Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.

Størrelse: px
Begynne med side:

Download "Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler."

Transkript

1 Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen konvolusjon Ekstra Diskret Fourier-transform DFT omregning mellom logaritmer Repetisjon: Aliasing Anta kontinuerlig-tid signalet xt = A cosω t + φ som samples med perioden T s til x[n] = xnt S = A cosω T s n + φ = A cos ˆω n + φ der ˆω = ω T s er diskret-tid frekvensen. Spektret til x[n] inneholder spektrallinjer ved uendelig mange aliasfrekvenser ˆω = ˆω + πl, l =, ±, ±,... ˆω = ˆω + πl, l =, ±, ±,... Merk at det er ˆω som har aliasfrekvenser, det er viktig å ikke blande inn ω her. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK Repetisjon: Aliasing Alle signaler A cos ˆω + πln + φ A cos ˆω + πln φ gir samme sekvens x[n], for l =, ±, ±,... Ettersom ˆω = ωt s = ω/f s vil alle kontinuerlig-tid signaler ω ut = A cos + πlf s t + φ og ω vt = A cos + πlf s t φ gi identiske samplede sekvenser xnt s = unt s = vnt s Repetisjon: Eksempel Gitt ω = 88π rad/s f s = / = s For l = er ut og vt gitt ved 88π ut = A cos + π t + φ = A cos 88 πt + φ og Merk at og 88π vt = A cos + π t φ = A cos 9 πt φ 88π = 88π + ω s 9π = 88π + ω s INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK

2 Plot av xt = A cos88π t + φ Aliasing ved sampling, gitt T s = s xt = cos 88 π t + π/ xt = cos9 π t π/ xt = cos88 π t + π/ x[n] = cos 88 π T s n + π/ 6 tid s x INSTITUTT FOR INFORMATIKK Aliasing for ulike frekvensvariable Diskret frekvens Vinkelfrekvens Syklisk frekvens ˆω = ˆω + πl ω =ω + πfsl f =f + l fs ˆω = ˆω + πl ω = ω + πfsl f = f + l fs INSTITUTT FOR INFORMATIKK 6 Rekonstruksjon Anta sampling av signalet gitt f s > f, som gir xt = A cosπf t + φ x[n] = A cosπf T s n + φ Ved valg av en annen frekvens f s > f s ved rekonstruksjon får vi x re t = A cosπf T s f s t + φ = A cosπf f s f s t + φ Frekvensen til det rekonstruerte signalet er gitt ved f re = f f s f s > f FIR-filtre Et filter er et system som fjerner komponenter eller endrer karakteristikken til signalet det opererer på. FIR-filtre er filtre med endelig impulsrespons, FIR står for Finite Impulse Response. Hvert element i utgangssekvensen er en endelig sum av vektede elementer fra inngangssekvensen. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8

3 Diskret-tid systemer Diskret-tid systemer En inngangssekvens x[n] omformes til en utgangssekvens y[n]; begge diskrete i tid. Slike filtre kan implementeres av en digital datamaskin, og refereres da til som digital signalbehandling. xt A/D omformer x[n] DSP y[n] D/A omformer yt Representasjon med operatoren T y[n] = T {x[n]} To eksempler på diskret-tid systemer y[n] = x[n] y[n] = med { x[n + ], x[n], x[n ] } Implementasjon av FIR-filtre skjer i DSP-enheten i figuren. x[n] inngang Diskret tid system T{} y[n] = T{x[n]} utgang DSP står for Digital Signal Processing Det er mulig å generere en uendelig mengde av ulike diskret-tid systemer. FIR-filtre representerer en viktig klasse av slike systemer. INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK Glidende middel, eksempel Signalet x[n] har endelig lengde, her definert for n 9. Glidende middel Et filter som beregner gjennomsnittet til et sett av ledd fra inngangssekvensen, og former en utgangssekvens med middelverdier. FIR-filteret er en generalisering av det enklere filteret for glidende middel. Midling er en enkel, men nyttig transformasjon. Mulige bruksområder er for å fjerne hurtigvarierende støy i datamengder for bedre å se langvarige tendenser. Vi definerer en -punkts midler ved differensligningen 6 6 y[n] = x[n] + x[n + ] + x[n + ] Inngangssekvens x[n] 6 8 Utgangssekvens y[n], filtrert med running average filter / / / / / 6 8 INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK

4 Glidende middel, eksempel n n < x[n] y[n] Resultatet av midlingen er en utgangssekvens som er ikke-null for flere verdier av n enn inngangen x[n] mer avrundet enn x[n] INSTITUTT FOR INFORMATIKK Kausalitet Generelt kan utgangen y[n] beregnes fra verdier av x[n] både i fortid, f.eks. x[n ] nåtid, x[n] fremtid, f.eks. x[n + ] Uansett vil et glidende vindu av en viss størrelse bestemme hvilke sampler som ved tiden n inngår i beregningen. Generelle FIR-filtre kan være kausale hvis utgangen y[n] bare avhenger av nåtidige og tidligere verdier av x[n]. ikke-kausale hvis y[n] også avhenger av fremtidige verdier av inngangen INSTITUTT FOR INFORMATIKK Glidende middel, kausalt eksempel Kausalt FIR-filter, glidende middel 6 6 y[n] = x[n] + x[n ] + x[n ] Inngangssekvens x[n] 6 8 Utgangssekvens y[n], filtrert med running average filter / / 6 8 INSTITUTT FOR INFORMATIKK / / / Glidende middel, kausalt eksempel n n < x[n] y[n] INSTITUTT FOR INFORMATIKK 6

5 Det generelle FIR-filtret Det generelle FIR-filtret er definert ved differensligningen y[n] = b k x[n k] k= Dette filtret kaller vi også et vektet glidende middel. Hvis M = og b k = / for alle k =,,, har vi det kausale glidende middel fra forrige eksempel. y[n] = x[n k] k= = x[n] + x[n ] + x[n ] Filterkoeffisientene b k Et FIR-filter er fullt definert hvis settet av koeffisienter {b k } er kjent. For eksempel, hvis {b k } = {, 8,, } vet vi at filteret har lengde, med M =, og differensligningen kan skrives ut som y[n] = x[n] + 8 x[n ] + x[n ] + x[n ] Filtret beskrives ved sin orden M eller sin lengde L, der L = M +. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8 Illustrasjon av FIR-filtrering. n + x[n] = cosπ n 8 + π n ellers Enhetspulsen Enhetspulsen er definert ved n = δ[n] = n Signalet x[n] punkts glidende middel over x[n] Eksempel for δ[n], samt de tidsforskjøvede versjonene δ[n ] og δ[n + ]. Enhetspulsen δ[n] punkts glidende middel over x[n]. Enhetspulsen δ[n ] Enhetspulsen δ[n+]. Hva ser vi? INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK

6 Enhetspulsen Enhetspulser forskjøvet i tid er nyttige for å syntetisere signaler, for eksempel x[n] = δ[n] + δ[n ] + δ[n ]+ δ[n ] + δ[n ] + δ[n ]+ δ[n 6] Enhetsimpulsresponsen Enhetsimpulsresponsen til et FIR-filter er den utgangen y[n] vi får dersom inngangen er x[n] = δ[n]. Enhetsimpulsresponsen kalles også bare impulseresponsen, og refereres til som h[n]. Hvilke verdier vil x[n] ta for n [, ]? Enhver sekvens x[n] kan skrives kompakt som x[n] = x[k] δ[n k] k= som er en endelig sum av vektede, tidsforskjøvede enhetspulser. Substitusjonen x[n] = δ[n] i uttrykket for det generelle FIR-filtret gir b n n =,,..., M h[n] = b k δ[n k] = ellers k= x[n] = δ[n] Diskret tid FIR filter h[n] INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK Impulsresponsen For FIR-filtre har impulsresponsen h[n] endelig lengde, derav forkortelsen FIR Finite Impulse Response = endelig impulsrespons. Hva blir impulsreponsen til filtrene med koeffisenter { {b k } =,, } og {b k } = {,,,, } De oppgitte koeffisientene gir filtrene og.. h[n] = δ[n] + δ[n ] + δ[n ] h[n] = δ[n] + δ[n ] + δ[n ]+ δ[n ] + δ[n ] Impulsrespons for FIR filter med koeffisienter {/,/,/} FIR-filter y[n] = b k x[n k] k= Impulsrespons for FIR filter med koeffisienter {,,,,} Impulsrespons y[n] = h[n] = b k δ[n k] x[n]=δ[n] k= 6 8 INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK

7 Enhetsforsinkelse system Vi skriver operatoren som tidsforsinker x[n] med en mengde n som y[n] = x[n n ] Når n = gir det enhetsforsinkelsessystemet. Forsinkelsesfiltre er enkle FIR-filtre der kun en av koeffisinene er ikke-null. For en forsinkelse n = er {b k } gitt ved {b k } = {,,, } som gir en orden M =. Impulsresponsen til et forsinkelsesfilter er h[n] = δ[n n ] Konvolusjon og FIR-filtre Substituer b k = h[k] i det generelle uttrykket for et FIR-filter y[n] = h[k]x[n k] k= Dette er den endelige konvolusjonssummen, der vi konvolverer sekvensene x[n] og h[n]. Det er vanlig å tenke på konvolusjon som en operasjon der den ofte korte impulsresponsen glir over en lang inngangssekvens x[n]. INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 6 Ekstra: Omregning mellom logaritmer Gitt tallet x er -logaritmen gitt ved log x = y y = x Den naturlige logaritmen, men base e, er lnx = z e z = x Gitt den naturlige logaritmen til et tall, finner man -logaritmen som følger lnx = ln y = y ln = log x ln = log x = lnx ln eller.-ibsen-ibsen DFT, Diskret Fourier-transform En sekvens x[n] med endelig lengde N er definert for n =,,..., N Den diskrete Fourier-transformen til x[n] er definert som X[k] = L n= x[n]e jπ/nkn k =,,..., N der grensene for k er bestemt av x[n]. Det er vanlig å sette L = N, noe vi følger her. Dette er en Fourier-transform av x[n], evaluert ved et diskret sett med frekvenser ˆω k = πk, for k =,,..., N N INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK 8

8 DFT, eksempel Anta signalet πr n x[n] = cos, n N N r N som kan skrives om til x[n] = e jπr n/n jπr + e n/n DFT, eksempelplot Sekvensen x[n] = cosπ/ n, n [, N ] = [, 9] har diskret frekvens ˆω = π/ = π/n punkts DFT av x[n] = cosπ/ n Innsatt i DFT-definisjonen får vi X[k] = = N n= [ N x[n]e jπ/nkn k =,,..., N n= N e j πn N r k + N/, k = r = N/, k = N r, ellers n= e πn j N r k] absoluttverdi absoluttverdi indeks punkts DFT av x[n] = cosπ/ n indeks INSTITUTT FOR INFORMATIKK 9 INSTITUTT FOR INFORMATIKK DFT, eksempelplot Sekvensen x[n] = cosπ/6 n, n [, N ] = [, 9] har diskret frekvens absoluttverdi ˆω = π/6 lπ/n punkts DFT av x[n] = cosπ/6 n indeks En diskret Fourier-transform kan brukes på et signal for å transformere det fra tids- til frekvensdomenet. Fra en sekvens av signalverdier gir en DFT-beregning informasjon om de frekvenskomponentene som finnes i signalet. punkts DFT av x[n] = cosπ/6 n absoluttverdi indeks INSTITUTT FOR INFORMATIKK INSTITUTT FOR INFORMATIKK

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004

Repetisjon: Sampling. Repetisjon: Diskretisering. Repetisjon: Diskret vs kontinuerlig. Forelesning, 12.februar 2004 Repetisjon: Diskret vs kontinuerlig Forelesning,.februar 4 Kap. 4.-4. i læreboken. Anta variabelen t slik at a < t < b, (a, b) R sampling og rekonstruksjon, i tids- og frekvensdomenet Nyquist-Shannons

Detaljer

Utregning av en konvolusjonssum

Utregning av en konvolusjonssum Forelesning 4.mars 2004 Tilhørende pensum: 5.4-5.8 byggeklosser i implementasjon av FIR-filtre multiplikator adderer enhets blokkdiagrammer over FIR-filtre LTI-systemer tidsinvarians linearitet utlede

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Repetisjon: LTI-systemer

Repetisjon: LTI-systemer Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Sampling ved Nyquist-raten

Sampling ved Nyquist-raten Samplingsteoremet Oppgavegjennomgang, 7.mai Oversikt Presisering av samplingsteoremet Løse utsendt oppgave om sampling Løse oppgave, V Løse oppgave 3, V If a function f (t contains no frequencies higher

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010 LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling

Detaljer

Uke 9: Diskret Fourier Transform, I

Uke 9: Diskret Fourier Transform, I Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling

Detaljer

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan

Forkunnskapskrav. Hva handler kurset om. Kontaktinformasjon. Kurset er beregnet på en student som kan Velkommen til INF4, Digital signalbehandling Hilde Skjevling (Kursansvarlig) Svein Bøe (Java) INSTITUTT FOR INFORMATIKK Kontaktinformasjon E-post: hildesk@ifi.uio.no Telefon: 85 4 4 Kontor: 4 i 4.etasje,

Detaljer

Repetisjon: Spektrum for en sum av sinusoider

Repetisjon: Spektrum for en sum av sinusoider Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

EKSAMEN STE 6219 Digital signalbehandling

EKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:

Detaljer

Forelesening INF / Spektre - Fourier analyse

Forelesening INF / Spektre - Fourier analyse Forelesening INF 24 27/ - 25 Spektre - Fourier analyse Spektre - Fourier analyse og syntese Tosidig spektrum Beat notes Amplitudemodulasjon Periodiske og ikke-periodiske signaler Fourier rekker - analyse

Detaljer

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen

Eksempel 1. Frekvensene i DFT. Forelesning 13. mai På samme måte har vi at. I et eksempel fra forrige uke brukte vi sekvensen Frekvensene i DFT Forelesning 3. mai 4 Pensum i boken: fra 3-5.3 til 3-8.4, samt 3-9. Delkapitlene 3-8.5, 3-8.6 og 3-8.7 er nyttig selvstudium. Oversikt Spektralanalyse av signaler med endelig lengde Spektralanalyse

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas Austeng@ifi.uio.no, NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

Løsningsforslag til hjemmeeksamen i INF3440 / INF4440

Løsningsforslag til hjemmeeksamen i INF3440 / INF4440 Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 1. desember 013 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 15 sider. Vedlegg:

Detaljer

Uke 5: Analyse i z- og frekvensdomenet

Uke 5: Analyse i z- og frekvensdomenet Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem

Aliasing: Aliasfrekvensene. Forelesning 19.februar Nyquist-Shannons samplingsteorem Forelesning 9.februar 24 Delkapilene 4.4-4.6 fra læreboken, 4.3 er il selvsudium. Repeisjon om sampling og aliasing Diskre-il-koninuerlig omforming Inerpolasjon med pulser Oversamling bedrer inerpolasjon

Detaljer

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2 Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

STE 6219 Digital signalbehandling Løsningsforslag

STE 6219 Digital signalbehandling Løsningsforslag HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:

Detaljer

Fasit til midtveiseksamen

Fasit til midtveiseksamen Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019 Transformanalyse Jan Egil Kirkebø Universitetet i Oslo janki@ifi.uio.no 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Hjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."

Hjelpemidler/hjelpemiddel: D - Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt. Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465

Detaljer

TMA Matlab Oppgavesett 2

TMA Matlab Oppgavesett 2 TMA4123 - Matlab Oppgavesett 2 18.02.2013 1 Fast Fourier Transform En matematisk observasjon er at data er tall, og ofte opptrer med en implisitt rekkefølge, enten i rom eller tid. Da er det naturlig å

Detaljer

y(t) t

y(t) t Løsningsforslag til eksamen i TE 559 Signaler og Systemer Høgskolen i Stavanger Trygve Randen, t.randen@ieee.org 3. mai 999 Oppgave a) Et tidsinvariant system er et system hvis egenskaper ikke endres med

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Bojana Gajić Tlf.: 92490623 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas Austeng@ifi.uio.no, INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7)

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7) TE6146 ignalbehandling 'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7),QWURGXNVMRQ,, Har tidligere sett på Fourier- og Z-transformene for diskrete følger. For følger av endelig varighet, er det mulig å utvikle

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte

Detaljer

Tidsdomene analyse (kap 3 del 1)

Tidsdomene analyse (kap 3 del 1) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet t 2. Vite hvordan å identifisere

Detaljer

Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470

Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470 Dagens temaer Time 4: z-transformasjonen Andreas Austeng@ifi.uio.no, INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess...

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess... Stavanger, 1. september 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 7.1 Stokastisk prosess..........................

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

Fourier-Transformasjoner II

Fourier-Transformasjoner II Fourier-Transformasjoner II Lars Vidar Magnusson February 27, 2017 Resten av Delkapittel 4.2 Preliminary Concepts Delkapittel 4.3 Sampling and the Fourier Transform of Sampled Functions Delkapittel 4.4

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................

Detaljer

INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm

INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet 2. Vite hvordan å identifisere

Detaljer

Uke 12: FIR-filter design

Uke 12: FIR-filter design Uke 12: FIR-filter design Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/48 Dagens temaer Repetisjon Design av digitale filtre Design av FIR filtre 3/48 Notasjon

Detaljer

3UDNWLVN DQYHQGHOVH DY ')7

3UDNWLVN DQYHQGHOVH DY ')7 TE6146 ignalbehandling 3UDNWLVN DQYHQGHOVH DY ')7,QWURGXNVMRQ Kjenner DFT og FFT for effektiv numerisk beregning av DFT. Finnes ferdige funksjoner for FFT- algoritmer implementert i C/C og andre programmeringsspråk.

Detaljer

TTT4110 Informasjons- og signalteori Løsningsforslag eksamen 9. august 2004

TTT4110 Informasjons- og signalteori Løsningsforslag eksamen 9. august 2004 Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon TTT40 Informasjons- og signalteori Løsningsforslag eksamen 9. august 004 Oppgave (a) Et lineært tidinvariant

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/29 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver 21. november 2010 1 Kontinuerlige signaler og systemer 1.1 Signaler i tidsdomenet 2009M 3 b gitt x(t), sum av DC og to sinussignaler,

Detaljer

01 Laplace og Z-transformasjon av en forsinket firkant puls.

01 Laplace og Z-transformasjon av en forsinket firkant puls. Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering

Detaljer

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen

Dagens temaer. Tema. Time 6: Analyse i frekvensdomenet. z-transformasjonen. Fra forrige gang. Frekvensrespons funksjonen Dagens temaer Time 6: Analyse i frekvensdomenet Andreas Austeng@ifi.uio.no, INF3470 Institutt for informatikk, Universitetet i Oslo Oktober 2009 Fra forrige gang Frekvensrespons funksjonen Fourier rekker

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Konvolusjon og filtrering og frevensanalyse av signaler

Konvolusjon og filtrering og frevensanalyse av signaler Høgskolen i Østfold Avdeling for informasjonsteknologi Fag IAD33505 Bildebehandling og mønstergjenkjenning Laboppgave nr 2 Konvolusjon og filtrering og frevensanalyse av signaler Sarpsborg 21.01.2005 20.01.05

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

INF3470/4470 Digital signalbehandling. Repetisjon

INF3470/4470 Digital signalbehandling. Repetisjon INF3470/4470 Digital signalbehandling g Repetisjon Sverre Holm Contents Chapter 1 Overview Chapter 2 Discrete Signals Chapter 3 Time-Domain Analysis Chapter 4 z-transform Analysis Chapter 5 Frequency Domain

Detaljer

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner

Fourier-analyse. Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner Fourier-analyse Hittil har vi begrenset oss til å se på bølger som kan beskrives ved sinus- eller cosinusfunksjoner som yxt (, ) = Asin( kx ωt+ ϕ) En slik bølge kan karakteriseres ved en enkelt frekvens

Detaljer

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4

Introduksjon. «Diskret» sinus/cosinus i 1D. Funksjonen sin(θ) INF april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Introduksjon INF 2310 13. april 2010 Fourier -- En annen vinkling på stoffet i kapittel 4 Fourier: Vi kan uttrykke ethvert bilde som en vektet sum av sinus- og cosinus-signaler med ulik frekvens og orientering

Detaljer

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU

6DPSOLQJ DY NRQWLQXHUOLJH VLJQDOHU TE6146 ignalbehandling 6DPOLQJ DY NRQWLQXHUOLJH VLJQDOHU,QWURGXNVMRQ Mest vanlige måte å oppnå diskrete signaler på er ved sampling av kontinuerlige signaler Under gitte forutsetninger kan kontinuerlige

Detaljer

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s) 303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider

Detaljer

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4

INF mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 INF 2310 22. mars 2017 Fourier I -- En litt annen vinkling på stoffet i kapittel 4 I dag: Sinus-funksjoner i 1D og 2D 2D diskret Fouriertransform (DFT) Mandag 27. mars: Supplementsforelesning holdt av

Detaljer

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt. Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN

Detaljer

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples

sin(2 ui/n) starter på 0 og repeteres u ganger per N samples. cos(2 ui/n) starter på 1 og repeteres u ganger per N samples 0700 Foreløbig versjon! INF 0 mars 07 Fourier I -- En litt annen vinkling på stoffet i kapittel I dag: Sinus-funksjoner i D og D D diskret Fouriertransform (DFT) Introduksjon I/II Et gråtonebilde Typisk

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/1 Dagens temaer 3/1 Tema 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet

Detaljer

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo

Repetisjon. Jo Inge Buskenes. INF3470/4470, høst Institutt for informatikk, Universitetet i Oslo Repetisjon Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 3 domener Digitale systemer kan analyseres i tids-, frekvens- eller z-domenet 1 Tidsdomenet, eller n-domenet:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00 12:00 Oppgavesettet er på : XXX sider

Detaljer

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos.

( x+ π 2) Bakgrunn: Sinus og cosinus. Bakgrunn: Samplet sinus i 1D. Bakgrunn: Samplet sinus i 2D. Bakgrunn: Sinus i 2D. sin( x)=cos. Bakgrunn: Samplet sinus i 1D Bakgrunn: Sinus og cosinus En generell samplet sinusfunksjon kan skrives som: y(t) = A sin(2πut/n + φ) t : tid; 0, 1,..., N-1 A : amplitude u : antall hele perioder* N : antall

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I

Detaljer

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( )

Basisbilder - cosinus. Alternativ basis. Repetisjon Basis-bilder. INF april 2010 Fouriertransform del II. cos( ) INF 30 0. april 00 Fouriertransform del II Kjapp repetisjon Bruk av vinduer Konvolusjonsteoremet Filtre og filtrering i frekvensdomenet Eksempel: 3 5 4 5 3 4 3 6 Repetisjon Basis-bilder Sort er 0, hvit

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : irsdag 29. mars 2011 id for eksamen : 15:00 19:00 Oppgavesettet er på : 5

Detaljer

Mer om Histogramprosessering og Convolution/Correlation

Mer om Histogramprosessering og Convolution/Correlation Mer om Histogramprosessering og Convolution/Correlation Lars Vidar Magnusson January 30, 2017 Delkapittel 3.3 Histogram Processing Delkapittel 3.4 Fundementals of Spatial Filtering Lokal Histogramprosessering

Detaljer

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg

FFT. Prosessering i frekvensdomenet. Digital signalprosessering Øyvind Brandtsegg FFT Prosessering i frekvensdomenet Digital signalprosessering Øyvind Brandtsegg Representasjonsmåter Tidsdomene: Amplityde over tid Frekvensdomene: Amplityde over frekvens Hvorfor? Prosessering i frekvensdomenet

Detaljer