Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.
|
|
- Magne Thomassen
- 6 år siden
- Visninger:
Transkript
1 Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen konvolusjon Ekstra Diskret Fourier-transform DFT omregning mellom logaritmer Repetisjon: Aliasing Anta kontinuerlig-tid signalet xt = A cosω t + φ som samples med perioden T s til x[n] = xnt S = A cosω T s n + φ = A cos ˆω n + φ der ˆω = ω T s er diskret-tid frekvensen. Spektret til x[n] inneholder spektrallinjer ved uendelig mange aliasfrekvenser ˆω = ˆω + πl, l =, ±, ±,... ˆω = ˆω + πl, l =, ±, ±,... Merk at det er ˆω som har aliasfrekvenser, det er viktig å ikke blande inn ω her. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK Repetisjon: Aliasing Alle signaler A cos ˆω + πln + φ A cos ˆω + πln φ gir samme sekvens x[n], for l =, ±, ±,... Ettersom ˆω = ωt s = ω/f s vil alle kontinuerlig-tid signaler ω ut = A cos + πlf s t + φ og ω vt = A cos + πlf s t φ gi identiske samplede sekvenser xnt s = unt s = vnt s Repetisjon: Eksempel Gitt ω = 88π rad/s f s = / = s For l = er ut og vt gitt ved 88π ut = A cos + π t + φ = A cos 88 πt + φ og Merk at og 88π vt = A cos + π t φ = A cos 9 πt φ 88π = 88π + ω s 9π = 88π + ω s INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK
2 Plot av xt = A cos88π t + φ Aliasing ved sampling, gitt T s = s xt = cos 88 π t + π/ xt = cos9 π t π/ xt = cos88 π t + π/ x[n] = cos 88 π T s n + π/ 6 tid s x INSTITUTT FOR INFORMATIKK Aliasing for ulike frekvensvariable Diskret frekvens Vinkelfrekvens Syklisk frekvens ˆω = ˆω + πl ω =ω + πfsl f =f + l fs ˆω = ˆω + πl ω = ω + πfsl f = f + l fs INSTITUTT FOR INFORMATIKK 6 Rekonstruksjon Anta sampling av signalet gitt f s > f, som gir xt = A cosπf t + φ x[n] = A cosπf T s n + φ Ved valg av en annen frekvens f s > f s ved rekonstruksjon får vi x re t = A cosπf T s f s t + φ = A cosπf f s f s t + φ Frekvensen til det rekonstruerte signalet er gitt ved f re = f f s f s > f FIR-filtre Et filter er et system som fjerner komponenter eller endrer karakteristikken til signalet det opererer på. FIR-filtre er filtre med endelig impulsrespons, FIR står for Finite Impulse Response. Hvert element i utgangssekvensen er en endelig sum av vektede elementer fra inngangssekvensen. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8
3 Diskret-tid systemer Diskret-tid systemer En inngangssekvens x[n] omformes til en utgangssekvens y[n]; begge diskrete i tid. Slike filtre kan implementeres av en digital datamaskin, og refereres da til som digital signalbehandling. xt A/D omformer x[n] DSP y[n] D/A omformer yt Representasjon med operatoren T y[n] = T {x[n]} To eksempler på diskret-tid systemer y[n] = x[n] y[n] = med { x[n + ], x[n], x[n ] } Implementasjon av FIR-filtre skjer i DSP-enheten i figuren. x[n] inngang Diskret tid system T{} y[n] = T{x[n]} utgang DSP står for Digital Signal Processing Det er mulig å generere en uendelig mengde av ulike diskret-tid systemer. FIR-filtre representerer en viktig klasse av slike systemer. INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK Glidende middel, eksempel Signalet x[n] har endelig lengde, her definert for n 9. Glidende middel Et filter som beregner gjennomsnittet til et sett av ledd fra inngangssekvensen, og former en utgangssekvens med middelverdier. FIR-filteret er en generalisering av det enklere filteret for glidende middel. Midling er en enkel, men nyttig transformasjon. Mulige bruksområder er for å fjerne hurtigvarierende støy i datamengder for bedre å se langvarige tendenser. Vi definerer en -punkts midler ved differensligningen 6 6 y[n] = x[n] + x[n + ] + x[n + ] Inngangssekvens x[n] 6 8 Utgangssekvens y[n], filtrert med running average filter / / / / / 6 8 INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK
4 Glidende middel, eksempel n n < x[n] y[n] Resultatet av midlingen er en utgangssekvens som er ikke-null for flere verdier av n enn inngangen x[n] mer avrundet enn x[n] INSTITUTT FOR INFORMATIKK Kausalitet Generelt kan utgangen y[n] beregnes fra verdier av x[n] både i fortid, f.eks. x[n ] nåtid, x[n] fremtid, f.eks. x[n + ] Uansett vil et glidende vindu av en viss størrelse bestemme hvilke sampler som ved tiden n inngår i beregningen. Generelle FIR-filtre kan være kausale hvis utgangen y[n] bare avhenger av nåtidige og tidligere verdier av x[n]. ikke-kausale hvis y[n] også avhenger av fremtidige verdier av inngangen INSTITUTT FOR INFORMATIKK Glidende middel, kausalt eksempel Kausalt FIR-filter, glidende middel 6 6 y[n] = x[n] + x[n ] + x[n ] Inngangssekvens x[n] 6 8 Utgangssekvens y[n], filtrert med running average filter / / 6 8 INSTITUTT FOR INFORMATIKK / / / Glidende middel, kausalt eksempel n n < x[n] y[n] INSTITUTT FOR INFORMATIKK 6
5 Det generelle FIR-filtret Det generelle FIR-filtret er definert ved differensligningen y[n] = b k x[n k] k= Dette filtret kaller vi også et vektet glidende middel. Hvis M = og b k = / for alle k =,,, har vi det kausale glidende middel fra forrige eksempel. y[n] = x[n k] k= = x[n] + x[n ] + x[n ] Filterkoeffisientene b k Et FIR-filter er fullt definert hvis settet av koeffisienter {b k } er kjent. For eksempel, hvis {b k } = {, 8,, } vet vi at filteret har lengde, med M =, og differensligningen kan skrives ut som y[n] = x[n] + 8 x[n ] + x[n ] + x[n ] Filtret beskrives ved sin orden M eller sin lengde L, der L = M +. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8 Illustrasjon av FIR-filtrering. n + x[n] = cosπ n 8 + π n ellers Enhetspulsen Enhetspulsen er definert ved n = δ[n] = n Signalet x[n] punkts glidende middel over x[n] Eksempel for δ[n], samt de tidsforskjøvede versjonene δ[n ] og δ[n + ]. Enhetspulsen δ[n] punkts glidende middel over x[n]. Enhetspulsen δ[n ] Enhetspulsen δ[n+]. Hva ser vi? INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK
6 Enhetspulsen Enhetspulser forskjøvet i tid er nyttige for å syntetisere signaler, for eksempel x[n] = δ[n] + δ[n ] + δ[n ]+ δ[n ] + δ[n ] + δ[n ]+ δ[n 6] Enhetsimpulsresponsen Enhetsimpulsresponsen til et FIR-filter er den utgangen y[n] vi får dersom inngangen er x[n] = δ[n]. Enhetsimpulsresponsen kalles også bare impulseresponsen, og refereres til som h[n]. Hvilke verdier vil x[n] ta for n [, ]? Enhver sekvens x[n] kan skrives kompakt som x[n] = x[k] δ[n k] k= som er en endelig sum av vektede, tidsforskjøvede enhetspulser. Substitusjonen x[n] = δ[n] i uttrykket for det generelle FIR-filtret gir b n n =,,..., M h[n] = b k δ[n k] = ellers k= x[n] = δ[n] Diskret tid FIR filter h[n] INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK Impulsresponsen For FIR-filtre har impulsresponsen h[n] endelig lengde, derav forkortelsen FIR Finite Impulse Response = endelig impulsrespons. Hva blir impulsreponsen til filtrene med koeffisenter { {b k } =,, } og {b k } = {,,,, } De oppgitte koeffisientene gir filtrene og.. h[n] = δ[n] + δ[n ] + δ[n ] h[n] = δ[n] + δ[n ] + δ[n ]+ δ[n ] + δ[n ] Impulsrespons for FIR filter med koeffisienter {/,/,/} FIR-filter y[n] = b k x[n k] k= Impulsrespons for FIR filter med koeffisienter {,,,,} Impulsrespons y[n] = h[n] = b k δ[n k] x[n]=δ[n] k= 6 8 INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK
7 Enhetsforsinkelse system Vi skriver operatoren som tidsforsinker x[n] med en mengde n som y[n] = x[n n ] Når n = gir det enhetsforsinkelsessystemet. Forsinkelsesfiltre er enkle FIR-filtre der kun en av koeffisinene er ikke-null. For en forsinkelse n = er {b k } gitt ved {b k } = {,,, } som gir en orden M =. Impulsresponsen til et forsinkelsesfilter er h[n] = δ[n n ] Konvolusjon og FIR-filtre Substituer b k = h[k] i det generelle uttrykket for et FIR-filter y[n] = h[k]x[n k] k= Dette er den endelige konvolusjonssummen, der vi konvolverer sekvensene x[n] og h[n]. Det er vanlig å tenke på konvolusjon som en operasjon der den ofte korte impulsresponsen glir over en lang inngangssekvens x[n]. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 6 Ekstra: Omregning mellom logaritmer Gitt tallet x er -logaritmen gitt ved log x = y y = x Den naturlige logaritmen, men base e, er lnx = z e z = x Gitt den naturlige logaritmen til et tall, finner man -logaritmen som følger lnx = ln y = y ln = log x ln = log x = lnx ln eller.-ibsen-ibsen DFT, Diskret Fourier-transform En sekvens x[n] med endelig lengde N er definert for n =,,..., N Den diskrete Fourier-transformen til x[n] er definert som X[k] = L n= x[n]e jπ/nkn k =,,..., N der grensene for k er bestemt av x[n]. Det er vanlig å sette L = N, noe vi følger her. Dette er en Fourier-transform av x[n], evaluert ved et diskret sett med frekvenser ˆω k = πk, for k =,,..., N N INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8
8 DFT, eksempel Anta signalet πr n x[n] = cos, n N N r N som kan skrives om til x[n] = e jπr n/n jπr + e n/n DFT, eksempelplot Sekvensen x[n] = cosπ/ n, n [, N ] = [, 9] har diskret frekvens ˆω = π/ = π/n punkts DFT av x[n] = cosπ/ n Innsatt i DFT-definisjonen får vi X[k] = = N n= [ N x[n]e jπ/nkn k =,,..., N n= N e j πn N r k + N/, k = r = N/, k = N r, ellers n= e πn j N r k] absoluttverdi absoluttverdi indeks punkts DFT av x[n] = cosπ/ n indeks INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK DFT, eksempelplot Sekvensen x[n] = cosπ/6 n, n [, N ] = [, 9] har diskret frekvens absoluttverdi ˆω = π/6 lπ/n punkts DFT av x[n] = cosπ/6 n indeks En diskret Fourier-transform kan brukes på et signal for å transformere det fra tids- til frekvensdomenet. Fra en sekvens av signalverdier gir en DFT-beregning informasjon om de frekvenskomponentene som finnes i signalet. punkts DFT av x[n] = cosπ/6 n absoluttverdi indeks INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK
Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004
Repetisjon: Diskret vs kontinuerlig Forelesning,.februar 4 Kap. 4.-4. i læreboken. Anta variabelen t slik at a < t < b, (a, b) R sampling og rekonstruksjon, i tids- og frekvensdomenet Nyquist-Shannons
DetaljerUtregning av en konvolusjonssum
Forelesning 4.mars 2004 Tilhørende pensum: 5.4-5.8 byggeklosser i implementasjon av FIR-filtre multiplikator adderer enhets blokkdiagrammer over FIR-filtre LTI-systemer tidsinvarians linearitet utlede
DetaljerForelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006
INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
DetaljerRepetisjon: LTI-systemer
Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state
DetaljerForelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005
INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
DetaljerSampling ved Nyquist-raten
Samplingsteoremet Oppgavegjennomgang, 7.mai Oversikt Presisering av samplingsteoremet Løse utsendt oppgave om sampling Løse oppgave, V Løse oppgave 3, V If a function f (t contains no frequencies higher
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
DetaljerBruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004
Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,
DetaljerFILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
DetaljerLØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling
DetaljerUke 9: Diskret Fourier Transform, I
Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling
DetaljerForkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan
Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,
DetaljerRepetisjon: Spektrum for en sum av sinusoider
Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne
DetaljerSTE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er
DetaljerEKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:
DetaljerForelesening INF / Spektre - Fourier analyse
Forelesening INF 24 27/ - 25 Spektre - Fourier analyse Spektre - Fourier analyse og syntese Tosidig spektrum Beat notes Amplitudemodulasjon Periodiske og ikke-periodiske signaler Fourier rekker - analyse
DetaljerEksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen
Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00
DetaljerDagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang
Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning.
Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................
DetaljerFILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:
DetaljerLøsningsforslag til hjemmeeksamen i INF3440 / INF4440
Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:
DetaljerLØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:
DetaljerUke 5: Analyse i z- og frekvensdomenet
Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerTidsdomene analyse (kap 3 del 2)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):
DetaljerTidsdomene analyse (kap 3 del 2)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt
DetaljerAliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem
Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon
DetaljerFasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2
Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerHjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-
DetaljerSTE 6219 Digital signalbehandling Løsningsforslag
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:
DetaljerFasit til midtveiseksamen
Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:
DetaljerTransformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo janki@ifi.uio.no 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
Detaljerf(t) F( ) f(t) F( ) f(t) F( )
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for
DetaljerHjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."
Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465
DetaljerTMA Matlab Oppgavesett 2
TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å
Detaljery(t) t
Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerHjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Bojana Gajić Tlf.: 92490623 EKSAMEN I EMNE TTT40 INFORMASJONS-
DetaljerDagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.
Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering
Detaljer'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7)
TE6146 ignalbehandling 'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7),QWURGXNVMRQ,, Har tidligere sett på Fourier- og Z-transformene for diskrete følger. For følger av endelig varighet, er det mulig å utvikle
DetaljerLØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte
DetaljerTidsdomene analyse (kap 3 del 1)
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet t 2. Vite hvordan å identifisere
DetaljerDagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470
Dagens temaer Time 4: z-transformasjonen Andreas Austeng@ifi.uio.no, INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess...
Stavanger, 1. september 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 7.1 Stokastisk prosess..........................
DetaljerSTE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00
DetaljerFourier-Transformasjoner II
Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerGenerell informasjon om faget er tilgjengelig fra It s learning.
Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................
DetaljerINF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm
INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet 2. Vite hvordan å identifisere
DetaljerUke 12: FIR-filter design
Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon
Detaljer3UDNWLVN DQYHQGHOVH DY ')7
TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.
DetaljerTTT4110 Informasjons- og signalteori Løsningsforslag eksamen 9. august 2004
Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon TTT40 Informasjons- og signalteori Løsningsforslag eksamen 9. august 004 Oppgave (a) Et lineært tidinvariant
DetaljerUke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/29 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
DetaljerTTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver
TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver 21. november 2010 1 Kontinuerlige signaler og systemer 1.1 Signaler i tidsdomenet 2009M 3 b gitt x(t), sum av DC og to sinussignaler,
Detaljer01 Laplace og Z-transformasjon av en forsinket firkant puls.
Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering
DetaljerDagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen
Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker
DetaljerUke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
DetaljerKonvolusjon og filtrering og frevensanalyse av signaler
Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05
DetaljerUke 10: Diskret Fourier Transform, II
Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en
DetaljerINF3470/4470 Digital signalbehandling. Repetisjon
INF3470/4470 Digital signalbehandling g Repetisjon Sverre Holm Contents Chapter 1 Overview Chapter 2 Discrete Signals Chapter 3 Time-Domain Analysis Chapter 4 z-transform Analysis Chapter 5 Frequency Domain
DetaljerHØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling
HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET
DetaljerFourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner
Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens
DetaljerIntroduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4
Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering
Detaljer6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU
TE6146 ignalbehandling 6DPOLQJ DY NRQWLQXHUOLJH VLJQDOHU,QWURGXNVMRQ Mest vanlige måte å oppnå diskrete signaler på er ved sampling av kontinuerlige signaler Under gitte forutsetninger kan kontinuerlige
Detaljer303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)
303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
DetaljerINF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4
INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av
DetaljerBedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.
Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN
Detaljersin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples
0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk
DetaljerFourier-Transformasjoner IV
Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde
DetaljerRepetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo
Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/1 Dagens temaer 3/1 Tema 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet
DetaljerRepetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo
Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet 1 Tidsdomenet, eller n-domenet:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider
Detaljer( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.
Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall
DetaljerNORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I
DetaljerBasisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )
INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit
DetaljerUNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5
DetaljerMer om Histogramprosessering og Convolution/Correlation
Mer om Histogramprosessering og Convolution/Correlation Lars Vidar Magnusson January 30, 2017 Delkapittel 3.3 Histogram Processing Delkapittel 3.4 Fundementals of Spatial Filtering Lokal Histogramprosessering
DetaljerFFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg
FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet
Detaljer