Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1.

Størrelse: px
Begynne med side:

Download "Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1."

Transkript

1 FYS2130 Våren 2008 Noen presiseringer mhp Diskret Fourier Transform. Relevant for oblig 1. Vi har på forelesning gått gjennom foldingsfenomenet ved diskret Fourier transform, men ikke vært pinlig nøyaktige med detaljer. Det viser seg imidlertid å være nødvendig med pinlig nøyaktighet for å få helt korrekte resultater ved oblig 1. De som nå er ferdig med obligen behøver ikke å gjøre om noe som helst som følge av dette notatet. For de som fortsatt holder på med oppgave 2 og som kanskje ikke har fått med seg detaljer om speiling tidligere (f.eks. dersom de ikke var på de aktuelle forelesningene), legger vi nå ut dette notatet med tips og info om de pinlig nøyaktige detaljene som finnes. La oss starte med det grunnleggende. Vi har et signal, som f.eks. kan være posisjonen til et lodd som henger i en fjær og svinger opp og ned. Funksjonen vi da har sier vi er et tidsbilde. Vi sampler posisjonen i et visst antall N diskrete tidspunkt (like langt mellom hvert tidspunkt vi måler/sampler posisjonen). I figur 1 er det gitt et eksempel på et slikt tidsbilde. Det er trukket linjer mellom hvert målepunkt slik at kurven ser glatt ut. Men i virkeligheten er materialet som ligger bak figuren en tallrekke som i dette tilfellet består av 128 tall. Som vi ser av figuren varierer tallene mellom +3 og -3. Tallrekken har ikke selv noe informasjon om ved hvilken tid målingene ble foretatt. Vi må derfor selv holde regnskap med dette. I vårt tilfelle foretok vi 128 målinger (samplinger) på 6.28 sekund. Da er samplingsfrekvensen 128/6.28 Hz = 2 Hz. 3 Opprinnelig funksjon (tidsbilde) Utslag (f.eks. i meter) Tid (sek) Figur 1: En funksjon som viser hvordan en fysisk størrelse varierer med tiden. Vi kaller dette for et tidsbilde. Vi skal nå foreta en diskret Fourier transform av signalet vårt, det vil si våre 128 måleverdier. Hensikten er å finne hvilke frekvenskomponenter som finnes i signalet vårt. Vi ser at vi har et usedvanlig enkelt signal, nemlig en ren sinusfunksjon som har tilsynelatende nøyaktig tre hele perioder innenfor den tiden vi foretok målingene. Men vi ser også at signalet starter litt over null og så beveger seg nedover. Det betyr at vi ikke kan lage dette signalet ved bare en enkel sinus eller en enkel cosinus som starter i null. Signalet ligger nærmest en negativ sinus, men starter litt over null slik at den også må ha et innslag av en positiv cosinus. Med andre ord: Signalet har en fase relativt til tidspunktet der vi sier at tiden er null.

2 Vi foretar så en diskret Fourier transform etter de formlene som er gitt på forelesning og (indirekte) gjennom eksempelprogrammer lagt ut i forbindelse med obligen. Resultatet fra Fouriertransformasjonen er gitt i figur Fourier komponenter (cos rød, sin blå) Cos- og sin-komponenter i frekvensspekteret - - N/2 = 64 N= Arrayelement nummer (fra 1 til N) Figur 2: Etter en Fourier transform får vi et frekvensbilde av dataene våre. Speiling forekommer, mer om dette i teksten. Resultatet består av to rekker med tall: En an-array som gir cosinusbidragene og en bn-array som gir sinusbidragene. I figuren er disse angitt med hhv rødt og blått. Vi ser at vi finner en topp nær 1 (første element i arrayen har indeks 1 i et Matlab-program) en annen topp nær N = 128 (enden av tallrekkene). Vi ser at sinusbidraget er om lag -1.4, mens cosinus-bidraget er på ca +0.6 i den nedre enden av x-aksen og hhv +1.4 og +0.6 i den øvre. Vi kan vise at vi har en folding (også kalt speiling ) rundt midten av x-aksen. Og generelt vil cos-leddene speiles uten å endre fortegn, mens sin-leddene speiles og samtidig bytter fortegn. Vi ser at det er samsvar med hva vi så av tidsbildet, at det lignet mest på en minus-sinus med litt innslag av en pluss-cosinus. Og det er akkurat hva vi fant i Fourier-transformen. Men dersom vi ser på størrelsen av disse komponentene og sammenholder dem med det opprinnelige tidsbildet, så finner vi ikke noe 1.4 eller 0.6 noe sted der. Tvert om er amplituden i tidsbildet 3.0. Dersom vi plasserer an og bn-verdiene i et plan hvor an-verdiene legges langs x-aksen og bn-verdiene langs y-aksen, finner vi noe interessant. I figur 3 har vi gjort dette for den frekvensen som gir topper i frekvensdiagrammet (lest ut nøyaktig). Vi ser da at dersom vi anser an og bn som koordinater til en vektor i planet, vil vektoren ha lengden dvs 1.5, hvilket er akkurat halvparten av amplituden i tidsbildet. Og dersom vi legger til toppen i frekvensspekteret nær øvre ytterkant, får vi et nytt bidrag lik 1.5. Tilsammen blir dette nøyaktig lik amplituden til tidssignalet, nemlig bn +435 Lengde vektor: an Figur 3: Hvordan vi finner amplituden til hver enkelt frekvenskomponent.

3 Vi ser videre at vi kan bruke an og bn for å bestemme vinkelen f, for vi har: f = atan(bn/an) * 180 / pi ; f = o (gir vinkel i grader) Vi kan med andre ord ut fra frekvensspekteret si at funksjonen som fantes i tidbildet må kunne skrives som f (t) = 3.0 * cos(w*t + f); Alternativt kunne vi ha skrevet: f(t) = 2.0 * an(n1)*cos(w*t) + 2.0*bn(n1)*sin(w*t); Her er n1 indeksen i frekvensbildet hvor den nedre toppen lå. Vi har altså funnet amplituden og fasen, eller komponentene an og bn, men foreløpig har vi ikke gått nøyaktig inn på hvordan man leser av frekvenser i frekvensspekteret. Det får vi gjøre nå. PS: Dersom du har bruk for å regne ut arctangens i Matlab og du ønsker å få svaret angitt for hele +p til -p, bør du bruke atan2(bn,an). Funksjonen atan(bn/an) gir bare svar i intervallet +p/2 til -p/2. Detaljer angående foldingen Fourierspekteret som vi også kaller frekvensspekteret, er satt sammen på en ganske spesiell måte. La oss utforske dette ved å bruke noen veldefinerte signaler i tidsbildet. Det aller enkleste tidsbildet vi kan ha, er at signalet har en konstant verdi hele tiden vi sampler. Dette er vist i figur 4, både i form av tidsbildet og frekvensbildet Tidsbildet 1.5 Frekvensbildets første punkter Figur 4: Enkleste signal i tidsbildet: En konstant verdi hele tiden. Det gir bare utslag i aller første element i frekvensspekteret. Enhet langs tidsaksen er sek, mens vi har erstattet frekvensaksen med tall som bare angir indeksen i arrayen som inneholder frekvensspekteret. Denne forenklingen gjelder også videre figurer. Cos-bidragene (an) er angitt med rødt, sin-bidragene (bn) blått. Egentlig er disse figurene basert på et endelig antall punkter (de som er markert med sirkler i figuren til høyre). Vi trekker imidlertid i fortsettelsen bare rette linjer mellom punktene og sløyfer å tegne inn hvert enkelt punkt som en skive. Vi ser at det aller første elementet i frekvensspekteret inneholder informasjon om gjennomsnittsverdien av alle punktene i tidsbildet. Denne informasjonen ligger bare i cos-leddet an. Sin-leddet bn skal her alltid være lik null. Dette er et krav som vi må ta hensyn til når vi manipulerer på frekvensspekteret.

4 Vi ser forøvrig at det er direkte samsvar mellom gjennomsnittsverdien i tidsbildet og verdien i frekvensspekterets første punkt (1.5 begge deler her). Dette skyldes at det første punktet i et frekvensspekter IKKE blir speilet om midten når alt kommer til alt. Det nest enkleste signalet man kan tenke seg i tidsbildet er en sinus som har nøyaktig lik én periode i løpet av den tiden vi sampler signalet. Dette tilfellet er vist i figur 5 sammen med det tilhørende frekvensspekteret Figur 5: Til venstre er tidsbildet av en harmonisk svingning med nøyaktig en periode innenfor den tiden man sampler. Frekvensspekteret til dette signalet er gitt til høyre; den nedre del av frekvensspekteret og den øvre delen hver for seg for å vise detaljer. Vi ser at vi har omtrent en ren cos-funksjon i tidsbildet, men at det er en liten faseforskyvning som gjør av vi starter litt etter toppen av cosinusen. Dette tilsvarer at vi adderer et lite bidrag fra en negativ sinus. Det ser vi igjen i frekvensspekteret ved at cos-bidraget (an) dominerer, men at det er litt sinusbidrag også (bn, blå). Vi ser at signal med én periode i løpet av samplingstiden gir bidrag i frekvensspekterets andre element (an(2) og bn(2)). Men speilingen gjør at vi også får bidrag i siste del av spekteret. Men merk her at dette bidraget kommer som siste element, dvs i vårt tilfelle med bare 128 punkter i tids- og frekvensbildet, finner vi dette bidraget som an(n) og bn(n) hvor N = 128. Dersom vi nå forsøker samme analyse med et tidssignal som har nøyaktig seks fulle perioder innenfor samplingstiden, får vi resultatene vist i figur Figur 6: Til venstre er tidsbildet av en harmonisk svingning med nøyaktig seks perioder innenfor den tiden man sampler. Frekvensspekteret til dette signalet er gitt til høyre; den nedre del av frekvensspekteret og den øvre delen hver for seg for å vise detaljer. Vi ser at vi i dette tilfellet får utslag i frekvensspekteret på syvende (seks pluss 1) element nedenfra og sjette element ovenfra (element = element 123).

5 Vi aner nå hvordan dette utvikler seg, men må teste hva som skjer nær halve samplingsfrekvensen, det vil si for signaler i tidsbildet som har nesten N/2 hele perioder innenfor samplingstiden, hvor N som før er antall samplinger som er foretatt (128 i vårt tilfelle). I figur 7 er det vist frekvensspekteret for to ulike signaler. Tidsbildet som var utgangspunktet for frekvensbildet til venstre bestod av 63 (dvs N/2-1) hele perioder innen samplingsiden, mens tidsbildet bak frekvensbildet til høyre inneholdt 64 (dvs N/2) hele perioder Figur 7: Frekvensspekteret til et signal hvor det var nøyaktig 63 = N/2-1 hele perioder innenfor samplingstiden til venstre, og 64 = N/2 perioder for signalet bak kurven til høyre. Vi ser her at alt fungerer som vi forventet opp til N/2-1 hele perioder innenfor samplingstiden. Vi har separate topper for frekvens og speilfrekvens, og vi ser at cos-bidragene (an, røde) speiles og beholder fortegn, mens sin-bidragene (bn, blå) speiles og skifter fortegn. MEN vi ser at speilingen skjer rundt halve samplingsfrekvensen, men da er indeksen N/2+1!!! I den høyre delen av figuren ser vi hva som skjer når vi faktisk har et signal som har nøyaktig halve samplingsfrekvensen, det vil si at det er nøyaktig halvparten så mange hele perioder innenfor samplingsitden som antall punkter man sampler. I det tilfellet legges frekvens og speilfrekvens oppå hverandre slik at cos-leddet (an) blir dobbelt så stort som ellers, mens sin-signalene (bn, som var motsatt like store) adderes sammen til null. Dette er det andre spesielle punktet i et frekvensspekter hvor det er slik at vi krever at an-leddet kan være forskjellig fra null, mens bn-leddet må være null. Og dette punktet skal ikke speiles (det er sitt eget speilbilde). Dette er igjen en detalj vi må ta hensyn til når vi manipulerer i frekvensspekteret i obligen vår dersom vi skal gjøre ting helt korrekt. Oppsummering Vi har da sett følgenede: Første spesielle punkt i frekvensspekteret: an(1) gir gjennomsnittsverdien for tidsbildet direkte bn(1) skal alltid være null Andre spesielle punkt i frekvensspekteret: an(n/2+1) gir amplituden til et signal som har eksakt lik frekvens som halve samplingsfrekvensen. bn(n/2+1) skal alltid være lik null.

6 Verken {an(1),bn(1)} eller {an(n/2+1),bn(n/2+1)} skal speiles. De øvrige an(n)- og bn(n)-verdier gir informasjon om amplituder og faser for frekvenser mellom null (null ikke inkludert) og halve samplingsfrekvensen (halve samplingsfrekvensen ikke inkludert). Frekvensene til et punkt n langs frekvensaksen er lik (n-1) ganger Df, hvor Df er frekvensoppløsningen Df = 1/T, hvor T er den totale samplingstiden (ikke bland sammen med periodetiden til signalet). Dette gjelder bare opp til halve samplingsfrekvensen. Speilfrekvensen til et punkt n (hvor n>1, n<n/2+1) i frekvensspekteret finnes ved indeksen N+2-n. Amplituden til en bestemt frekvens finnes ved bruk av Pythagoras: Ampl(n) = sqrt( an(n)^2 + bn(n)^2) + sqrt(an(n+2-n) + bn(n+2-n)); Men pga symmetrien ved speiling er dette det samme som: Ampl(n) = 2.0*sqrt( an(n)^2 + bn(n)^2); I begge disse to siste tilfellene gjelder at n>1 og n<n/2+1. Fasen til en frekvenskomponent med indeks n er gitt ved: fase(n) = atan2(bn(n), an(n)); (i radianer, og fase relativt til en cos-beskrivelse) Det gjelder samme krav til n som ovenfor for at dette skal være tilfelle. Vi kan ikke snakke om fase ved null frekvens (gjennomsnittverdien, indeks n=1), og heller ikke ved halve samplingsfrekvensen (indeks n=n/2+1). Generelt ser vi at informasjonen i frekvensspekteret for indekser større enn N/2+1 allerede er inkludert i informasjonen som ligger i spekteret ved de lavere indeksene. Vi kan derfor effektivisere beregningene i forhold til hvordan vårt eksempelprogram er satt opp, men vi har valgt å gjøre ting på vår måte for å få fram den egentlige sammenhengen som Fourier transform gir før vi eventuelt utnytter de symmetriene som finnes. Vi ser at dersom vi forenkler all informasjon i et frekvensspekter så langt vi kan, ender vi opp med å bruke nøyaktig N tall, forutsatt at tidsbildet ble beskrevet med N tall. I vår omfattende beskrivelse hadde vi N cos-ledd (an-er) og nye N sin-ledd (bn-er), tilsammen 2N tall. Men når vi fjerner info hvor speiling finnes, samt fjerner bn(1) som alltid er lik null, og fjerner bn(n/2+1) som også alltid er null, sitter vi igjen med nøyaktig N punkter. Relasjon til obligens 2c Dersom man speiler rundt N/2 i stedet for rundt N/2+1 i oppgave 2c i obligen, og ellers ikke tar hensyn til detaljene i dette skrivet, vil tidsbildet for lyden etter at man har randomisert fasene for lydfil2, ha et minimum på midten. Dette minimumet skal forsvinne dersom man speiler rundt N/2+1 og følger reglene for indeks n=1 og n=n/2+1 slik det er gjort rede for i dette notatet.

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-213 Lars Kristian Henriksen UiO 18. februar 215 Diskusjonsoppgaver: Oppgave 1 Hvordan kan vi ved å ta utgangspunkt i et frekvensspekter lage en syntstisk lyd? Vil en slik

Detaljer

Oblig 1 FYS2130. Elling Hauge-Iversen

Oblig 1 FYS2130. Elling Hauge-Iversen Oblig 1 FYS2130 Elling Hauge-Iversen February 9, 2009 Oppgave 1 For å estimere kvalitetsfaktoren til basilarmembranen for ulike frekvenser har jeg laget et program som generer et rent sinussignal. Ideen

Detaljer

Kapittel 2. Fourier analyse. 2.1 Fourier transform*

Kapittel 2. Fourier analyse. 2.1 Fourier transform* Kapittel 2 Fourier analyse [Copyright for kapittelet, tekst og figurer: Arnt Inge Vistnes.] 2.1 Fourier transform* Vi kan fremstille svingefenomener, slik vi hittil har gjort, ved å angi en tidsvariabel

Detaljer

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim

FYS2130 Svingninger og bølger, Obligatorisk oppgave C. Nicolai Kristen Solheim FYS213 Svingninger og bølger, Obligatorisk oppgave C Nicolai Kristen Solheim FYS213 Svingninger og bølger Ukeoppgave, sett C Nicolai Kristen Solheim Ukeoppgave, sett C Oppgavetype 1 a) Læreboken beskriver

Detaljer

0.1 Morlet wavelets i FYS2130-notasjon (v )

0.1 Morlet wavelets i FYS2130-notasjon (v ) 0.1 Morlet wavelets i FYS2130-notasjon (v 28.04.11) I wavelet-formalismen opererer vi ofte med en moder-wavelet som trekkes ut ved hjelp av en skaleringsfaktor for å lage såkalt wavelet-døtre. Dette er

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

Oblig 1 FYS2130 våren 2008

Oblig 1 FYS2130 våren 2008 1 Oblig 1 FYS2130 våren 2008 Leveringsfrist torsdag 14. februar 2008 kl 1400. Besvarelsen kan leveres i papirformat på ekspedisjonskontoret i Fysikkbygget (lever den da til Gyri og be henne registrere

Detaljer

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A : Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

UTVIDET TEST AV PROGRAM

UTVIDET TEST AV PROGRAM Tid : 16.2.99, kl. 153 Til : Ole Meyer og prøvenemda Fra : Anders Sak : Fagprøve våren 1999, utvidet test av program Denne oppgaven var tre-delt. UTVIDET TEST AV PROGRAM Først skulle jeg påtrykke AD-kortet

Detaljer

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004 Repetisjon: Diskret vs kontinuerlig Forelesning,.februar 4 Kap. 4.-4. i læreboken. Anta variabelen t slik at a < t < b, (a, b) R sampling og rekonstruksjon, i tids- og frekvensdomenet Nyquist-Shannons

Detaljer

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover.

Lyd. Litt praktisk informasjon. Litt fysikk. Lyd som en funksjon av tid. Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lyd Hva er lyd? Sinuser, frekvenser, tidssignaler Hvordan representere lydsignaler matematisk? Litt praktisk informasjon Husk øretelefoner på øvelsestimene denne uken og en stund framover. Lydeksemplene

Detaljer

FYS2130 OBLIG 1 Anders Hafreager

FYS2130 OBLIG 1 Anders Hafreager FYS23 OBLIG Anders Hafreager 28..29 28..29 OPPGAVE I denne oppgaven skal jeg prøve å bestemme kvalitetsfaktoren (Q-verdien) for svingehårene i basillarmembranen som ligger i øret. Jeg skal gjøre dette

Detaljer

5. Fourieranalyse. 5.1 Innledende eksempler

5. Fourieranalyse. 5.1 Innledende eksempler 5. Fourieranalyse Fouriertransformasjon og fourieranalyse har klare likhetstrekk med middelalderens bruk av episykler for å beregne hvordan planeter og sola beveget seg i forhold til hverandre. Det forteller

Detaljer

TMA Kræsjkurs i Matlab. Oppgavesett 2/3

TMA Kræsjkurs i Matlab. Oppgavesett 2/3 TMA4123 - Kræsjkurs i Matlab. Oppgavesett 2/3 28.02.2013 Oppgave 0: Bruk av fftshift og ifftshift Når du bruker fft i Matlab flyttes frekvensene over midten av spekteret, slik at får du ut frekvensdata

Detaljer

Kapittel 4. Fourieranalyse

Kapittel 4. Fourieranalyse Kapittel 4 Fourieranalyse I dette kapitlet skal vi ta for oss en meget anvendelig metode for å studere periodisitet i en funksjon eller et signal. Vi kommer nesten utelukkende til å foreta fouriertransformasjon

Detaljer

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. nesten utelukkende til å foreta fouriertransformasjon

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. nesten utelukkende til å foreta fouriertransformasjon Kapittel 4 Fourieranalyse I dette kapitlet skal vi ta for oss en meget anvendelig metode for å studere periodisitet i en funksjon eller et signal. Vi kommer Dummy tekst for å spenne ut et åpent felt for

Detaljer

Fouriersyntese av lyd

Fouriersyntese av lyd Fouriersyntese av lyd Hensikt Laboppsettet vist p a bildet er kjent under navnet Fouriersyntese av lyd. Hensikten med oppsettet er a erfare hvordan ulike kombinasjoner av en grunntone og dens overharmoniske

Detaljer

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 4 FYS-2130. Lars Kristian Henriksen UiO Obligatorisk oppgave nr 4 FYS-2130 Lars Kristian Henriksen UiO 23. februar 2015 Diskusjonsoppgaver: 3 Ved tordenvær ser vi oftest lynet før vi hører tordenen. Forklar dette. Det finnes en enkel regel

Detaljer

Kapittel 4. Fourieranalyse. I dette kapitlet skal vi ta for oss en meget Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg.

Kapittel 4. Fourieranalyse. I dette kapitlet skal vi ta for oss en meget Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. Kapittel 4 Fourieranalyse I dette kapitlet skal vi ta for oss en meget Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. anvendelig metode for å studere periodisitet i en funksjon eller

Detaljer

Svingninger og Bølger Oblig1 Matthew Terje Aadne

Svingninger og Bølger Oblig1 Matthew Terje Aadne Svingninger og Bølger Oblig1 Matthew Terje Aadne Oppgave 1) Ved å ha den initielle frekvensen f0 = 3000, og en ny nærliggende frekvens f1, fant jeg at ejg kunne høre forskjell mellom dem når f1=3002. Så

Detaljer

Løsningsforslag til øving 4

Løsningsforslag til øving 4 1 FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 01. Løsningsforslag til øving 4 Oppgave 1 a) D = D 0 [ cos (kx ωt) + sin (kx ωt) ] 1/ = D 0 for alle x og t. Med andre ord, vi har overalt

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.

Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. 1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Oblig 3 i FYS mars 2009

Oblig 3 i FYS mars 2009 Oblig 3 i FYS230 2. mars 2009 Innledning [Copyright 2009: D.S.Amundsen og A.I.Vistnes.] David Skålid Amundsen har laget hovedskissen til denne obligen i en sommerjobb han utførte for oss sommeren 2008.

Detaljer

Øving 6, løsningsforslag

Øving 6, løsningsforslag Inst. for teknisk kybernetikk Fag TELE2001 Reguleringsteknikk Øving 6, løsningsforslag Revidert sist Fredrik Dessen 2017-11-08 I løsningsforslaget til øving 2, oppgave 2.3 finner vi overføringsfunksjonene

Detaljer

Løsningsforslag til ukeoppgave 12

Løsningsforslag til ukeoppgave 12 Oppgaver FYS1001 Vår 018 1 Løsningsforslag til ukeoppgave 1 Oppgave 16.0 Loddet gjør 0 svingninger på 15 s. Frekvensen er da f = 1/T = 1,3 T = 15 s 0 = 0, 75 s Oppgave 16.05 a) Det tar et døgn for jorda

Detaljer

Utkast til: Løsningsforslag til eksamen i. Ingeniørfaglig yrkesutøvelse og arbeidsmetoder. 18.des for oppgave 1, 2 og 3

Utkast til: Løsningsforslag til eksamen i. Ingeniørfaglig yrkesutøvelse og arbeidsmetoder. 18.des for oppgave 1, 2 og 3 Utkast til: Løsningsforslag til eksamen i Ingeniørfaglig yrkesutøvelse og arbeidsmetoder 18.des 2013 for oppgave 1, 2 og 3 Oppgave 1 (15%) Anta vi har en matrise: A = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):

Detaljer

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd.

Introduksjon til lyd. Det ytre øret. Fra lydbølger til nerveimpulser. INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd. Foreleser: INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010 LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel

Detaljer

MAT-INF 2360: Obligatorisk oppgave 1

MAT-INF 2360: Obligatorisk oppgave 1 6. februar, MAT-INF 36: Obligatorisk oppgave Oppgave I denne oppgaven skal vi sammenligne effektiviteten av FFT-algoritmen med en mer rett frem algoritme for DFT. Deloppgave a Lag en funksjon y=dftimpl(x)

Detaljer

Prosjektoppgave i FYS2130

Prosjektoppgave i FYS2130 1 Prosjektoppgave i FYS2130 30. april - 7. mai 2012 Prosjektoppgaven består av fem deler som det går an å jobbe på parallelt en del av tiden. I del 1 skal vi finne ut hvordan en mekanisk svingekrets responderer

Detaljer

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10)

INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) INF 1040 høsten 2009: Oppgavesett 8 Introduksjon til lyd (kapittel 9 og 10) Vi regner med at decibelskalaen og bruk av logaritmer kan by på enkelte problemer. Derfor en kort repetisjon: Absolutt lydintensitet:

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. c 1

Kapittel 4. Fourieranalyse. Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. c 1 Kapittel 4 Fourieranalyse I dette kapitlet skal vi ta for oss en meget anvendelig metode for å studere periodisitet Dummy tekst for å spenne ut et åpent felt for et førsteside-opplegg. i en funksjon eller

Detaljer

Digitalisering av lyd

Digitalisering av lyd Digitalisering av lyd Denne øvelsen er basert på materiale som Tore A. Danielsen utviklet som del av sin masteroppgave i fysikkdidaktikk. Arnt Inge Vistnes har også bidratt med ideer og diskusjoner. Hva

Detaljer

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling

Dagens mål. Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 INF Digital bildebehandling Dagens mål Det matematiske fundamentet til den diskrete Fourier-transformen Supplement til forelesning 8 IF2310 - Digital bildebehandling Ole Marius Hoel Rindal, slides av Andreas Kleppe Dagens mål Forstå

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

Uke 9: Diskret Fourier Transform, I

Uke 9: Diskret Fourier Transform, I Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling

Detaljer

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos. Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

INF Digital representasjon : Introduksjon til lyd

INF Digital representasjon : Introduksjon til lyd INF1040 - Digital representasjon 23.09.2009: Introduksjon til lyd Foreleser: Martin Giese Kontakt: martingi@ifi.uio.no, 22852737 Det blir en del stoff per forelesning Er det matematikk eller praktisk regning?

Detaljer

GeoGebraøvelser i geometri

GeoGebraøvelser i geometri GeoGebraøvelser i geometri av Peer Andersen Peer Andersen 2014 Innhold Innledning... 3 Øvelse 1. Figurer i GeoGebra... 4 Øvelse 2. Noen funksjoner i GeoGebra... 8 Øvelse 3. Omskrevet sirkelen til en trekant...

Detaljer

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO

Obligatorisk oppgave nr 1 FYS Lars Kristian Henriksen UiO Obligatorisk oppgave nr 1 FYS-2130 Lars Kristian Henriksen UiO 28. januar 2015 2 For at en kraft skal danne grunnlaget for svingninger, må det virke en kraft som til en hver tid virker inn mot likevektspunktet.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

Universitetet i Stavanger Institutt for petroleumsteknologi

Universitetet i Stavanger Institutt for petroleumsteknologi Universitetet i Stavanger Institutt for petroleumsteknologi Side 1 av 6 Faglig kontakt under eksamen: Professor Ingve Simonsen Telefon: 470 76 416 Eksamen i PET110 Geofysikk og brønnlogging Mar. 09, 2015

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Oppgave 1 Finner den z-transformerte for følgende pulstog:

Oppgave 1 Finner den z-transformerte for følgende pulstog: C:\Per\Fag\Styresys\SANNOV\10LØSØV3.wpd Fag SO507E Styresystemer HIST-AFT Feb 2010 PHv Løsning heimeøving 3 Sanntid Utleveres: Uke 7 Oppgave 1 Finner den z-transformerte for følgende pulstog: a) b) c)

Detaljer

10 6 (for λ 500 nm); minste størrelse av

10 6 (for λ 500 nm); minste størrelse av Sensorveiledning Eksamen FYS130 Oppgave 1 ( poeng) a) Brytningdeksen er forholdet mellom lyshastigheten i vakuum og lyshastigheten i mediet; siden lyshastigheten i et medium er alltid mindre enn i vakuum,

Detaljer

Kan vi forutse en pendels bevegelse, før vi har satt den i sving?

Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Gjør dette hjemme 6 #8 Kan vi forutse en pendels bevegelse, før vi har satt den i sving? Skrevet av: Kristian Sørnes Dette eksperimentet ser på hvordan man finner en matematisk formel fra et eksperiment,

Detaljer

Eksamen R2, Høst 2012, løsning

Eksamen R2, Høst 2012, løsning Eksamen R, Høst 0, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Deriver funksjonene a) cos f e Vi bruker produktregelen

Detaljer

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2

UTSETT EKSAMEN VÅREN 2006 SENSORTEORI. Klasse OM2 og KJK2 SJØKRIGSSKOLEN Lørdag 16.09.06 UTSETT EKSAMEN VÅREN 2006 Klasse OM2 og KJK2 Tillatt tid: 5 timer Hjelpemidler: Formelsamling Sensorteori KJK2 og OM2 Teknisk formelsamling Tabeller i fysikk for den videregående

Detaljer

Del 1. Totank minimum forstyrrelse

Del 1. Totank minimum forstyrrelse Inst. for teknisk kybernetikk Fag TELE2001 Reguleringsteknikk Ekstra øving 6 Revidert sist Fredrik Dessen 2017-11-08 Del 1. Totank minimum forstyrrelse Denne første delen tar for seg nøyaktig samme prosess

Detaljer

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato

6: Trigonometri. Formlikhet bør kanskje repeteres. Og Pytagoras læresetning. Se nettsidene! Oppgaver Innhold Dato Plan for hele året: - Kapittel 7: Mars - Kapittel 8: Mars/april 6: Trigonometri - Repetisjon: April/mai - Økter, prøver, prosjekter: Mai - juni Ordet geometri betyr egentlig jord- (geos) måling (metri).

Detaljer

Elektrisk potensial/potensiell energi

Elektrisk potensial/potensiell energi Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv.

En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv. 6.1 BEGREPER L SNSKRVE 1 6.1 BEGREPER L SNSKRVE il sinuskurven i figur 6.1.1 er det noen definisjoner som blir brukt i vekselstrømmen. Figur 6.1.1 (V) mid t (s) min Halvperiode Periode PERODE (s) En periode

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen

Detaljer

Prosjektoppgave FYS2130. Vår Innleveringsfrist: 09/ , 20 CEST

Prosjektoppgave FYS2130. Vår Innleveringsfrist: 09/ , 20 CEST Prosjektoppgave FYS2130 Vår 2017 Innleveringsfrist: 09/05-2017, 20 CEST L. B. N. Clausen Om prosjektet og rapporten Vi ønsker at arbeidet med prosjektoppgaven gir deg økt forståelse og innsikt i et fenomen

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd

Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd Løsningsforslag til kapittel 11 sampling, kvantisering og lagring av lyd Sampling og samplingsrate Hvis vi har et lydsignal som inneholder frekvenser fra 100 til 500 Hz, hvilken samplingsrate og samplingsintervall

Detaljer

Sampling, kvantisering og lagring av lyd

Sampling, kvantisering og lagring av lyd Litteratur : Temaer i dag: Neste uke : Sampling, kvantisering og lagring av lyd Cyganski kap 11-12 Merk: trykkfeilliste legges på web-siden Sampling av lyd Kvantisering av lyd Avspilling av samplet og

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 17.12.2014 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 14H Ingeniørfaglig yrkesutøving og arbeidsmetoder

Detaljer

TDT4105/TDT4110 Informasjonsteknologi grunnkurs:

TDT4105/TDT4110 Informasjonsteknologi grunnkurs: 1 TDT4105/TDT4110 Informasjonsteknologi grunnkurs: Uke 38 Digital representasjon, del 2 - Representasjon av lyd og bilder - Komprimering av data Rune Sætre satre@idi.ntnu.no 2 Digitalisering av lyd Et

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre.

Treleder kopling - Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Treleder kopling Tredleder kopling fordeler lednings resistansen i spenningsdeleren slik at de til en vis grad kanselerer hverandre. Dersom Pt100=R, vil treleder koplingen totalt kanselerere virkningen

Detaljer

Kanter, kanter, mange mangekanter. Introduksjon: Steg 1: Enkle firkanter. Sjekkliste. Skrevet av: Sigmund Hansen

Kanter, kanter, mange mangekanter. Introduksjon: Steg 1: Enkle firkanter. Sjekkliste. Skrevet av: Sigmund Hansen Kanter, kanter, mange mangekanter Skrevet av: Sigmund Hansen Kurs: Processing Tema: Tekstbasert, Animasjon Fag: Matematikk, Programmering, Kunst og håndverk Klassetrinn: 8.-10. klasse, Videregående skole

Detaljer

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene

Øving 4. a) Verifiser at en transversal bølge som forplanter seg langs x-aksen med utsving D med komponentene FY100/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 010. Veiledning: Tirsdag 1. og onsdag. september. Innleveringsfrist: Mandag 7. september kl 1:00. Øving 4 Oppgave 1 a) Verifiser at en transversal

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29 Kapittel. Algebra Algebra kalles populært for bokstavregning. Det er ikke mye algebra i Matematikk P-Y. Det viktigste er å kunne løse enkle likninger og regne med formler. Kapittel. Algebra Side 9 1. Forenkling

Detaljer

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org

Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA6526 16.05.2008. eksamensoppgaver.org Løsningsforslag for Eksamen i Matematikk 3MX - Privatister - AA656 16.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for eksamen i matematikke 3MX er gratis, og

Detaljer

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( ) INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Oblig3 - obligatorisk oppgave nr. 3 (av 3) i INF3350/4350

Oblig3 - obligatorisk oppgave nr. 3 (av 3) i INF3350/4350 Oblig3 - obligatorisk oppgave nr. 3 (av 3) i INF3350/4350 Levering av besvarelsen Besvarelse må leveres senest mandag 12. november kl 16.00. Send besvarelsen på epost til Lars Baumbusch (lars.o.baumbusch@rr-research.no).

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen

Detaljer

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7)

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7) TE6146 ignalbehandling 'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7),QWURGXNVMRQ,, Har tidligere sett på Fourier- og Z-transformene for diskrete følger. For følger av endelig varighet, er det mulig å utvikle

Detaljer

Oppgave 578. Tilleggsspørsmål: a. (Som i original oppgave)

Oppgave 578. Tilleggsspørsmål: a. (Som i original oppgave) Oppgave 578 Med tilleggsspørsmål og eksempler på bruk av GeoGebra. (I forsøket på å illustrere flere forskjellige teknikker er det ikke til å unngå at noen av spørsmålene til en viss grad overlapper hverandre.)

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Kanter, kanter, mange mangekanter

Kanter, kanter, mange mangekanter Kanter, kanter, mange mangekanter Nybegynner Processing PDF Introduksjon: Her skal vi se på litt mer avansert opptegning og bevegelse. Vi skal ta utgangspunkt i oppgaven om den sprettende ballen, men bytte

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 18.12.2013 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 13H Ingeniørfaglig yrkesutøving og arbeidsmetoder

Detaljer

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet

Detaljer

EKSAMEN Løsningsforslag

EKSAMEN Løsningsforslag 5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

Prosjektoppgave i FYS-MEK 1110

Prosjektoppgave i FYS-MEK 1110 Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

INF1411 Oblig nr. 2 - Veiledning

INF1411 Oblig nr. 2 - Veiledning INF1411 Oblig nr. 2 - Veiledning Informasjon Instrumentene som behøves i denne obligen er markert over: DMM det digitale multimeteret er du kjent med fra foregående oppgave. Scope er et oscilloskop som

Detaljer

Kapittel 5. Frekvensrespons. Beregningavfrekvensresponsfrasignaler. Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system.

Kapittel 5. Frekvensrespons. Beregningavfrekvensresponsfrasignaler. Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system. Kapittel 5 Frekvensrespons Oppgave5.1 Beregningavfrekvensresponsfrasignaler Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system. Figur 25: Oppgave 5.1: Inngangssignalet u og utgangssignalet

Detaljer