Generell informasjon om faget er tilgjengelig fra It s learning.
|
|
- Ingvald Nilsen
- 7 år siden
- Visninger:
Transkript
1 Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter Filter gitt ved nullpunkt Filterdesign Sirkulær konvolusjon Diskret Fouriertransformasjon Løsningsforslag, øving Implementering av IIR filter Et tidsdiskret, lineært og kausalt system er gitt ved differanselikningen y(n) 3 4 y(n 1) y(n ) = x(n) + 1 x(n 1) 3 y(n) = x(n) x(n 1) y(n 1) 1 y(n ) 8 Karl Skretting, Institutt for data- og elektroteknikk (IDE), Universitetet i Stavanger (UiS), 4036 Stavanger. Sentralbord Direkte E-post: karl.skretting@uis.no.
2 Direkte form I: x(n) 1/3 y(n) 3/4 1/8 Direkte form II: x(n) 3/4 1/8 1/3 y(n) Kaskade med første-ordens seksjoner: Y (z)(1 3 4 z z ) = X(z)( z 1 ) H(z) = Y (z) X(z) = z z z Finner polene: (.grads ligning: z 3z + 1 = 0), 4 8 som gir p 1 = 1 og p 4 = 1, og vi har H(z) = ( z 1 ) (1 1 4 z 1 )(1 1 z 1 ) Faktorenes rekkefølge er likegyldig så en måte å implementere dette på er x(n) + + y(n) 1/4 1/3 1/
3 Parallell med første-ordens seksjoner: H(z) = Vi finner konstantene: ( z 1 ) (1 1 4 z 1 )(1 1 z 1 ) = A z 1 + A 1 1 z 1 A 1 = z z 1 =4 A 1 = 7/3 A = z z 1 = Dermed kan figuren her tegnes som: A = 10/3 H(z) = 7/3 10/ z z 1 x(n) 1/4 7/3 y(n) 1/ 10/3 5. Filter gitt ved nullpunkt Vi har et filter med alle poler i origo og følgende nullpunkt: z 1 = 1, z = 3 4 ej π 3, z 3 = 3 4 e j π 3 = z, z 4 = 4 3 ej π 3 = 1/z 3, z 5 = 4 3 e j π 3 = 1/z = z 4. a) Pol-nullpunkt plott lages i Matlab z1 = 1; z = (3/4)*exp(j*pi/3); z3 = conj(z); z4 = 1/z3; z5 = 1/z; zplane([z1 z z3 z4 z5], zeros(5,1)); % merk kolonnevektorer Alle poler i origo gir at dette er et FIR-filter. Det er et høypass-filter siden lave frekvenser blir dempet av nullpunktene, spesielt blir DC-komponent fjernet fordi det er et nullpunkt i 1. 3
4 b) Filteret har lineær fase fordi det er et FIR-filter og for alle nullpunkt er også punktet reflektert om enhetssirkelen et nullpunkt, altså z i et nullpunkt gir at også 1/zi er et nullpunkt. Ved doble eller triple (eller mer) nullpunkt må de kunne ordnes parvis slik at dette gjelder. Hvis nullpunktene også er slik at hvis z i et nullpunkt så er også zi (den konjungerte) et nullpunkt, da har filteret reelle koeffisienter. Ved doble eller triple (eller mer) nullpunkt må de kunne ordnes parvis slik at dette gjelder. Hvis det er poler (utenom 0) så må også disse parvis kunne ordnes som komplekskonjungerte par for å få reelle koeffisienter, men det blir da IIR-filter. c) Anitsymmetri betyr (når filteret har lengde 6, grad 5, slik som her): h(3) = h(), h(4) = h(1) og h(5) = h(0). x(n) 1 + h(0) h(1) h() y(n) + d) Ved å multiplisere sammen faktorer med komplekskonjungerte nullpunkt først så kommer en raskt til reelle koeffisienter og da får en så H(z) = (1 z 1 )(1 z )(1 z 3 )(1 z 4 )(1 z 5 ) H(z)z 5 = (z z 1 )(z z )(z z 3 )(z z 4 )(z z 5 ) = (z 1)(z 3 4 ejπ/3 )(z 3 4 e jπ/3 )(z 4 3 ejπ/3 )(z 4 3 e jπ/3 ) = (z 1)(z 3 4 (ejπ/3 + e jπ/3 )z )(z 4 3 (ejπ/3 + e jπ/3 )z ) = (z 1)(z 3 4 ( cos π/3)z )(z 4 16 ( cos π/3)z ) H(z)z 5 = (z 1)(z 3 4 z )(z 4 3 z ) 4
5 H(z)z 5 = (z 1)(z z )( 5 1 z + 1) H(z)z 5 = z z z z z 1 H(z) = z z z z 4 z 5 Matlab poly-kommandoen kan gi samme svar, eller en kan bruke conv for å konvolere polynomene med hverandre. z1 = 1; z = (3/4)*exp(j*pi/3); z3 = conj(z); z4 = 1/z3; z5 = 1/z; h = poly([z1 z z3 z4 z5]); h3 = conv([1 z],[1,z3]); h45 = conv([1 z4],[1,z5]); h345 = conv(h3, h45); h1345 = conv([1,-1], h345); 5.3 Filterdesign Bestem koeffisientene i et lineær fase FIR-filter der filterlengden er M = 4. Anta at en har symmetri (ikke antisymmetri) i koeffisientene. H r er den reelle funksjonen slik den er definert i likning i læreboka Den er reell, men kan bli negativ, og skrives som H r (ω) = M 1 h(n) cos(ω(n M 1 )) (1) Symmetri for FIR-filter med lengde M betyr at h(n) = h(m 1 n). Vi ønsker symmetrisk FIR med lengde M = 4 (gir lineær fase) og H r (0) = 1 og H r (π/))1/. En har for M partall og like symmetri at H(e jω M 1 jω ) = e M 1 M 1 h(n) cos(ω(n ) der fra og utover er H r. Her har vi kun to ledd og får for de to ønskede verdier. 1 H r (ω) = h(n) cos(ω(n 3 )) H r (0) = 1 gir h(0) cos(ω 3 1 ) + h(1) cos(ω ) h(0) cos(0) + h(1) cos(0) = 1 5
6 H r (π/) = 1/ gir h(0) + h(1) = 1/ h(0) cos( 3 4 h(0) 1 π) + h(1) cos( 1π) = 1/ h(1) = 1/ h(0) + h(1) = 1/ h(0) + h(1) = 1 4 Legges disse to ligningne sammen får en h(1) = h(1) = 1 8 ( + ) Fra første ligning har en h(0) = 1/ h(1) = 1 8 ( ) Dermed får vi {h(n)} = 1 8 {( ) ( + ) ( + ) ( )} 5.4 Sirkulær konvolusjon Gitt to diskrete firkantpulser { 1, 0 n N 1 x 1 (n) = x (n) = a) Vi har formelen for sirkulær konvolusjon (modulo N) som kan brukes direkte x 3 (n) = x 1 (n) N x (n) = k=0 x 1 (k)x (n k) N Vi ser at x (n k) N = x (n) = 1 for alle k og n = 0, 1,..., N 1. Det gir x 3 (n) = k=0 x 1 (k)1 = N, n = 0, 1,..., N 1 6
7 Altså { N, 0 n N 1 x 3 (n) = Eller vi kan gå via diskret Fourier transform (DFT) Vi tar DFT og får X 1 (k) = X (k) = = X 3 (k) = X 1 (k) X (k) x(n)e j π N kn, k = 0, 1,..., N 1 e j π N kn = (e j π N k ) n Her har vi sum av endelig geometrisk rekke med a som det inni parentesen, og summen er N når a = 1 og (1 a N )/(1 a) når a 1. Her har vi a = 1 når k = 0 og a 1 for de andre verdier av k, men alltid har en at a N = 1 og dermed { N, k = 0 X 1 (k) = X (k) = Dermed Med invers DFT får vi så X 3 (k) = X 1 (k) X (k) = x 3 (m) = 1 N k=0 Denne summen har kun bidrag for k = 0 { N, k = 0 X 3 (k)e j π N km, m = 0, 1,..., N 1 x 3 (m) = 1 N X 3(0)e j π N 0 = 1 N N e 0, m = 0, 1,..., N 1 { N, 0 m N 1 x 3 (m) = 7
8 b) x 1 (n) x (n) 1 n n x 3 (n) n Diskret Fouriertransformasjon Den diskrete Fouriertransformasjonen av et signal x(n) er gitt ved X(k) = a) Fouriertransformen er definert som X(e jω ) = x(n)e jωn, πkn j x(n)e N, k = 0,..., N 1 () n= π < ω π Merk at vi like godt kan definere område for ω som 0 ω < π, det viktige er at hele enhetssirkelen er med. Eller når x(n) er endelig med lengde N X(e jω ) = x(n)e jωn, π < ω π Sammenligner vi med DFT uttrykket ser vi at DFT representerer nøyaktige punktprøver (sampler) av den egentlige Fouriertransformen. Det tas N punktprøver med mellomrom π, altså N punkt jevnt fordelt på enhetssirkelen. N Til lengre x(n) er, altså til større N er, til tettere vil punktprøvene av Fouriertransformen være og DFT blir mer og mer lik den kontinuerlige (i ω) Fouriertransformen. 8
9 b) Zero-padding vil si å utvide en sekvens ved å fylle på med nullere etter at sekvensen er slutt. La x(n) være oppgitt for n [0, L 1], sekvensen kan utvides til lengde N > L ved a sette x(n) = 0 for L < N. Når man så beregner DFT over N punkt får man flere (tettere) punktprøver av Fouriertransformen i intervallet [0, π]. Dette gir gjerne et bedre (mer kontinuerlig) inntrykk av Fouriertransformen. En annen grunn er at vi ofte ønsker å gjøre en N-punkts DFT der N = m fordi en da kan bruke spesielt hurtige og beregningseffektive algoritmer, Fast Fourier Transform (FFT). Matlab eksempel x = [1/8, 0, -1/5, 1/3, /3, 1, /3, 1/3, -1/5, 0, 1/8]; X = fft(x); X64 = fft(x,64); 9
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess...
Stavanger, 1. september 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 7.1 Stokastisk prosess..........................
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:
DetaljerFILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerUke 9: Diskret Fourier Transform, I
Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling
DetaljerRepetisjon: LTI-systemer
Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state
DetaljerFasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2
Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen
DetaljerEksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen
Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):
DetaljerLØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:
DetaljerBruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004
Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,
DetaljerSTE 6219 Digital signalbehandling Løsningsforslag
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:
DetaljerFILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerDagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang
Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon
DetaljerSTE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerTransformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo janki@ifi.uio.no 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
DetaljerRepetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.
Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen
DetaljerHjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."
Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465
DetaljerBedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.
Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00
DetaljerLøsningsforslag til hjemmeeksamen i INF3440 / INF4440
Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:
DetaljerEKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:
DetaljerDagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen
Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerSampling ved Nyquist-raten
Samplingsteoremet Oppgavegjennomgang, 7.mai Oversikt Presisering av samplingsteoremet Løse utsendt oppgave om sampling Løse oppgave, V Løse oppgave 3, V If a function f (t contains no frequencies higher
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerForelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006
INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
DetaljerTidsdomene analyse (kap 3 del 2)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt
DetaljerForelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005
INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerFasit til midtveiseksamen
Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerDagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.
Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering
DetaljerGenerell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. med Kalman-filter og RLS.
Stavanger, 9. august 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4
Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 2013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv
DetaljerTMA Matlab Oppgavesett 2
TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å
DetaljerHØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling
HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET
DetaljerUke 5: Analyse i z- og frekvensdomenet
Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerRepetisjon: Spektrum for en sum av sinusoider
Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/29 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerFourier-Transformasjoner IV
Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerFourier-Transformasjoner II
Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet
DetaljerSTE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00
DetaljerLøsningsforslag til prøveeksamen i fag SIG50 Signalbehandling
Løsningsforslg til prøveeksmen i fg SIG50 Signlbehndling (Våren-0) Av Finn Hugen (fglærer). 4. februr 00. 1. Det må smples med smplingsfrekvens høyere enn gnger signlfrekvensen for t nedfolding skl unngås,
Detaljer'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7)
TE6146 ignalbehandling 'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7),QWURGXNVMRQ,, Har tidligere sett på Fourier- og Z-transformene for diskrete følger. For følger av endelig varighet, er det mulig å utvikle
Detaljer3UDNWLVN DQYHQGHOVH DY ')7
TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning.
Stavanger, 8. august 213 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 213. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 Multirateteori 2 1.1 Nedsampling.............................
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte
DetaljerRepetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo
Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/1 Dagens temaer 3/1 Tema 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet
DetaljerRepetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo
Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet 1 Tidsdomenet, eller n-domenet:
DetaljerGenerell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2
Stavanger, 4. august 016 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.
DetaljerFilterkonsepter kapittel 6 Sverre Holm
Filterkonsepter kapittel 6 Filterkonsepter kapittel 6 Sverre Holm 6 Filterkonsepter 6.1 Frekvensrespons og filterkarakteristikker gain, forsinkelse, fase, lineær- og minimum-fase, grafisk betraktning 6.2
DetaljerDagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470
Dagens temaer Time 4: z-transformasjonen Andreas Austeng@ifi.uio.no, INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og
DetaljerUke 10: Diskret Fourier Transform, II
Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en
DetaljerTidsdomene analyse (kap 3 del 1)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet t 2. Vite hvordan å identifisere
DetaljerFilterkonsepter kapittel 6 Sverre Holm
Filterkonsepter kapittel 6 Sverre Holm Z-transform 20. oktober 2009 2 1 Konvolusjon produkt 20. oktober 2009 3 Stabilitet og kausalitet 20. oktober 2009 4 2 Fourier transform, filter med reelle koeff Reell
DetaljerMIK 200 Anvendt signalbehandling, 2012.
Stavanger, 25. januar 202 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 202. Lab. 6, CIC-filter. Dette er første del av øvinger om CIC-filter. Andre del kommer i øving 7. Før
DetaljerUke 12: FIR-filter design
Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/47 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/47 Tema
DetaljerUtregning av en konvolusjonssum
Forelesning 4.mars 2004 Tilhørende pensum: 5.4-5.8 byggeklosser i implementasjon av FIR-filtre multiplikator adderer enhets blokkdiagrammer over FIR-filtre LTI-systemer tidsinvarians linearitet utlede
DetaljerUke 12: FIR-filter design
Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon
DetaljerTTT4110 Informasjons- og signalteori Løsningsforslag eksamen 9. august 2004
Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon TTT40 Informasjons- og signalteori Løsningsforslag eksamen 9. august 004 Oppgave (a) Et lineært tidinvariant
Detaljer4.1 Diskretisering av masse-fjær-demper-system. K f m. x m u m y = x 1. x m 1 K d. Dette kan skrives på matriseform som i oppgaven med 0 1 A =
Stavanger, 5. september 08 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 08. Innhold 4 Løsningsforslag og kommentarer, noen regneoppgaver. 4. Diskretisering av masse-fjær-demper-system...........
DetaljerLØSNINGSFORSLAG for KONTINUASJONSEKSAMEN I FAG SIE2010 Informasjons- og signalteori, 29. juli y(n) = ay(n 1) + x(n k),
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling LØSNINGSFORSLAG for KONTINUASJONSEKSAMEN I FAG SIE200 Informasjons- og signalteori, 29. juli 2002 Oppgave I Gitt
DetaljerFormelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons,
DetaljerDET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk. Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp)
DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentifikasjon ( sp) Dato: torsdag 6 desember Lengde på eksamen: 4 timer Tillatte
DetaljerTidsdomene analyse (kap 3 del 2)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt
DetaljerKonvolusjon og filtrering og frevensanalyse av signaler
Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05
DetaljerFIE Signalprosessering i instrumentering
FIE 8 - Signalprosessering i instrumentering Øvelse #4: Z-transform, poler og nullpunkt Av Knut Ingvald Dietel Universitetet i Bergen Fysisk institutt 5 februar Innhold FIE 8 - Signalprosessering i instrumentering
DetaljerFilterkonsepter kapittel 6 Sverre Holm
Filterkonsepter kapittel 6 Filterkonsepter kapittel 6 Sverre Holm 6 Filterkonsepter 6.1 Frekvensrespons og filterkarakteristikker gain, forsinkelse, fase, min fase, grafisk betraktning 6.2 FIR filtre og
Detaljerf(t) F( ) f(t) F( ) f(t) F( )
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for
DetaljerBasisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )
INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: Eksamensdag: Torsdag 8. juni 07 Tid for eksamen: 09.00 3.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT-INF360
Detaljer8 Interpolasjon TMA4125 våren 2019
8 Interpolasjon TMA4 våren 9 Fra M husker du at dersom x i er n + forskjellige punkter på x-aksen med korresponderende y-verdier y i, finnes det et entydig polynom av maksimal grad n som interpolerer punktene
DetaljerIntroduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4
Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering
Detaljery(t) t
Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
Detaljer6 Modellering av smelteovn Modellering Tilstandsromform Diskretisering Observerbarthet Tidssteg...
Stavanger, 28. mai 2019 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2019. Innhold 6 Modellering av smelteovn. 1 6.1 Modellering............................. 1 6.2 Tilstandsromform..........................
DetaljerGenerell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.
Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold
DetaljerGenerell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Øving med systemidentifikasjon.
Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold
Detaljer