrisk fordeling
TMA4240 Statistikk H2010 Kapittel 5: Diskrete sannsynlighetsfordelinger 5.1-5.4: Uniform, binomisk, hypergeometrisk fordeling Mette Langaas 2 Arbeidshverdag etter endt studium Studere et fenomen (f.eks.
DetaljerRegneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON2130 Statistikk 1 Dato for utlevering: Mandag 22. mars 2010 Dato for innlevering: Fredag 9. april 2010 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ved siden av SV-info-senter
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Øvelsesoppgave i: ECON30 Dato for utlevering: 7.03.04 Dato for innlevering: 07.04.04 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Innleveringssted: Ekspedisjonen, etasje innen kl 5:00 Øvrig informasjon: Denne
Detaljerµ = E(X) = Ʃ P(X = x) x
Redigerte høydepunkt fra forrige episode 3.2: Punktsannsynlighet og kumulativ sannsynlighet punktsannsynlighet: sanns. for at en stok. var. X har en viss verdi x; P(X = x) kumulativ sannsynlighet: sanns.
DetaljerKapittel 4.4: Forventning og varians til stokastiske variable
Kapittel 4.4: Forventning og varians til stokastiske variable Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB107111 Emnenavn: Metode 1, statistikk deleksamen Dato: 16. mai 2017 Hjelpemidler: Godkjent kalkulator og vedlagt formelsamling m/tabeller Eksamenstid: 4 timer Faglærer: Hans Kristian
Detaljer- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.
SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking
DetaljerMerk at vi for enkelthets skyld antar at alle som befinner seg i Roma sentrum enten er italienere eller utenlandske turister.
ECON230: EKSAMEN 20 VÅR - UTSATT PRØVE 2 TALLSVAR. Oppgave Da Anne var på besøk i Roma, fikk hun raskt problemer med språket. Anne snakker engelsk, men ikke italiensk, og kun av 5 italienere behersker
DetaljerLitt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling.
1 ECON 2130 HG mars 2015 Litt mer om den hypergeometriske fordelingen og dens tilnærming av binomisk fordeling. Grunnen til dette supplementet er dels at forholdet mellom hypergeometrisk og binomisk fordeling
DetaljerKapittel 4: Matematisk forventning
Kapittel 4: Matematisk forventning TMA4240 Statistikk (F2 og E7) Multivariate tilfeller foreleses mandag 6.september, 2004 Ole.Petter.Lodoen@math.ntnu.no p.1/16 Forventing til funksjon av flere stokastiske
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
1 ECON130: EKSAMEN 014 VÅR - UTSATT PRØVE TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variason i vanskelighetsgrad. Svarene er gitt i >. Oppgave 1 Fra en eldre
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte
Detaljerstatistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig
DetaljerSannsynlighet og statistikk
Sannsynlighet og statistikk Innhold Kompetansemål Sannsynlighet og statistikk, S... 3. Stokastiske variabler og sannsynlighetsfordelinger... 3 Stokastisk forsøk... 3 Definisjon av sannsynlighet og sannsynlighetsmodell...
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Eksamen i: ECON2130 Statistikk 1 UNIVERSITETET I OSLO ØONOIS INSTITUTT Eksamensdag: 01.06.2015 Sensur kunngjøres: 22.06.2015 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider Tillatte hjelpemidler:
DetaljerForeleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
DetaljerFasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
DetaljerFormelsamling i medisinsk statistikk
Formelsamling i medisinsk statistikk Versjon av 6. mai 208 Dette er en formelsamling til O. O. Aalen (red.): Statistiske metoder i medisin og helsefag, Gyldendal, 208. Gjennomsnitt x = n (x + x 2 + x 3
Detaljerb) i) Finn sannsynligheten for at nøyaktig 2 av 120 slike firmaer går konkurs.
Eksamen i: MET 040 Statistikk for økonomer Eksamensdag: 31 Mai 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 4 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen i: ECON130 Statistikk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 1306017 Sensur kunngjøres senest: 3006017 Tid for eksamen: kl 09:00 1:00 Oppgavesettet er på 5 sider Tillatte
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning
DetaljerDet anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON 0 EKSAMEN 0 VÅR TALLSVAR Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i
DetaljerTMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
DetaljerECON240 Høst 2017 Oppgaveseminar 1 (uke 35)
ECON40 Høst 017 Oppgaveseminar 1 (uke 35) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.1, P.13, og P.14 Example 1.1, 1., 1.3, 1.4, 1.6, 1.7, 1.9,
DetaljerUtvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
DetaljerECON240 Vår 2018 Oppgaveseminar 1 (uke 6)
ECON240 Vår 2018 Oppgaveseminar 1 (uke 6) Oppgaver til prerequisites og kapittel 1 fra læreboken Example P.1, P.5, P.6, P.7, P.8, P.9, P.11, P.12, P.13, og P.14 Example 1.1, 1.2, 1.3, 1.4, 1.6, 1.7, 1.9,
Detaljer3.4: Simultanfordelinger (siste rest) 4.1,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen)
TMA4240 Statistikk H200 3.4: Simultanfordelinger (siste rest) 4.,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen) Mette Langaas Foreleses mandag 3. september 200 2 f (x,
DetaljerHøgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
DetaljerEmnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard
Høgskoleni østfold EKSAMEN Emnekode: SFB10711 Emnenavn: Metodekurs 1: statistikk, deleksamen Dato: Eksamenstid: 4. januar 2017 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling m/tabeller Faglærer:
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 30. AUGUST 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT000V Sannsynlighetsregning og kombinatorikk Tilfeldige variabler og sannsynlighetsfordelinger (repetisjon) Hypergeometrisk fordeling (repetisjon) Binomisk fordeling Forventningsverdi Tilfeldige variabler
DetaljerKapittel 3: Kombinatorikk
Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).
Detaljer6 Sannsynlighetsregning
6 Sannsynlighetsregning Det anbefales å lese orienteringsstoffet om kombinatorikk som følger etter oppgave 34. 1 a) Sett opp alle mulige kombinasjoner for et kast med to terninger. b) Regn ut sannsynlighetene
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2015 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2016 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerUNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
DetaljerTyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4
3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF
DetaljerMidtveiseksamen i STK1100 våren 2017
Midtveiseksamen i STK1100 våren 2017 Denne midtveiseksamenen består av 20 oppgaver. Det er ett riktig svaralternativ for hvert spørsmål. Hvis svaret er oppgitt som et desimaltall, er det rundet av til
DetaljerEksamensoppgave i Løsningsskisse TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i Løsningsskisse TMA440 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland a, Sara Martino b Tlf: a 48 18 96, b 99 40 33 30 Eksamensdato: 30. november
DetaljerForelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
DetaljerTMA4240 Statistikk H2010
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
Detaljer3.1 Stokastisk variabel (repetisjon)
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
Detaljer1 Section 4-1: Introduksjon til sannsynlighet. 2 Section 4-2: Enkel sannsynlighetsregning. 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger
1 Section 4-1: Introduksjon til sannsynlighet 2 Section 4-2: Enkel sannsynlighetsregning 3 Section 5-1: Introduksjon til sannsynlighetsfordelinger 4 Section 5-2: Tilfeldige variable 5 Section 5-3: Binomisk
DetaljerIllustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.20).
Econ 130 HG mars 017 Supplement til forelesningen 7. februar Illustrasjon av regel 5.19 om sentralgrenseteoremet og litt om heltallskorreksjon (som i eksempel 5.0). Regel 5.19 sier at summer, Y X1 X X
DetaljerHØGSKOLEN I STAVANGER
HØGSKOLEN I STAVANGER Avdeling for TEKNISK NATURVITEN- EKSAMEN I: TE199 SANNSYNLIGHETSREGNING MED STATISTIKK SKAPELIGE FAG VARIGHET: 4 TIMER DATO: 5. JUNI 2003 TILLATTE HJELPEMIDLER: KALKULATOR OPPGAVESETTET
DetaljerKapittel 3: Kombinatorikk
Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger.
DetaljerObservatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter
Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter
DetaljerKontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Ved sensuren teller alle delspørsmål likt.
Eksamen i: MET00 Statistikk for økonomer Eksamensdag: 8. november 2007 Tid for eksamen: 09.00-13.00 Oppgavesettet er på 5 sider. Tillatte hjelpemidler: Alle trykte eller egenskrevne hjelpemidler og kalkulator.
DetaljerEksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
DetaljerBetinget sannsynlighet
Betinget sannsynlighet Multiplikasjonsloven for sannsynligheter (s. 49 i bok): P( AB ) = P( A B ) P(B) Veldig viktig verktøy for å finne sannsynligheter for snitt. (Bevises ved rett fram manipulering av
DetaljerUNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
DetaljerTogforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2017 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel med en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerStatistikk 1 kapittel 5
Statistikk 1 kapittel 5 Nico Keilman ECON 2130 Vår 2014 Kapittel 5 Sannsynlighetsmodeller I kap. 4 så vi et eksempel om en s.v. X som hadde en uniform sannsynlighetsfordeling: alle verdier av x har like
DetaljerEksamensoppgave i TMA4245 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerA) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
DetaljerTilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 1. juni 2010. KLASSE: HIS 08 11. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside)
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2011
ÅMA0 Sannsynlighetsregning med statistikk, våren 0 Kp. 3 Diskrete tilfeldige variable Noen viktige sannsynlighetsmodeller Noen viktige sannsynlighetsmodeller ( Sanns.modell : nå betyr det klasse/type sanns.fordeling.
DetaljerÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
DetaljerStatistikk 1 kapittel 4
Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)
DetaljerMAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
DetaljerTest, 3 Sannsynlighet og statistikk
Test, 3 Sannsynlighet og statistikk Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 3. Forventningsverdi, varians og standardavvik... 5 3.3 Normalfordelingen... 4 3.4 Sentralgrensesetningen...
DetaljerTMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency
DetaljerTMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger
TMA4240/TMA4245 Statistikk Oppsummering diskrete sannsynlighetsfordelinger Binomisk fordeling* ( ) n b(x; n, p) = p x (1 p) n x = x ( ) n p x q n x, x x = 0, 1, 2,..., n Fenomén: i) n forsøk. ii) Suksess/fiasko
DetaljerHogskoleni Østfold EKSAMEN. Eksamenstid: kl til k
Hogskoleni Østfold EKSAMEN Emnekode: SFB10711 Dato: 5. jan 2015 Hjelpemidler: Kalkulator Utlevert formelsamling Emne: Metodekurs I: Grunnleggende matematikk og statistikk (Statistikk, ny og utsatt eksamen)
DetaljerLØSNING: Eksamen 22. mai 2018
LØSNING: Eksamen 22. mai 2018 MAT110 Statistikk 1, vår 2018 Oppgave 1: ( logistikk a Sannsynlighetene p i, med i = 1, 2, 3,..., 8 utgjør en gyldig sannsynlighetsfordeling fordi: 8 p i = i=1 + 5 + 40 +
DetaljerEKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.
KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE
DetaljerSensurveiledning for eksamen i lgu52003 våren 2015
Sensurveiledning for eksamen i lgu5200 våren 205 Oppgave a) Gjennomsnittsfart fra 0-0 minutt: tilbakelagt strekning etter 0 min tilbakelagt strekning ved start tid = Gjennomsnittsfart fra 5-0 minutt: (5
DetaljerEKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Bokmål Faglig kontakt under eksamen: Bo Lindqvist, tlf. 97589418 EKSAMEN ST0202 STATISTIKK FOR SAMFUNNSVITERE Tirsdag
DetaljerBernoulli forsøksrekke og binomisk fordeling
Bernoulli forsøksrekke og binomisk fordeling Bernoulli forsøksrekke i) gjentar et forsøk n ganger ii) hvert forsøk gir enten suksess eller fiasko iii) sannsynligheten for suksess er p i alle forsøkene
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
DetaljerKap. 5.2: Utvalgsfordelinger for antall og andeler
Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter
DetaljerST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
DetaljerTilfeldige variable (5.2)
Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i
DetaljerSannsynlighet og statistikk S2 Løsninger
Sannsynlighet og statistikk S2 Løsninger Innhold 3. Stokastiske variabler og sannsynlighetsfordelinger... 2 3.2 Forventningsverdi Varians Standardavvik... 9 3.3 Normalfordelingen... 7 3.4 Sentralgrensesetningen...
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
DetaljerTMA4240 Statistikk Høst 2008
TMA4240 Statistikk Høst 2008 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 7 Oppgave 1 Tippekonkurranse Denne oppgaven er ment som en kjapp test på hva du har
DetaljerTMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
DetaljerÅMA110 Sannsynlighetsregning med statistikk, våren 2008
ÅMA0 Sannsynlighetsregning med statistikk, våren 008 Kp. Sannsynlighetsregning (sannsynlighetsteori).5 Betinget sannsynlighet Betinget sannsynlighet (kp..5) - innledning Eks.: Et terningkast; {,, 3, 4,
DetaljerSTK1100 våren Forventningsverdi. Forventning, varians og standardavvik
STK00 våren 0 Forventning, varians og standardavvik Svarer til avsnitt 3.3 i læreboka Geir Storvik (Ørnulf Borgan) Matematisk institutt Universitetet i Oslo Forventningsverdi Punktsannsynligheten px (
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: STK1000 Innføring i anvendt statistikk Eksamensdag: Onsdag 12. oktober 2016 Tid for eksamen: 10.00 12.00 Oppgavesettet er på
DetaljerSannsynlighet løsninger
Sannsynlighet løsninger Innhold 3.1 Pascals talltrekant... 2 3.2 Kombinatorikk... 5 3.3 Sannsynlighetsberegninger... 10 3.4 Hypergeometrisk sannsynlighetsmodell... 12 3.5 Binomisk sannsynlighetsmodell...
DetaljerStokastisk variabel. Eksempel augefarge
Dagens tekst Kap 3: Stokastiske variable og sannsynsfordelingar Stokastisk variabel: Diskret sannsynsfordeling: Kontinuerleg sannsynsfordeling: Kummulativ sannsynsfordeling: Diskret simultanfordeling Kontinuerleg
DetaljerUtvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
DetaljerFaktor - en eksamensavis utgitt av ECONnect
Faktor - en eksamensavis utgitt av ECONnect Løsningsforslag: SØK1004 Statistikk for økonomer Eksamen: Våren 009 Antall sider: 16 SØK1004 - Løsningsforslag Om ECONnect: ECONnect er en frivillig studentorganisasjon
Detaljer