UNIVERSITETET I OSLO
|
|
|
- Arnold Sigurd Kristoffersen
- 8 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling Ingen Tillatte hjelpemidler: Ingen Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Dette oppgavesettet består av 4 oppgaver som kan løses uavhengig av hverandre. Skulle noe være uklart i en oppgave, så skriv klart hvilke forutsetninger du gjør for å løse oppgaven, og gå videre! Skriv klart og tydelig! Pass på å begrunne / underbygge svarene med relevant teori. På alle skisser / plott skal tilhørende verdier på aksene komme tydelig frem. Oppgave Sampling a Hva sier Shannons samplingsteorem? Forklar med maksimalt 30 ord. b Vi har gitt et signal x(t) = cos(500πt + π/4). Tegn spekteret til det samplede signalet x[n] = x(nt s ) dersom samplingsfrekvensen er:. f s = 400 Hz 2. f s = 600 Hz. Merk: Her skal dere kun tegne spekteret. Eventuelle mellomregninger behøver ikke tas med i besvarelsen. (Fortsettes på side 2.)
2 Eksamen i INF 3470 / INF 4470, 29. mars 2007 Side 2 c Hva blir det rekonstruerte signalet fra forrige deloppgave dersom vi bruker en ideell D-C omformer hvor samplingsfrekvensen er f s = 500 Hz? Oppgave 2 Frekvensrespons Et lineært tids-invariant filter med impulsrespons h[n] er gitt ved differensligningen 2a y[n] = x[n] + 2x[n ] + x[n 2]. Hva er frekvensresponsen H(e jˆω ) til dette filteret? Lag et plott av magnituden og fasen til H(e jˆω ). 2b Hva blir utgangssignalet dersom inngangssignalet filtreres gjennom dette filteret? 2c x[n] = cos(0.5πn + π/4) Vi multipliserer x[n] med cos(ˆω 0 n). Vi får da det nye signalet x 0 [n] = cos(ˆω 0 n) x[n]. Dette kalles å modulere signalet x[n]. Hvilke frekvenskomponenter finner vi i det modulerte signalet x 0 [n]? Oppgave 3 FIR-filtre Vi har gitt det glidende middelverdifilteret y[n] = M + M 2 + hvor både M og M 2 er ikke-negative. M 2 k= M x[n k], () Figur viser frekvensresponsen til et glidende middelverdifilteret hvor M = 0 og M 2 = 7. (Fortsettes på side 3.)
3 Eksamen i INF 3470 / INF 4470, 29. mars 2007 Side Magnitude H(e j ω ) Frekvens ω Figur : Frekvensresponsen til et glidende middelverdifilter av lengde åtte. 3a Finn det analytiske uttrykket for z-transformen H(z) til systemet gitt ved ligning, og tegn pol-nullpunkts-diagram. Mellomregninger som fører frem til det analytiske uttrykket for H(z) skal tas med. Hint: Bruk summeformelen for en geometrisk rekke: 3b L α k = αl α, α. k=0 Tenk deg at vi filtrerer et lydsignal gjennom et glidende middelverdifilter hvor M = 0 og M 2 = 7. I Figur 2 er det vist spekteret (frekvensintensiteten) til et lydsignal samplet med samplingsfrekvens f s = 8000 Hz som en funksjon av tid og frekvens, før og etter filtrering med det glidende middelverdifilteret. I spekteret til det filtrerte signalet er det noen horisontale bånd. Hvor mange bånd er det, og hva skyldes de? Alle båndene er ikke nødvendigvis synlige i spekteret til det filtrerte lydsignalet. Forklaringen skal maksimalt inneholde 30 ord. (Fortsettes på side 4.)
4 Eksamen i INF 3470 / INF 4470, 29. mars 2007 Side 4 Figur 2: Spekteret (frekvensintensiteten) til et lydsignal som en funksjon av tid og frekvens. Det ufiltrerte lydsignalet er i plottet til venstre, mens lydsignalet filtrert med et glidende middelverdifilter er i plottet til høyre. 3c Vi multipliserer annenhver av koeffisientene i det glidende middelverdifilteret h[n] med -, slik at det nye filteret h 0 [n] får koeffisientene. h 0 [ ] = /(M + M 2 + ) h 0 [0] = /(M + M 2 + ) h 0 [] = /(M + M 2 + ). Uttrykk frekvensresponsen H 0 (e jˆω ) til h 0 [n] ved frekvensresponsen H(e jˆω ) til h[n]. Hint: = e jπ. Hva slags filter er h[n], og hva slags filter er h 0 [n] (dvs. lavpass, båndpass, høypass)? Forklar ut fra skisser av magnituden til H(e jˆω ) og H 0 (e jˆω ). Oppgave 4 Filtre 4a Forklar hva det vil si at et filter er lineært. Forklar hva det vil si at et filter er tidsinvariant. Bruk maksimalt 30 ord på hver av forklaringene. (Fortsettes på side 5.)
5 Eksamen i INF 3470 / INF 4470, 29. mars 2007 Side 5 Vi skal nå se på et system som vi vet er lineært. I Figur 3 er det vist tre inngangssignaler x [n], x 2 [n] og x 3 [n] og korresponderende utgangssignaler y [n], y 2 [n] og y 3 [n] for hver av disse når de blir filtrert gjennom systemet H. 3 3 n H n 0 n H n n H n Figur 3: Inngang og utgang fra et lineært system H; x [n] y [n] øverst, x 2 [n] y 2 [n] i midten, og x 3 [n] y 3 [n] nederst. 3 4b Hva er utgangen fra systemet H dersom inngangen er x[n] = δ[n]? Hint: Legg merke til at δ[n] = x 2 [n] x 2 2[n] + x 3 [n]. 4c Er systemet H tidsinvariant? Begrunn svaret! Hint: Uttrykk δ[n ] på tilsvarende måte som i forrige deloppgave. Lykke til!!!
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler: INF2400 Digital signalbehandling 16. 23. april 2004,
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf
Repetisjon: LTI-systemer
Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state
LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:
Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2
Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Tirsdag 25. mars 2014 Tid for eksamen : 15:00 19:00 Oppgavesettett er på : 6 sider
EKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:
Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.
Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen
Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-
STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 7. juni 2016 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet
Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.
Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: Bojana Gajić Tlf.: 92490623 EKSAMEN I EMNE TTT40 INFORMASJONS-
Fasit til midtveiseksamen
Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,
LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................
Hjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."
Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465
UNIVERSITETET I OSLO
Løsningsforslag UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : irsdag 9. mars id for eksamen : 5: 9: Oppgavesettet er på : 5 sider
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF3 Digital bildebehandling Eksamensdag : Onsdag. juni Tid for eksamen : 4:3 8:3 Oppgavesettet er på : 5 sider Vedlegg : Ingen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 4. juni 2008 Tid for eksamen : 14:30 17:30 (3 timer) Oppgavesettet er på
LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling
Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00
Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006
INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005
INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling
STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00
303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)
303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...
Midtveiseksamen. INF Digital Bildebehandling
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt for eksamen:
Generell informasjon om faget er tilgjengelig fra It s learning.
Stavanger,. oktober 3 Det teknisknaturvitenskapelige fakultet ELE5 Signalbehandling, 3. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 4. Frekvensrespons for system.....................
LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte
TTT4110 Informasjons- og signalteori Løsningsforslag eksamen 9. august 2004
Norges teknisknaturvitenskapelige universitet Institutt for elektronikk og telekommunikasjon TTT40 Informasjons- og signalteori Løsningsforslag eksamen 9. august 004 Oppgave (a) Et lineært tidinvariant
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8
STE 6219 Digital signalbehandling Løsningsforslag
HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:
Midtveiseksamen Løsningsforslag
INSTITUTT FOR INFORMATIKK, UNIVERSITETET I OSLO Midtveiseksamen Løsningsforslag INF2310 - Digital Bildebehandling Eksamen i: INF2310 - Digital Bildebehandling Eksamensdag: Tirsdag 21. mars 2017 Tidspunkt
Uke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
UNIVERSITETET I OSLO
Bokmål UNIVERSIEE I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 3. juni 2009 id for eksamen : 14:30 17:30 Oppgavesettet er på : 6 sider
Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo [email protected] 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling
HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET
Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang
Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas [email protected], NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon
Utregning av en konvolusjonssum
Forelesning 4.mars 2004 Tilhørende pensum: 5.4-5.8 byggeklosser i implementasjon av FIR-filtre multiplikator adderer enhets blokkdiagrammer over FIR-filtre LTI-systemer tidsinvarians linearitet utlede
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider
Uke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
Kontrollspørsmål fra pensum
INNFHOLD: Kontrollspørsmål fra pensum... Integrasjonsfilter... 5 Lag et digitalt filter ved å digitalisere impulsresponsen til et analogt filter... 5 Laplace... 6 Pulsforsterker... 6 På siste forelesning
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF310 Digital bildebehandling Eksamensdag : Tirsdag 5. juni 007 Tid for eksamen : 09:00 1:00 Oppgavesettet er på : 5 sider
IIR filterdesign Sverre Holm
IIR filterdesign IIR filterdesign Sverre Holm Filterspesifikasjon IIR kontra FIR IIR filtre er mer effektive enn FIR færre koeffisienter for samme magnitudespesifikasjon Men bare FIR kan gi eksakt lineær
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir
Utkast med løsningshint inkludert UNIVERSITETET I OSLO
Utkast med løsningshint inkludert UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF2310 Digital bildebehandling Eksamensdag : Onsdag 2. juni 2010 Tid for eksamen : 09:00
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 2. juni 2015 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1400 Digital teknologi Eksamensdag: 5. desember 2005 Tid for eksamen: 9-12 Vedlegg: Tillatte hjelpemidler: Oppgavesettet er
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 9. oktober 2013. Tid for eksamen: 15:00 17:00. Oppgavesettet
Uke 6: Analyse i frekvensdomenet
Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF 3440 / INF 4440 Signalbehandling Eksamensdag: 27. oktober 2003 10. november 2003 Tid for eksamen: 12.00 12.00 Oppgavesettet
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : Eksamens dag : Tid for eksamen : Oppgavesettet er på 6 sider Vedlegg : Tillatte hjelpemidler : FYS1210-Elektronikk med prosjektoppgaver
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
Uke 4: z-transformasjonen
Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT-INF 1100 Modellering og beregninger. Eksamensdag: Onsdag 12. oktober 2016. Tid for eksamen: 15:00 17:00. Oppgavesettet
INNHOLD. Side Eksempeleksamen 2T - Hele oppgavesettet 1. Oppgave 1 Eksempeleksamen 10
INNHOLD Side Eksempeleksamen 2T - Hele oppgavesettet 1 Oppgave 1 Eksempeleksamen 10 Oppgave 1a Eksempeleksamen 12 Teori oppgave 1a Eksempeleksamen 12 Løsning oppgave 1a Eksempeleksamen 14 Oppgave 1b Eksempeleksamen
UNIVERSITETET I OSLO. Dette er et løsningsforslag
Bokmål UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i : INF231 Digital bildebehandling Eksamensdag : Onsdag 3. juni 29 Tid for eksamen : 14:3 17:3 Løsningsforslaget er på :
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Torsdag 1. oktober 2005. Tid for eksamen: 9:00 11:00. Oppgavesettet er på
Løsningsforslag til hjemmeeksamen i INF3440 / INF4440
Løsningsforslag til hjemmeeksamen i INF3 / INF Jan Egil Kirkebø 7. oktober 3 Oppgave a π = 9 n= (n)!(3 + 39n) (n!) 39 n Srinivasa Ramanujan Vi ser at første dag i 999 har index 5, mens siste registrerte
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF Modellering og beregninger. Eksamensdag: Fredag. oktober 28. Tid for eksamen: 5: 7:. Oppgavesettet er på 6 sider. Vedlegg:
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : Eksamens dag : Tid for eksamen : Oppgavesettet er på 6 sider Vedlegg : Tillatte hjelpemidler : FYS1210-Elektronikk med prosjektoppgaver
4. desember Antall vedleggsider: 2
1RE31613 Signalbehandling EKSAMENSOPPGAVE Emne: IRE31613 Signalbehandling Lærer/telefon: Per Thomas Huth/90 95 56 59 41) Grupper: 12ELE-D, 12ELEY Antall oppgavesider: 5 Inklusiv forside. Dato: Tid: 4.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Mandag 6. desember 21. Tid for eksamen: 9: 13:. Oppgavesettet er på 5 sider.
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet
