For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
|
|
- Erling Paulsen
- 7 år siden
- Visninger:
Transkript
1 Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, Vanskelig: 10.13, 10.8, 10., Fra kapittel 14 i læreboka: Lett: 14.1, 14., 14.17, Middels: 14.10, 14.3, Vanskelig: 14.1, 14.0, a) Amplituden er 8.5. Når sinusbølgen har beveget seg fra null til maksimum har den gått igjennom en kvart periode. Dette tok Dt = = 5.4 ms. Vi kan skrive at wdt = p og finner fra denne ligningen at w = i radianer per sekund [rad/s] eller grader/sekund. Faseforskyvningen er -.1ms som tilsvarer.1/5.4 = 38.9% av kvartperioden og vi finner f = p + p» 1.8p (Siden vi skulle ha resultatet innenfor [0,p] måtte vi legge til p ) I grader blir dette 1.8p = p p f t t = 34.0 Fasitsvaret er = 8.5 sin f t t b) Vi har identiteten sin( x ) = cos( x - 90 ). Sinusbølgen i a blir dermed = 8.5 cos For å få minst mulig tall for fasen må vi holde oss innenfor ±180 og fasen blir derfor -15 etter å trukket fra 360 grader. Fasitsvaret er f t = 8.5 cos 90.9 t - 15 c) Her kan gå fra uttrykket i a ved å bruke følgende identitet: sin a ± b = sin(a)cos(b) ± cos(a)sin(b) Vi får da: C 3 = 8.5 cos b = 8.5 cos 1.8 p = C 4 = 8.5 sin b = 8.5 sin 1.8 p = Her kan man benytte identiteten cos(a ± b) = cos(a)cos(b) -+ sin(a)sin(b) Legge merke til at pluss på venstre side gir minus på høyre side. Skriver vi opp funksjonen på formen f t = A B cos wt + A C sin wt der faseforskyvningene skal finnes fra B = cos b og C = sin b og vi vet at AB=- og AC=-30. B får vi C = cos b sin b b = atan 30 + p = p = 3.68 = tan b = 3 5 og dermed gir den inverse til tangens-funksjonen oss beta: (Fordi vi ønsker å gi A en positiv verdi legger vi til p ). For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
2 = For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A : A= cos atan 30 = For g(t) får vi på lignende måte beta: atan(-15/55) = dermed blir A: A = 55 cos atan b) For å finne faseforskjellen ser vi på forskjellen til de to beta'ene: p + atan 30 - atan p 360 p = D.v.s. f(t) kommer omtrent 134 grader før g(t) 10. Her bør du også ta en titt på appendiks 5 (A5) a) - 7 j b) 3 + j j = j c) 14 cos j sin 15 d) 1 e) - + j a) Vi ser fra figuren under at v(t=0.4) = 0.8 V b) V c) V d) V Denne oppgaven er lett å løse med LTspice, enkel med phasorer, men skal vi benytte oss av teknikkene tilhørende kapittelet har vi en liten jobb. Se oppgave for en enklere løsningsmetode du kan prøve ut på denne oppgaven. Setter vi opp KVL for kretsen får vi V m cos wt = R i + 1 C i d t På samme måte som i oppgaveteksten har vi en generell løsning på formen i t = I 1 cos wt + I sin wt Setter vi dette inn får vi V m cos wt = R I 1 cos wt + I sin wt t t - I cos w - I 1 sin w t Samler vi opp cos(wt) og sin (wt) får vi: 0 = sin w I R + I t 1 - cos w V m - I 1 R + I For at ligningen skal holde for alle t må begge faktorene foran cos(wt) og sin (wt) være null: 0 = I 1 R - V m - I og 0 = I R + I 1 V og I = - m V - m sin wt Løser vi disse to ligningene finner vi I 1 = w C R V m i t Dette gir = w C R V m cos wt Nå setter vi inn verdiene for w, R og C for å gjøre det litt enklere i fortsettelsen: i t» 0.1 V m cos 5 t V m sin 5 t
3 i t» 0.1 V m cos 5 t V m sin 5 t For å finne fasen benytter vi identiten cos(a ± b) = cos(a)cos(b) -+ sin(a)sin(b) Vi har da cos b = 0.1 V m og sin b = V m Ved hjelp av en invers tangens får vi til slutt fasen: b = arctan cos b sin b t Det vil si at i(t) kan skrives på formen A cos = = V m V m Vi kan også se at bidraget for cosinus-leddet er mye kraftigere og vi får dermed A = 0.1 Vm = 0. = For å finne amplituden kan vi utnytte at A cos + A sin = A i t t Nå har vi funnet = 0. ma cos C Forholdet mellom strøm og spenning i en kondensator er kjent: V C = 1 i d t Dermed finner vi Vc(t): 0. cos 5 t d t V C = 3 V C = sin t mv Siden sin x = cos x - 90 får vi om vi ønsker svaret som en cosinus: V C = cos 5 t µv Vi har admittansen til en kondensator: Y C = Z 1 = jwc C Admittanser i parallell kan summeres opp Y = jwc 1 + jwc + jwc 3 Vinkelfrekvensen ved Hz er 4 p rad/s. Ved innsetting får vi for a) j88 ms b) j8.8s c) j880s d) j8.8gs Her benytter vi kompleks impedans / phasorer, istedet for integro-differensial ligninger (se kap ): Kildetransformasjon gir i s = v s 0 og motstandene i parallell blir W Ny kildetransformasjon gir v s = W v s Vi ser at forskjellen blir liten så vi forenkler på enkleste måte og ser bort i fra motstanden på 60k. Frekvensen er w = 0 rad/s Impedansen i kretsen er da Z = + Z R = R + jwl = 5 + j(0*0.0) = 5 + j10 Kilden kan vi uttrykke som en phasor: V = Ð0 = Med KVL kan vi sette opp en enkel j ligning for kretsen: V = I L + I L Z R Insatt får vi: = I L Løst m.h.p. strømmen får vi I L = 9-4 j 145 = 74.3 Ð-1.8 ma
4 Løst m.h.p. strømmen får vi I L = 9-4 j 145 = 74.3 Ð-1.8 ma Skriver vi opp strømmen som en cosinus tilsvarer dette 74.3 cos ( 0t ) Tips for de som bruker Matlab: Funksjonene angle() og abs() gir deg vinkelen og størrelsen på komplekse tall. Eksempelvis, skriver man inn "angle(1 + 1*j)*360//pi" får man svaret 45 og abs(1 + 1*j) gir svaret Vi setter først opp KVL for de to meshene : 1: V s = I 1 R + j w L - I C R - I1 R : 0 = I C R + 1 j j 40 t + 30 hvor I C = 0 e Vi finner I 1 fra ligning : I 1 = I C R + w 1 C j R j R + w L - IC R Og setter inn i 1: V s = I C R + w 1 C j R Setter så inn verdiene i for w, R, L og C: V s = I C V s = e j t j V s = e j 40 t e j 3.63 V s = e j t = e Svaret på oppgaven blir da: V s = e j 40 t j 40 t Vi kan begynne med å se bort i fra kondensatoren, spolen og motstanden nederst til høyre, da ingen av disse påvirker impedansen på måten de er koblet. Vinkelfrekvensen blir p 10 6 rad/s. Vi tar først for oss impedansen til de fem komponentene øverst til høyre: Z 5 = Z R1 ( + (Z C (Z R + Z C ))) Reglene for å parallellkople impedanser er de samme som for motstander. Vi får derfor: Z 5 = Z R1 - Z C Z C R - Z Z R + Z R1 - Z C Z C R - Z Z R som gir: Z 5 = i Vi ser at realdelen er meget liten og forenkler Z 5 til 0i
5 Vi ser at realdelen er meget liten og forenkler Z 5 til 0i Hele impedansen blir da: Z = jwc 1 + Z5 + jwl dvs. Z» 6. i eller Z» 6. j med engineering-notasjon Skal finne admittansen Yab med en avhengig kilde. Y AB = I AB V AB - V Z + A + V B + V L L Z = 0 C 0.5 V L + V L V Z + L C Z L 1ZL + 1 I AB finner vi fra V L og I AB = V L Setter så opp en ligning med KCL: 0.5 V L + V L Løser denne mhp Va-Vb = Vab V AB = Z C Vi kan her utnytte at vi kjenner verdiene på komponentene og derfor blir Z C = / V AB = V L + Z L Finner så Y AB ved å dele I AB på V AB : Y AB = 1 1 ZL Vi ser at V L forsvant. Setter så inn verdien til = j (Dette kan man godt gjøre med en gang): Y AB = 1 - j Dette tilsvarer admittansene til en motstand på ohm og en spole på henry.
Forelesning nr.12 INF 1410
Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro
DetaljerElektrisk immittans. Ørjan G. Martinsen 13.11.2006
Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle
DetaljerLøsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
DetaljerForelesning nr.5 IN 1080 Mekatronikk. RC-kretser
Forelesning nr.5 IN 080 Mekatronikk R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Ulike typer respons R-kretser Impedans og fasevinkler Serielle R-kretser
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og
DetaljerForelesning nr.6 IN 1080 Elektroniske systemer. Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester
Forelesning nr.6 IN 1080 Elektroniske systemer Strøm, spenning og impedans i RC-kretser Anvendelser av RC-krester Dagens temaer Strøm, spenning og impedans i serielle RC-kretser Mer om ac-signaler og sinussignaler
DetaljerForelesning nr.5 INF 1411 Elektroniske systemer
Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler
DetaljerForelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
DetaljerOppsummering om kretser med R, L og C FYS1120
Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av
DetaljerOnsdag og fredag
Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009, uke17 Onsdag 22.04.09 og fredag 24.04.09 Energi i magnetfelt [FGT 32.2, 32.3; YF 30.3; TM 28.7; AF 26.8, 27.11; LHL 25.3; DJG 7.2.4]
DetaljerForelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
DetaljerForelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel
DetaljerNoen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.
FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige
DetaljerForelesning nr.6 INF 1411 Elektroniske systemer
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser
DetaljerLøsningsforslag til øving 4
Institutt for fysikk, NTNU FY3 Elektrisitet og magnetisme II Høst 25 Løsningsforslag til øving 4 Veiledning mandag 9. og onsdag 2. september Likeretter a) Strømmen som leveres av spenningskilden må gå
DetaljerINF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
DetaljerForelesning nr.13 INF 1410
Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger
DetaljerINF1411 Oblig nr. 2 - Veiledning
INF1411 Oblig nr. 2 - Veiledning Informasjon Instrumentene som behøves i denne obligen er markert over: DMM det digitale multimeteret er du kjent med fra foregående oppgave. Scope er et oscilloskop som
DetaljerForelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på
DetaljerKonduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.
7.4 KONDUKTAN - UCEPTAN - ADMITTAN 1 7.4 KONDUKTAN - UCEPTAN - ADMITTAN Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.
DetaljerForelesning nr.8 INF 1410
Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node
DetaljerEn del utregninger/betraktninger fra lab 8:
En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden
DetaljerKondensator. Symbol. Lindem 22. jan. 2012
UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator
DetaljerLøsningsforslag til EKSAMEN
Løsningsforslag til EKSAMEN Emnekode: ITD0 Emne: Fysikk og kjemi Dato: 9. April 04 Eksamenstid: kl.: 9:00 til kl.: 3:00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Ikke-kummuniserende kalkulator.
DetaljerINF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
DetaljerLaboratorieøving 1 i TFE Kapasitans
Laboratorieøving i TFE420 - Kapasitans 20. februar 207 Sammendrag Vi skal benytte en parallelplatekondensator med justerbart gap til å studere kapasitans. Oppgavene i forarbeidet beskrevet nedenfor må
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Fredag 7.juni 23 5 klokketimer TLM3- / LM5M- Matematikk Klasse(r): EL FEN Studiepoeng:
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.
UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent
DetaljerTFE4101 Vår 2016. Løsningsforslag Øving 3. 1 Teorispørsmål. (20 poeng)
TFE411 Vår 216 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon Løsningsforslag Øving 3 1 Teorispørsmål. (2 poeng) a) Beskriv følgende med egne ord: Nodespenningsmetoden.
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Lørdag 5. juni Tid. Kl LØSNINGSFORSLAG
Side 1 av 15 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Bjørn B. Larsen 73 59 44 93 / 902 08 317 (Digitaldel) Ingulf Helland
DetaljerUKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s kap. 16, s
UKE 5 Kondensatorer, kap. 2, s. 364-382 R kretser, kap. 3, s. 389-43 Frekvensfilter, kap. 5, s. 462-500 kap. 6, s. 50-528 Kondensator Lindem 22. jan. 202 Kondensator (apacitor) er en komponent som kan
DetaljerOnsdag isolator => I=0
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2008, uke 13 Onsdag 26.03.08 RC-kretser [FGT 27.5; YF 26.4; TM 25.6; AF Note 25.1; LHL 22.4; DJG Problem 7.2] Rommet mellom de
DetaljerThéveninmotstanden finnes ved å måle kortslutningsstrømmen (se figuren under).
Oppgave 1 (10 %) a) Kirchoffs spenningslov i node 1 gir følgende ligning 72 12 24 30 hvor to av strømmene er definert ut av noden, mens strømmen fra strømkilden går inn i noden. 2 72 720 Løser med hensyn
Detaljer7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER
78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-
DetaljerØving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)
DetaljerINF1411 Obligatorisk oppgave nr. 2
INF1411 Obligatorisk oppgave nr. 2 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Gruppenummer: Informasjon og orientering Alle obligatoriske oppgaver ved
DetaljerEnkle kretser med kapasitans og spole- bruk av datalogging.
Laboratorieøvelse i FY3-Elektrisitet og magnetisme Vår Fysisk Institutt, NTNU Enkle kretser med kapasitans og spole- bruk av datalogging. Oppgave -Spenning i krets a: Mål inngangsspenningen og spenningsfallet
DetaljerBølgeledere. Figur 1: Eksempler på bølgeledere. (a) parallell to-leder (b) koaksial (c) hul rektangulær (d) hul sirkulær (e) hul, generell form
Bølgeledere Vi skal se hvordan elektromagnetiske bølger forplanter seg gjennom såkalte bølgeledere. Eksempel på bølgeledere vi kjenner fra tidligere som transportrerer elektromagnetiske bølger er fiberoptiske
DetaljerMandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.
Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;
DetaljerPrøveeksamen 1. Elektronikk 8.feb. 2010. Løsningsforslag
Prøveeksamen 1 Elektronikk 8.feb. 2010 Løsningsforslag OPPGAVE 1 a) I koplingen til venstre ovenfor er u I et sinusformet signal med moderat frekvens og effektivverdi på 6,3V. Kretsen er en negativ toppverdikrets,
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider
DetaljerEn ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme.
7. EFFEK YER OG ARBED VEKSELSRØM 1 7. EFFEK YER OG ARBED VEKSELSRØM AKV EFFEK OG ARBED EN DEELL RESSANS En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. Det er bare
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
DetaljerTMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte
TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der
DetaljerFYS1210. Repetisjon 2 11/05/2015. Bipolar Junction Transistor (BJT)
FYS1210 Repetisjon 2 11/05/2015 Bipolar Junction Transistor (BJT) Sentralt: Forsterkning Forsterkning er et forhold mellom inngang og utgang. 1. Spenningsforsterkning: 2. Strømforsterkning: 3. Effektforsterkning
DetaljerForelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive
DetaljerNORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi Løsningsforslag til eksamen i FYS35, ELEKTROMAGNETISME, høst 004. (med forbehold om feil) Oppgave a) Dersom vi hadde hatt magnetiske
DetaljerEksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK. Fredag 25. mai Tid. Kl LØSNINGSFORSLAG
Side 1 av 17 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE-A 3H HiST-AFT-EDT Øving 7; løysing Oppgave Kretsen viser en reléspole med induktans L = mh. Total resistans i kretsen er R = Ω. For å unngå at det dannes gnister når bryteren åpnes,
DetaljerEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
DetaljerForelesning nr.14 INF 1410
Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet
DetaljerLØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 10; godkjenning øvingsdag veke 9 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt
DetaljerLøsningsforslag eksamen inf 1410 våren 2009
Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å
DetaljerFYS1210 Løsningsforslag Eksamen V2018
FYS1210 Løsningsforslag Eksamen V2018 Morgan Kjølerbakken Oppgave 1 Kondensatorer og filtre (totalt 5 poeng) 1 a. Beskrivelse av hvordan kondensatoren lades opp er gitt av differensial likningen V = 1
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C. 1volt
Kondensator - apacitor Lindem. mai 00 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi si
DetaljerFYS Elektronikk med prosjektoppgaver Vår Løsningsforslag uke 9
FYS1210 - Elektronikk med prosjektoppgaver Vår 2016 Løsningsforslag uke 9 Innhold 20.4 Forsterkerekvivalent........................ 1 20.6 Forsterkerekvivalent........................ 1 20.8 Forsterkerekvivalent........................
DetaljerOppgave 1 (30%) SVAR: R_ekv = 14*R/15 0,93 R L_ekv = 28*L/15 1,87 L
Oppgave 1 (3%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen på denne. Reduser
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
Detaljer7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
DetaljerFjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd med dempningskoeffisient b til en harmonisk oscillator.
Oppgave 1 a) Ei ideell fjær har fjærkonstant k = 2.60 10 3 [N/m]. Finn hvilken kraft en må bruke for å trykke sammen denne fjæra 0.15 [m]. Fjæra i a) kobles sammen med massen m = 100 [kg] og et dempeledd
DetaljerEKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK
Side 1 av 13 INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON EKSAMEN I FAG TFE4101 KRETS- OG DIGITALTEKNIKK Faglig kontakt: Peter Svensson (1 3.5) / Kjetil Svarstad (3.6 4) Tlf.: 995 72 470 / 458 54 333
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerKandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn
Side 1 Høgskolen i Oslo Avdelingfor ingeniørutdanning Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Les igjennom ~ oppgaver før du begynner
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerForelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer
Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon
DetaljerForelesning nr.2 INF 1411 Elektroniske systemer. Effekt, serielle kretser og Kirchhoffs spenningslov
Forelesning nr.2 INF 1411 Elektroniske systemer Effekt, serielle kretser og Kirchhoffs spenningslov Dagens temaer Sammenheng mellom strøm, spenning, energi og effekt Strøm og resistans i serielle kretser
DetaljerLøsningsforslag til underveiseksamen i MAT 1100
Løsningsforslag til underveiseksamen i MAT 00 Dato: Tirsdag /0, 00 Tid: Kl. 9.00-.00 Vedlegg: Formelsamling Tillatte hjelpemidler: Ingen Oppgavesettet er på sider Eksamen består av 0 spørsmål. De 0 første
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Torsdag 3.. 5 klokketimer TALM3-A / ALM5M-A Matematikk
DetaljerKondensator - Capacitor. Kondensator - en komponent som kan lagre elektrisk ladning. Symbol. Kapasitet, C = 1volt
Kondensator - apacitor Lindem jan.. 008 Kondensator - en komponent som kan lagre elektrisk ladning. Symbol Kapasiteten ( - capacity ) til en kondensator måles i Farad. Som en teknisk definisjon kan vi
DetaljerLØSNINGSFORSLAG KRETSDEL
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
DetaljerLØSNINGSFORSLAG KRETSDEL
NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317 Eksamen
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Kontaktperson(adm.)(fylles ut ved behov kun ved
DetaljerFYS1120 Elektromagnetisme, Oppgavesett 11
FYS0 Elektromagnetisme, Oppgavesett 5. november 06 I FYS0-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som blir gitt
Detaljer8.3 TREFASET TREKANTKOPLING ASYMMETRI MED RESISTANS, SPOLE OG KONDENSATOR
8. TREKANTKOPNG ASYMMETR MED RESSTANS, SPOE OG KONDENSATOR 8. TREFASET TREKANTKOPNG ASYMMETR MED RESSTANS, SPOE OG KONDENSATOR AMBDA () METODEN for å løse asymmetrisk krets. Skjevbelastning på et «stivt
DetaljerMandag Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12
nstitutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke12 Mandag 19.03.07 Likestrømkretser [FGT 27; YF 26; TM 25; AF 24.7; LHL 22] Eksempel: lommelykt + a d b c + m Likespenningskilde
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
Detaljergrunnlaget for hele elektroteknikken. På litt mer generell form ser den slik ut:
HØGKOLEN AGDER Fakultet for teknologi Elkraftteknikk 1, løsningsforslag øving 4, høst 004 Oppgave 1 Faradays lov er: dλ e dt Den sier at den induserte spenningen i en spole er lik den tidsderiverte av
DetaljerForelesning nr.4 IN 1080 Mekatronikk. Vekselstrøm Kondensatorer
Forelesning nr.4 IN 1080 Mekatronikk Vekselstrøm Kondensatorer Dagens temaer Mer om Thévenins og Nortons teoremer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser
DetaljerCase: Analyse av passive elektriske filtre
HØGSKOEN I SØR-TRØNDEAG AVDEING FOR TEKNOOGI PROGRAM FOR EEKTRO- OG DATATEKNIKK N7004 TRONDHEIM Telefon jobb: 735 59584 Mobil: 911 77 898 kare.bjorvik@hist.no http://www.edt.hist.no/ Kåre Bjørvik, 15.
DetaljerFelt i naturen, skalar- og vektorfelt, skalering
Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir
DetaljerEksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010
NTNU Institutt for Fysikk Eksamen FY0001 Brukerkurs i fysikk Torsdag 3. juni 2010 Kontakt under eksamen: Tor Nordam Telefon: 47022879 / 73593648 Eksamenstid: 4 timer (09.00-13.00) Hjelpemidler: Tabeller
DetaljerFelt i naturen, skalar- og vektorfelt, skalering
Kapittel 1 Felt i naturen, skalar- og vektorfelt, skalering Oppgave 1 To vektorer u og v er parallelle hvis vi kan skrive u = cv, der c er en skalar. 2a 1 6 b = c 1 4 b 3a a2+3c+b 16 14 c = 0. Dette gir
DetaljerLøsningsforslag til ukeoppgave 10
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 10 Oppgave 17.15 Tegn figur og bruk Kirchhoffs 1. lov for å finne strømmene. Vi begynner med I 3 : Mot forgreningspunktet kommer det to strømmer,
DetaljerLøsningsforslag til øving 4
1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt
DetaljerI C Q R. Øving 11. Institutt for fysikk, NTNU TFY4155/FY1003: Elektromagnetisme
nstitutt for fsikk, NTNU TFY4155/FY1003: Elektromagnetisme Vår 2009 Øving 11 Veiledning: Mandag 23. mars og fredag 27. mars nnleveringsfrist: Fredag 27. mars Oppgave 1 nnledning (dvs vi rekapitulerer fra
DetaljerLab 1 Innføring i simuleringsprogrammet PSpice
Universitetet i Oslo FYS1210 Elektronikk med prosjektoppgave Lab 1 Innføring i simuleringsprogrammet PSpice Sindre Rannem Bilden 10. februar 2016 Labdag: Tirsdag Labgruppe: 3 Sindre Rannem Bilden 1 Oppgave
DetaljerAntall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET
Høgskoleni Østfold 1 EKSAMENSOPPGAVE. Kontinuasjonseksamen Fag: IRE10513Elektriskekretser Lærere: Arne Johan Østenby, Even Arntsen Grupper: El E og ElEy Dato: 2015-12-17 Tid: 9-13 Antall oppgavesider:t4
Detaljery = Bx + C innsettes differensiallikningen for å bestemme B:
ØGSKOEN I SØ-TØNDEAG Avdeling for teknologi rogram for elektro- og datateknikk 74 TONDEIM TAM 3 Matematikk Anthon Croft, obert Davison, Martin argreaves, James Flint: Engineering mathematics, 4.utgave
DetaljerFasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET
DetaljerLab 3: AC og filtere - Del 1
Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator
DetaljerLøsningsforslag til øving 2
FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2010. Løsningsforslag til øving 2 a) Kirchhoffs spenningsregel sier at summen av alle potensialendringer rundt en lukket krets skal være lik
DetaljerMotstand, kondensator og spole
Oppgave 3 Lab i TFY4108 Motstand, kondensator og spole Institutt for fysikk, NTNU Side 2 av 15 1. Innledning Motstander, kondensatorer og spoler er de grunnleggende elementene i elektriske kretser. Med
DetaljerElektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 2; løysing Oppgave 1 Oppgaver fra læreboka: a) Kapittel 5 Oppg. 3 (fargekoder for motstander finner du på side 78), oppg. 12 og *41 (mye feil i fasit
Detaljer