Kapittel 4.4: Forventning og varians til stokastiske variable
|
|
- Martha Børresen
- 8 år siden
- Visninger:
Transkript
1 Kapittel 4.4: Forventning og varians til stokastiske variable
2 Forventning og varians til stokastiske variable Histogrammer for observerte data: Sannsynlighets-histogrammer og tetthetskurver for stokastiske variable:
3 Tidligere har vi sett på gjennomsnitt og empirisk varians til observerte data Numeriske beskrivelser av observerte data Nå skal vi se på forventning og (teoretisk) varians til stokastiske variable Numeriske beskrivelser av teoretisk oppførsel
4 Velger tall mellom 000 og 999 Spill-eksempel Et tall trekkes tilfeldig ut og en vinner $500 hvis en har valgt riktig tall slike tresifrede tall, sannsynlighetene for å tape/vinne er derfor Eksempel tre spill: En spiller vant ingen av gangene. Observert gevinst er x 1 =$0, x 2 =$0 og x 3 =$0. Gjennomsittlig observert gevinst: x =(x 1 +x 2 +x 3 )/3=$0 En lang rekke av spill: 0.1% av gangene blir det gevinst, 99.9% av gangene blir det ikke det. Gjennomsnittlig utbetaling blir da $500* $0*0.999=$0.50 En lang rekke av spill gjenspeiler teoretisk forventet gjennomsnittlig utbetaling pr spill: $0.50
5 Idealisering Sannsynlighetsfordeling: Idealisert beskrivelse av andeler i det lange løp Forventning: Beskriver forventet verdi av gjennomsnittet i det lange løp Forventning=μ (eller μ X, for å huske at det er forventningen til X)
6 Forventning til en diskret stokastisk variabel
7 Eksempel S={1,2,3,4,5,6,7,8,9} Kast med en 9-sidet terning: P(X=i)=1/9=0.111 for alle i=1,2,3,...,9 μ X =1* * *0.111=5 Sannsynligheter etter Benford's lov μ X =
8
9 Forventning for kontinuerlige variable Kap 1: Balansepunkt i fordeling Symmetriske fordelinger Lik senter Generelt: Regnes ut som et integral (der f(x) er sannsynlighetstettheten til x)
10 = I figuren: k=df=4
11 Statistisk estimering μ=forventet høyde i populasjon av kvinner μ: ukjent parameter Enkelt randomisert utvalg: x 1,...,x n Estimat for μ: x x observator, stokastisk variabel, brukes til å anslå/estimere μ x forventningsrett estimator for μ Hvis vi fortsetter å legge til nye observasjoner til vårt tilfeldige utvalg, vil x garantert komme så nær vi ønsker den sanne forventningen μ (store talls lov)
12 Store talls lov x =(x 1 +x x n )/n x 1, x 2,...,x n uavhengige observasjoner fra samme populasjon med forventning μ Når antall observasjoner (n) øker, vil x nærme seg μ Jacob Bernoulli i 1713
13 Høyde kvinner
14 Store talls lov Sier oss at gjennomsnitt er stabile og oppfører seg på en spesiell måte Et spillekasino kan tape på enkeltspillere, men vil gjennomsnittelig vinne fordi store talls lov sier dem hva gjennomsnittlig inntekt vil være over lang tid Et forsikringsselskap kan tape på enkeltkunder, men vil gjennomsnittelig tjene, fordi store talls lov sier dem hva gjennomsnittlig inntekt/utbetaling vil være for mange kunder Kan vises matematisk Hvor stort er stort? Avhenger av variabilitet på hver enkelt x i (jo større variabilitet, jo flere observasjoner trengs)
15 Regler for forventning For konstanter a og b, slik at a+bx er en lineærtransformasjon av X: For to stokastiske variable X og Y:
16 Regler for forventning: Eksempler Den stokastiske variabelen X har forventning 2 Forventningen til den stokastiske variabelen Y=3+5*X er da: Forventningen til den stokastiske variabelen Z=X+Y er da:
17 Variansen til en stokastisk variabel Varians og standardavvik er teoretiske mål på spredningen (variabiliteten) i sannsynlighetsfordelingen Observert varians for et datasett betegner vi s 2 Observert standardavvik for et datasett betegner vi s Teoretisk varians for den stokastiske variabelen X betegner vi σ 2 eller σ X 2 Teoretisk standardavvik for den stokastiske variabelen X betegner vi σ eller σ X Som for s 2 er den teoretisk variansen et slags gjennomsnitt (vektet av sannsynligheter som for forventningen) av kvadratet av avvikene (X-μ X ) 2
18
19 Regler for varianser Regel 1: Regel 2: Regel 3:
20 Standardavvik NB!!! Regel 2 for varianser betyr at standardavviket til summen av to uavhengige stokastiske variable ikke er lik summen av standardavvikene! Fremgangsmåte for å kombinere standardavvik: Bruk reglene for varianser, og ta deretter kvadratroten for å finne standardavviket
21 Det viktige tilfellet X-Y (der X og Y er uavhengige): Hva når X og Y ikke er uavhengige?
22 Teoretisk korrelasjon Empirisk korrelasjon r mellom to observerte variable: Gjennomsnittet av produktet av de standardiserte observasjonene for hvert individ Teoretisk korrelasjon ρ mellom de stokastiske variablene X og Y: En type vektet gjennomsnitt av produktet av de standardiserte stokastiske variablene ρ er et tall mellom -1 og 1
23
24 Regneregler for forventning og varians: Eksempel
25 Oppsummering: Forventning til stokastiske variable Forventning: Idealisert beskrivelse av langtids utfall av gjennomsnitt For diskrete stokastisk variable: Vektet gjennomsnitt av x i -ene med sannsynlighetene som vekter For kontinuerlige stokastisk variable må vi integrere produktet av x og sannsynlighetstettheten til x
26 Oppsummering: Varians til stokastiske variable Teoretisk varians: Idealisert beskrivelse av langtids utfall av spredningen/variabiliteten For diskrete stokastisk variable: Vektet gjennomsnitt av (x i -μ X ) 2 -ene med sannsynlighetene som vekter For kontinuerlige stokastisk variable må vi integrere produktet av (x-μ X ) 2 og sannsynlighetstettheten til x
27 Oppsummering: Regneregler for forventning og varians
Denne uken: Kapittel 4.3 og 4.4
Sist: Kapittel 4.1, 4.2, 4.5 Tilfeldighet Sannsynlighetsmodeller Regler for sannsynlighet Denne uken: Kapittel 4.3 og 4.4 Tilfeldige variable Forventning og varians til tilfeldige variable Litt repetisjon:
Kapittel 4.3: Tilfeldige/stokastiske variable
Kapittel 4.3: Tilfeldige/stokastiske variable Litt repetisjon: Sannsynlighetsteori Stokastisk forsøk og sannsynlighet Tilfeldig fenomen Individuelle utfall er usikre, men likevel et regulært mønster for
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Oversikt pensum, fortid og fremtid Eksplorativ data-analyse (Kap 1, 2) Hvordan produsere data (Kap 3) Sannsynlighetsteori (Kap 4) Utvalgsfordelinger til observatorer (Kap
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Utfordring. TMA4240 Statistikk H2010. Mette Langaas. Foreleses uke 40, 2010
TMA4240 Statistikk H2010 Statistisk inferens: 8.1: Tilfeldig utvalg 9.1-9.3: Estimering Mette Langaas Foreleses uke 40, 2010 2 Utfordring Ved en bedrift produseres en elektrisk komponent. Komponenten må
Forelesning 6: Punktestimering, usikkerhet i estimering. Jo Thori Lind
Forelesning 6: Punktestimering, usikkerhet i estimering Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Trekke utvalg 2. Estimatorer og observatorer som stokastiske variable 3. Egenskapene til en estimator
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variable (5.2) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel.
Tilfeldige variable (5.2)
Tilfeldige variable (5.) Dersom vi til hvert utfall av eksperimentet tilordner et tall, har vi laget en tilfeldig variabel. Tilfeldig variabel: En variabel som har en numerisk verdi for hvert utfall i
Tyngdepunkt. Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at. Kapittel 4
3 Tyngdepunkt Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4240 H2006: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF
Kapittel 2: Hendelser
Kapittel 2: Hendelser FENOMEN Eksperiment Utfall Utfallsrom Eksperiment. Utfall. Eksperiment Utfall Hendelse Sannsynlighet: egenskaper, gunstige vs. mulige, relativ frekvens Sannsynlighet for mer enn en
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Fra første forelesning: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av
Utvalgsfordelinger. Utvalg er en tilfeldig mekanisme. Sannsynlighetsregning dreier seg om tilfeldige mekanismer.
Utvalgsfordelinger Vi har sett at utvalgsfordelinger til en statistikk (observator) er fordelingen av verdiene statistikken tar ved mange gjenttatte utvalg av samme størrelse fra samme populasjon. Utvalg
ÅMA110 Sannsynlighetsregning med statistikk, våren
ÅMA110 Sannsynlighetsregning med statistikk, våren 2006 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 24. april Bjørn H. Auestad Oppsummering våren
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 10. oktober 2012. Tid for eksamen: 15:00 17:00. Oppgavesettet
Foreleses onsdag 8. september 2010
TMA4240 Statistikk H200 4.2: Varians (univariat del) 4.4: Chebyshevs teorem 3.4: Simultanfordelinger Mette Langaas Foreleses onsdag 8. september 200 Mette.Langaas@math.ntnu.no, TMA4240H200 2 4.2 Varians
Utvalgsfordelinger (Kapittel 5)
Utvalgsfordelinger (Kapittel 5) Observator En observator er en funksjon av data for mange individer, for eksempel Gjennomsnitt Andel Stigningstall i regresjonslinje En observator er en tilfeldig variabel
Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Binomial-fordelingen
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(, populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
Diskrete sannsynlighetsfordelinger som histogram. Varians. Histogram og kumulativ sannsynlighet. Forventning (gjennomsnitt) (X=antall mynt i tre kast)
Diskret sannsynlighetsfordeling (kap 1.1-1.6) Oversikt Utfallsrom (sample space) Sannsynlighetsfordeling Forventning (expectation), E(X), populasjonsgjennomsnitt Bruk av figurer og histogram Binomialfordelingen
STK1100 våren Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner
STK1100 våren 2017 Kontinuerlige stokastiske variabler Forventning og varians Momentgenererende funksjoner Svarer til avsnittene 4.1 og 4.2 i læreboka Ørnulf Borgan Matematisk institutt Universitetet i
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
statistikk, våren 2011
ÅMA110 Sannsynlighetsregning med statistikk, våren 011 Kp. 3 Diskrete tilfeldige variable 1 Diskrete tilfeldige variable, innledning Hva er en tilfeldig variabel (stokastisk variabel)? Diskret tilfeldig
Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent)
TMA440 Statistikk H010 Statistisk inferens: 9.14: Sannsynlighetsmaksimeringsestimatoren 8.5: Fordeling til gjennomsnittet 9.4: Konfidensintervall for µ (σ kjent) Mette Langaas Foreleses mandag 11.oktober,
Fra første forelesning:
2 Fra første forelesning: ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag opulasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg En delmengde av populasjonen
TMA4240 Statistikk Høst 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte
Da vil summen og gjennomsnittet være tilnærmet normalfordelte : Summen: X 1 +X X n ~N(nµ,nσ 2 ) Gjennomsnittet: X 1 +X
Me me me me metallic hvit 4.4: Tilnærming til normalfordeling Tilnærming til normalfordeling: binomisk og Poisson kan tilnærmes v.h.a. normalfordeling under bestemte forhold (ved "mange" delforsøk/hendelser)
STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler
STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige
Løsningsforslag ECON 2130 Obligatorisk semesteroppgave 2017 vår
Løsningsforslag ECON 130 Obligatorisk semesteroppgave 017 vår Andreas Myhre Oppgave 1 1. (i) Siden X og Z er uavhengige, vil den simultane fordelingen mellom X og Z kunne skrives som: f(x, z) = P(X = x
ECON Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger. Jo Thori Lind
ECON2130 - Statistikk 1 Forelesning 4: Stokastiske variable, fordelinger Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Betinget sannsynlighet 2. Stokastiske variable 3. Forventning og varians 4. Regneregler
TMA4240 Statistikk H2015
TMA4240 Statistikk H2015 Kapittel 4: Matematisk forventning [4.1+start 4.3] Quiz kjørt med Kahoot! fra kahoot.it. Mette Langaas wiki.math.ntnu.no/emner/tma4240/2015h/start/ 2 Høyde, kvinner Frequency
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 7: Utvalgsfordeling Bo Lindqvist Institutt for matematiske fag 2 Fra kapittel 1: Populasjon Den mengden av individer/objekter som vi ønsker å analysere. Utvalg
Høgskolen i Telemark. Institutt for økonomi og informatikk FORMELSAMLING Statistikk I. Til bruk ved eksamen. Per Chr. Hagen
Høgskolen i Telemark Institutt for økonomi og informatikk FORMELSAMLING 6005 Statistikk I Til bruk ved eksamen Per Chr. Hagen . Sannsynlighetsregning. Regneregler Komplementsetningen: Addisjonssetningen:
Sannsynlighet: Studiet av tilfeldighet
Sannsynlighet: Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en observator er fordelingen av verdien til observatoren i alle utvalg av samme størrelse fra populasjonen. Spesielt
UNIVERSITETET I OSLO Matematisk Institutt
UNIVERSITETET I OSLO Matematisk Institutt Midtveiseksamen i: STK 1000: Innføring i anvendt statistikk Tid for eksamen: Onsdag 9. oktober 2013, 11:00 13:00 Hjelpemidler: Lærebok, ordliste for STK1000, godkjent
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering
Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett
Statistikk 1 kapittel 4
Statistikk 1 kapittel 4 Nico Keilman ECON 2130 Vår 2017 Kapittel 4 Stokastiske (tilfeldige) variabler Anta 1) Vi kjenner sannsynligheter for ulike utfall knyttet til et forsøk 2) Hvert utfall har en (meningsfull)
A) B) 400 C) 120 D) 60 E) 10. Rett svar: C. Fasit: ( 5 6 = 60. Hvis A, B, C er en partisjon av utfallsrommet S, så er P (A B) lik.
Oppgave 1 Det skal velges en komité bestående av 2 menn og 1 kvinne. Komitéen skal velges fra totalt 5 menn og 6 kvinner. Hvor mange ulike komitéer kan dannes? A) 86400 B) 400 C) 120 D) 60 E) 10 Rett svar:
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010 Oppsummering Bjørn H. Auestad Institutt for matematikk og naturvitenskap Universitetet i Stavanger 21. april Bjørn H. Auestad Oppsummering våren
Siden vi her har brukt første momentet i fordelingen (EX = EX 1 ) til å konstruere estimatoren kalles denne metoden for momentmetoden.
Estimeringsmetoder Momentmetoden La X, X 2,..., X n være uavhengige variable som er rektangulært fordelte på intervallet [0, θ]. Vi vet da at forventningsverdiene til hver observasjon og forventningen
TMA4240 Statistikk Eksamen desember 2015
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4240 Statistikk Eksamen desember 15 Oppgave 1 La den kontinuerlige stokastiske variabelen X ha fordelingsfunksjon (sannsynlighetstetthet
Seksjon 1.3 Tetthetskurver og normalfordelingen
Seksjon 1.3 Tetthetskurver og normalfordelingen Har sett på ulike metoder for å plotte eller oppsummere data ved tall Vil nå starte på hvordan beskrive data ved modeller Hovedmetode er tetthetskurver Tetthetskurver
Kap. 5.2: Utvalgsfordelinger for antall og andeler
Kap. 5.2: Utvalgsfordelinger for antall og andeler Binære data (1/0, Ja/Nei, Suksess/Feil) Utvalgsundersøkelser: Ja/Nei-spørsmål Tilstedeværelse av arter: Tilstede/Ikke-tilstede (1/0) Overlevelse etter
Togforsinkelsen (Eksamen Des2003.1a) I denne oppgaven kan du bruke uten å vise det at
Kapittel 4 Forventningsverdi, varians, kovarians for én stokastisk variabel og funksjoner av stokastiske variabler TMA4245 V2007: Eirik Mo 2 4.1 Forventing til en stokastisk variabel DEF 4.1: La X være
ÅMA110 Sannsynlighetsregning med statistikk, våren 2010. ÅMA110 Sannsynlighetsregning med statistikk, våren 2010
ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable ÅMA Sannsynlighetsregning med statistikk, våren Kp. Diskrete tilfeldige variable Diskrete tilfeldige variable, innledning
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver?
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Boka (Ch 1.4) motiverer dette ved å gå fra histogrammer til tetthetskurver.
Forelening 1, kapittel 4 Stokastiske variable
Forelening 1, kapittel 4 Stokastiske variable Eksempel X = "antall kron på kast med to mynter (før de er kastet)" Uniformt utfallsrom {MM, MK, KM, KK}. X = x beskriver hendelsen "antall kron på kast med
Fasit for tilleggsoppgaver
Fasit for tilleggsoppgaver Uke 5 Oppgave: Gitt en rekke med observasjoner x i (i = 1,, 3,, n), definerer vi variansen til x i som gjennomsnittlig kvadratavvik fra gjennomsnittet, m.a.o. Var(x i ) = (x
Forelesning 7: Store talls lov, sentralgrenseteoremet. Jo Thori Lind
Forelesning 7: Store talls lov, sentralgrenseteoremet Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Estimering av variansen 2. Asymptotisk teori 3. Store talls lov 4. Sentralgrenseteoremet 1.Estimering
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
TMA4240 Statistikk Høst 2018
TMA4240 Statistikk Høst 2018 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 5 Dette er andre av tre innleveringer i blokk 2. Denne øvingen skal oppsummere pensum
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn
Binomisk sannsynlighetsfunksjon
ST0202 Statistikk for samfunnsvitere Bo Lindqvist Institutt for matematiske fag 2 Binomisk sannsynlighetsfunksjon La det være n forsøk, sannsynlighet p for suksess og sannsynlighet q for fiasko. Den tilfeldige
TMA4245 Statistikk Eksamen desember 2016
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer
STK1100 våren Forventningsverdi. Forventning, varians og standardavvik
STK00 våren 0 Forventning, varians og standardavvik Svarer til avsnitt 3.3 i læreboka Geir Storvik (Ørnulf Borgan) Matematisk institutt Universitetet i Oslo Forventningsverdi Punktsannsynligheten px (
Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk
MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo
ÅMA110 Sannsynlighetsregning med statistikk, våren Kp. 3 Diskrete tilfeldige variable. Diskrete tilfeldige variable, varians (kp. 3.
ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. Diskrete tilfeldige variable Kp. Diskrete tilfeldige variable Har sett på (tidligere: begrep/definisjoner; tilfeldig (stokastisk variabel sannsynlighetsfordeling
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK1000 Innføring i anvendt statistikk. Eksamensdag: Torsdag 9. oktober 2008. Tid for eksamen: 15:00 17:00. Oppgavesettet er på
To-dimensjonale kontinuerlige fordelinger
To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}
Kapittel 5: Tilfeldige variable, forventning og varians.
Kapittel 5: Tilfeldige variable, forventning og varians. Tilfeldige variable Tilfeldige variable kalles også stokastiske variable. En tilfeldig variabel er en variabel som får sin numeriske verdi bestemt
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: ST 101 Innføring i statistikk og sannsynlighetsregning. Eksamensdag: Mandag 30. november 1992. Tid for eksamen: 09.00 15.00.
Forventning og varians.
Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.1) Forventningsverdi = gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: x xf(x),x
DEL 1 GRUNNLEGGENDE STATISTIKK
INNHOLD 1 INNLEDNING 15 1.1 Parallelle verdener........................... 18 1.2 Telle gunstige.............................. 20 1.3 Regneverktøy og webstøtte....................... 22 1.4 Oppgaver................................
MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem
MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi
Et lite notat om og rundt normalfordelingen.
Et lite notat om og rundt normalfordelingen. Anta at vi har kontinuerlige data. Hva er likt og ulikt for histogrammer og fordelingskurver? Observasjoner Histogram Viser fordelingen av faktiske observerte
Kap. 8: Utvalsfordelingar og databeskrivelse
Kap. 8: Utvalsfordelingar og databeskrivelse Utvalsfordelingar Utvalsfordeling for gjennomsnitt (med kjent varians) ( X ) Sentralgrenseteoremet (SGT) Utvalsfordeling for varians (normalfordeling) Utvalfordeling
TMA4245 Statistikk Eksamen august 2014
TMA4245 Statistikk Eksamen august 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Oppgave 1 En bedrift produserer en type medisin i pulverform Medisinen selges på flasker
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 13. oktober 2010. Tid for eksamen: 15:00 17:00. Oppgavesettet
Forventning og varians.
Forventning og varians. Dekkes av kapittel 4 i læreboka. Forventning (4.) Forventningsverdi gjennomsnitt i det lange løp. Defininsjon: Forventningsverdien til en stokastisk variabel X er: E(X) f(),x diskret
ST0202 Statistikk for samfunnsvitere
ST0202 Statistikk for samfunnsvitere Kapittel 5: Sannsynlighetsfordelinger for diskrete variabler Bo Lindqvist Institutt for matematiske fag 2 Tilfeldige variabler (5.1) Dersom vi til hvert utfall av eksperimentet
TMA4240 Statistikk H2010
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
3.1 Stokastisk variabel (repetisjon)
TMA4240 Statistikk H2010 3.3: Kontinuerlige sannsynlighetsfordelinger 4.1: Matematisk forventing (univariat del) Mette Langaas Foreleses mandag 6. september 2010 2 3.1 Stokastisk variabel (repetisjon)
for x 0 F X (x) = 0 ellers Figur 1: Parallellsystem med to komponenter Figur 2: Seriesystem med n komponenter
TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Innlevering 3, blokk II Dette er den første av to innleveringer i blokk 2. Denne øvingen skal oppsummere
STK Oppsummering
STK1100 - Oppsummering Geir Storvik 6. Mai 2014 STK1100 Tre temaer Deskriptiv/beskrivende statistikk Sannsynlighetsteori Statistisk inferens Sannsynlighetsregning Hva Matematisk verktøy for å studere tilfeldigheter
Statistikk og dataanalyse
Njål Foldnes, Steffen Grønneberg og Gudmund Horn Hermansen Statistikk og dataanalyse En moderne innføring Kapitteloversikt del 1 INTRODUKSJON TIL STATISTIKK Kapittel 1 Populasjon og utvalg 19 Kapittel
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen. Jo Thori Lind
Forelesning 5: Kontinuerlige fordelinger, normalfordelingen Jo Thori Lind j.t.lind@econ.uio.no Oversikt 1. Kontinuerlige fordelinger 2. Uniform fordeling 3. Normal-fordelingen 1. Kontinuerlige fordelinger
Inferens i fordelinger
Inferens i fordelinger Modifiserer antagelsen om at standardavviket i populasjonen σ er kjent Mer kompleks systematisk del ( her forventningen i populasjonen). Skal se på en situasjon der populasjonsfordelingen
ECON2130 Kommentarer til oblig
ECON2130 Kommentarer til oblig Her har jeg skrevet ganske utfyllende kommentarer til en del oppgaver som mange slet med. Har noen steder gått en del utover det som det strengt tatt ble spurt om i oppgaven,
Observatorer. STK Observatorer - Kap 6. Utgangspunkt. Eksempel høyde Oxford studenter
Observatorer STK00 - Observatorer - Kap 6 Geir Storvik 4. april 206 Så langt: Sannsynlighetsteori Stokastiske modeller Nå: Data Knytte data til stokastiske modeller Utgangspunkt Eksempel høyde Oxford studenter
ÅMA110 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 2010, s. 1. Oppgave 1. Histogram over frekvenser.
ÅMA1 Sannsylighetsregning og statistikk Løsningsforslag til eksamen høst 0, s. 1 (Det tas forbehold om feil i løsningsforslaget.) a) Gjennomsnitt: x = 1 Emp. standardavvik: Median: 1 (1.33 + 1.) = 1.35
TMA4240 Statistikk H2017 [15]
TMA4240 Statistikk H207 [5] Del 2: Statistisk inferens Populasjon og utvalg [8.] Observatorer og utvalgsfordelinger [8.2-8.3] Fordeling til gjennomsnittet og sentralgrenseteoremet [8.4] Normalplott [8.8]
Snøtetthet. Institutt for matematiske fag, NTNU 15. august Notat for TMA4240/TMA4245 Statistikk
Snøtetthet Notat for TMA424/TMA4245 Statistikk Institutt for matematiske fag, NTNU 5. august 22 I forbindelse med varsling av om, klimaforskning og særlig kraftproduksjon er det viktig å kunne anslå hvor
3.4: Simultanfordelinger (siste rest) 4.1,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen)
TMA4240 Statistikk H200 3.4: Simultanfordelinger (siste rest) 4.,4.2,4.3: Multivariat del (ferdig med kapittel 3 og 4 etter denne forelesningen) Mette Langaas Foreleses mandag 3. september 200 2 f (x,
Denne uken: kap : Introduksjon til statistisk inferens. - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans
Denne uken: kap. 6.1-6.2-6.3: Introduksjon til statistisk inferens - Konfidensintervall - Hypotesetesting - P-verdier - Statistisk signifikans VG 25/9 2011 Statistisk inferens Mål: Trekke konklusjoner
Eksamensoppgave i TMA4240 Statistikk
Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806
UNIVERSITETET I OSLO
Deleksamen i: UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet STK1000 Innføring i anvendt statistikk. Eksamensdag: Onsdag 12. oktober 2011. Tid for eksamen: 15:00 17:00. Oppgavesettet
Kapittel 4: Matematisk forventning
Kapittel 4: Matematisk forventning TMA4240 Statistikk (F2 og E7) Multivariate tilfeller foreleses mandag 6.september, 2004 Ole.Petter.Lodoen@math.ntnu.no p.1/16 Forventing til funksjon av flere stokastiske
STK1100 våren Generell introduksjon. Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov)
STK1100 våren 2017 Generell introduksjon Omhandler delvis stoffet i avsnitt 1.1 i læreboka (resten av kapittel 1 blir gjennomgått ved behov) Ørnulf Borgan Matematisk institutt Universitetet i Oslo 1 «Overalt»
FORMELSAMLING TIL STK1100 OG STK1110
FORMELSAMLING TIL STK1100 OG STK1110 (Versjon av 16. november 2009) 1. Sannsynlighet La A, B, A 1, A 2,...,B 1, B 2,... være begivenheter, dvs. delmengder av et utfallsrom Ω. a) Aksiomene: Et sannsynlighetsmål
Kapittel 3: Studieopplegg
Oversikt over pensum Kapittel 1: Empirisk fordeling for en variabel o Begrepet fordeling o Mål for senter (gj.snitt, median) + persentiler/kvartiler o Mål for spredning (Standardavvik s, IQR) o Outliere
Løsningsforslag til obligatorisk oppgave i ECON 2130
Andreas Mhre April 15 Løsningsforslag til obligatorisk oppgave i ECON 13 Oppgave 1: E(XY) = E(X(Z X)) Setter inn Y = Z - X E(XY) = E(XZ X ) E(XY) = E(XZ) E(X ) E(XY) = - E(X ) X og Z er uavhengige, så
I enkel lineær regresjon beskrev linja. μ y = β 0 + β 1 x
Multiple regresjon Her utvider vi perspektivet for enkel lineær regresjon til også å omfatte flere forklaringsvariable.det er fortsatt en responsvariabel. Måten dette gjøre på er nokså naturlig. Prediktoren
Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B
Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling
Kapittel 4: Sannsynlighet - Studiet av tilfeldighet
Kapittel 4: Sannsynlighet - Studiet av tilfeldighet Vi så i forrige kapittel at utvalgsfordeling til en statistikk (observator) er fordelingen av verdiene til statistikken over alle utvalg av samme størrelse
Terningkast. Utfallsrommet S for et terningskast med en vanlig spillterning med 6 sider er veldefinert 1, 2, 3, 4, 5, 6
Terningkast Halvor Aarnes, UiO, 2014 Innhold Ett terningkast og utfallsrom... 1 Union og snitt... 4 Betinget sannsynlighet... 5 Forventningsverdi E(X) og varianse Var(X)... 5 Konfidensintervall for proporsjoner...
Statistikk 1. Nico Keilman. ECON 2130 Vår 2014
Statistikk 1 Nico Keilman ECON 2130 Vår 2014 Pensum Kap 1-7.3.6 fra Løvås «Statistikk for universiteter og høgskoler» 3. utgave 2013 (eventuelt 2. utgave) Se overspringelsesliste på emnesiden Supplerende
Regneregler for forventning og varians
Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene
Introduksjon til statistikk og dataanalyse. Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013
Introduksjon til statistikk og dataanalyse Arild Brandrud Næss TMA4240 Statistikk NTNU, høsten 2013 Introduksjon til statistikk og dataanalyse Hollywood-filmer fra 2011 135 filmer Samla budsjett: $ 7 166
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010
Løsningsforslag til andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Oppgave 1 a Forventet antall dødsulykker i år i er E(X i λ i. Dermed er θ i λ i E(X i forventet antall dødsulykker per 100
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger
Kapittel 3: Stokastiske variable og sannsynlighetsfordelinger TMA4245 Statistikk (B, K1, I) 3.1, 3.2, 3.3 foreleses torsdag 15.januar 0.00 0.02 0.04 0.06 0.08 160 170 180 190 hoyde i cm Mette.Langaas@math.ntnu.no
Inferens i regresjon
Strategi som er fulgt hittil: Inferens i regresjon Deskriptiv analyse og dataanalyse først. Analyse av en variabel før studie av samvariasjon. Emne for dette kapittel er inferens når det er en respons