Størrelse: px
Begynne med side:

Download ""

Transkript

1 Formelark for eksamen i TE 559 Signaler og systemer Kontinuerlig tid Diskret tid Beskrivelse Dierensialligning Dieranseligning y(t) =y (t) +3u(t) +5u (t) y[k] =,y[k, ] + u[k] Beskrivelse Impulsrespons, h(t) Impulsrespons, h[k] og konvolusjon og konvolusjon y(t) = R, h( )u(t, )d y[k] = P i=, h[i]u[k, i] Hvordan nne Fag: Dig. og analoge ltre Fag: Dig. og analoge ltre beskrivelse RC! dierensialligning Finne eksplisitt Laplace! delbrøk z-transformasjon! delbrøk løsning for y! invers laplace! invers z-transformasjon Transferfunksjon H(s) =Lfh(t)g H(z) =Zfh[k]g = Y (s)=u (s) = Y (z)=u (z) Stabilitet H(s) har poler i H(z) har poler venstre halvplan innenfor enhetssirkelen Frekvensanalyse, Fourier-rekke Diskr.-tid Fourier-rekke periodiske signaler =Diskr. Fourier-transf. Frekvensanalyse, Fourier-transformasjon Diskr.-tid Fourier-transf. aeriodiske signaler Signaler: Periodisk signal: f (t + P ) = f (t); kontinuerlig; f [k + N ] = f [k]; diskret: () Kompleks eksponential (Eulers formel): e jx = cos x + j sin x () f u [k]+ u [k]g!f y [k]+ y [k]g for diskrete systemer. Totalrespons til lineært system: y(t) = y zi (t) +y zs (t); kontinuerlig; y[k] = y zi [k] +y zs [k]; diskret: (5) Systemer: Integrator: Z t y(t) = u( )d (3), Forsinkelse: y(t) = u(t, ); kontinuerlig; y[k] = u[k, k ]; diskret: (4) Superposisjonsprinsippet: f u (t) + u (t)g! f y (t) + y (t)g for kontinuerligige systemer og Tidsinvarians: Initialtilstand x(t )=x og inngang u(t) for t t gir utgang y(t);t t medfører at initialtilstand x(t + T ) = x og inngang u(t) for t t + T gir utgang y(t);t t + T. Tilsvarende for diskrete systemer med t og T lik heltall k ;K. Kausalitet: h(t) = for t<; kontinuerlig; h[k] = for k<; diskret: (6)

2 Konvolusjon, dieranse- og differensiallikninger: Egenskaper ved Laplacetransformasjonen: Tabell. Impulsrespons: u[k] = [k] ) y[k] =h[k] diskret ([k] er enhetspulsen); u(t) = (t) ) y(t) =h(t) kontinuerlig ((t) er Dirac's deltapuls): (7) Diskret konvolusjon: y[k] = h[k, i]u[i] =h[k] u[k] (8) i=, Dieranselikning for lineært tidsinvariant diskret system: y[k + N ]+a N, y[k + N, ] + + a y[k +]+a y[k] =b M u[k +M]+b M, u[k + M, ] + + b u[k +]+b u[k] Kontinuerlig konvolusjon: Z y(t) = h(t, ) u( )d = u(t) h(t), (9) Dierensiallikning for lineært tidsinvariantkontinuerlig system: y (n) (t)+a n, y (n,) (t)++ a y () (t)+ a y(t) = b m u (m) (t) + b m, u (m,) (t) + + b u () (t) +b u(t) Laplacetransformasjonen og kontinuerlig systemanalyse: Laplacetransformasjonen: F (s) =L[f (t)] = Z, Invers Laplacetransformasjon: f (t) = L, [F (s)] for t f (t)e,st dt () Z = c+j j F (s)e st ds() c,j Laplacetransformasjons-par: Tabell. Transferfunksjon for lineært tidsinvariant kontinuerlig system: H(s) = L[h(t)] = Y (s) (initialbet. ) U (s) = b ms m + + b s + b s n + + a s + a () Poler i transferfunksjon (også for diskrete systemer): De p i som gjør at H(p i )=: (3) Nullpunkter i transferfunksjon (også for diskrete systemer): De z i som gjør at H(z i )=: (4) Stabilitet av kausalt system: Stabilt system dersom alle poler p i = i + j! i har i <. z-transformasjonen og analyse av diskrete systemer: Ensidig z-transformasjon: F (z) =Z[f [k]] = k= Invers z-transformasjon: f [k] = Z, [F (z)] = j Z C f [k]z,k (5) F (z)z k, dz (6) for k (C er en lukket kontur i z- planet). Sammenheng Laplacetransformasjon z- transformasjon: Z[f (kt )] = L[f s (t)]j s= T,z, (7) +z,

3 Egenskap Tids-funksjon Laplace-transformasjon Linearitet f (t) + f (t) F (s) + F (s) s-skift e,at f (t) F (s + a) Tids-skift f (t, T )q(t, T ); for T e,st F (s) s-derivasjon Tidsderivasjon,d tf (t) ds F (s) df (t) dt sf (s), f () d f (t) dt s F (s), sf (), f () d n f (t) dt s n F n (s), s n, f (),,f (n,) () R t, (s) s F Tids-integrasjon f ( )d Tids-skalering f (at); for a > a F s R a Konvolusjon t h(t, )u( )d H(s)U (s) Endeverdi f () lim s! sf (s) Initialverdi f (+) lim s! sf (s) Tabell : Egenskaper ved Laplacetransformasjonen f (t), t (t) s t s F (s) t n, t positivt heltall e,at s+a te,at t n e n! s n+ (s+a),at n! (s+a) n+! s +! s s +!! s (s +! ) s,! (s +!! ) (s+a) +! s+a (s+a) +! sin(! t) cos(! t) t sin(! t) t cos(! t) e,at sin(! t) e,at cos(! t) Tabell : Laplacetransformasjons-par 3

4 Egenskap Tidssekvens z-transformasjon Linearitet f [k] + f [k] F (z) + F (z) df (z) Multiplikasjon med k kf[k],z dz Multiplikasjon med a k a k z f [k] F a Tidsforsinkelse (i >) f [k, l] z,l F (z) + Tidsfremskyndelse (i >) f [k + l] z "F l (z), P Konvolusjon ki= h[k, i]u[i] H(z)U (z) Tabell 3: Egenskaper ved z-transformasjonen l n= l, n= f [,n]z,l+n # f [n]z,n f [k], k F (z) F (z) [k] [k, n] z,n z,n z z, e,akt z z,e,at b k z,b z,bz, kb k bz bz, (z,b) ) k b k sin(k! T ) cos(k! T ) b k sin(k! T ) b k cos(k! T ),z,,e,at z, b(z+b)z b(+bz, )z, (z,b) 3 (,bz, ) 3 (sin(! T ))z z,(cos(! T ))z+ (sin(! T ))z,,(cos(! T ))z, +z, (z,cos(! T ))z,(cos(! T ))z, z,(cos(! T ))z+,(cos(! T ))z, +z, (b sin(! T ))z (b sin(! T ))z, z,b(cos(! T ))z+b,b(cos(! T ))z, +b z, (z,b cos(! T ))z z,b(cos(! T ))z+b,b(cos(! T ))z,,b(cos(! T ))z, +b z, Tabell 4: z-transformasjons-par 4

5 Egenskaper ved z-transformasjonen: Tabell 3. z-transformasjons-par: Tabell 4. Transferfunksjon for lineært tidsinvariant kontinuerlig system: Y H(z) = Z[h[k]] = (z) (initialbet. ) U (z) = b mz m + + b z + b z n + + a z + a (8) Stabilitet av kausalt system: Stabilt system dersom alle poler p i = r i e j i har r i <. Frekvensanalyse av kontinuerlige signaler: Fundamentalfrekvens for periodisk signal:! = P (9) Normalisert energi: Z E = jf (t)j dt (), Normalisert eekt: P = Fourierrekke: lim T! T Z T,T f (t) = c m e jm! t m=, Fourierkoesienter: c m = P Z t +P t jf (t)j dt () f (t)e,jm! t dt () = m + j m (3) Parsevals formel for Fourierrekker: P av = P Z P jf (t)j dt = m=, jc m j (4) Fouriertransformasjonen: Z F (!) = f (t)e,j!t dt for alle! (5), Invers Fouriertransformasjon: Z f (t) = F (!)e j!t d! for alle t, (6) Sammenheng Laplacetransformasjon Fouriertransformasjon: F[f (t)] = L[f + (t)]j s=j! + L[f, (,t)]j s=,j! (7) Fouriertransformasjon av periodiske funksjoner: F (!) = c m (!, m! ) (8) m=, Parsevals formel for ikkeperiodiske signaler: Z E =,Z =, jf (t)j dt jf (!)j d! (9) Konvolusjon og Fouriertransformasjonen: Z Y (!) = F[ h(t, )u( )d ], = H(!)U (!) (3) Egenskaper ved Fouriertransformasjonen: Tabell 5. Frekvensanalyse av diskrete signaler: Normalisert vinkelfrekvens:! = f f s (3) Normalisert fundamentalfrekvens for periodisk signal:! = N (3) 5

6 Egenskap Tidsfunksjon Fourier-transformasjon Linearitet f (t) + f (t) F (!) + F (!) Frekvensskifting f (t)e j! t F (!,! ) Tidsskift f (t, t ) e,j!t F (!) Tidsskalering f (t) jj F! Tidsreversering f (,t) F (,!) Dualitet F (!) =Fff (t)g f (,!) = FfF (t)g Tabell 5: Egenskaper ved Fouriertransformasjonen Normalisert energi: Normalisert eekt: P = E = jf [k]j (33) k=, lim T! N jf [k]j (34) N + k=,n Tidsdiskret Fourierrekke (DTFS): f [k] = N, m= Fourierkoesienter: N, c m e jm! k (35) c m = f [k]e,jm! k = m + j m N k= (36) Parsevals formel for tidsdiskrete Fourierrekker: P av = N Tidsdiskret (DTFT): N, k= jf [k]j = F (!) =F d [f [k]] = for alle!. N, m= jc m j (37) Fouriertransformasjon k=, f [k]e,j!k ; (38) Invers tidsdiskret Fouriertransformasjon: f [k] = Z F (!)e jk! d! for alle k (39) Sammenheng z-transformasjon tidsdiskret Fouriertransformasjon: F d [f [k]] = Z[f + [k]]j z=e j! + Z[f, [,k]]j z=e,j! (4) Tidsdiskret Fouriertransformasjon av periodiske funksjoner: F (!) = N, m= c m (!, m! ) (4) Parsevals formel for ikkeperiodiske tidsdiskrete signaler: Z E = jf [k]j = jf (!)j d! k=, (4) Konvolusjon og tidsdiskret Fouriertransformasjon: Y (!) = F[ h[k, i]u[i] i=, = H(!)U (!) (43) Egenskaper ved tidsdiskret Fouriertransformasjon: Tabell 6. Diskret Fouriertransformasjon (DFT): F [m] =D[f [k]] = N, k= f [k]e,jkm=n (44) Invers diskret Fouriertransformasjon: f [k] = D, [F [m]] = N N, k= F [m]e jkm=n (45) 6

7 Egenskap Tidsfunksjon Fourier-transformasjon Linearitet f [k] + f [k] F (!) + F (!) Frekvensskifting f [k]e j! k F (!,! ) Tidsskift f [k, k ] e,j!k F (!) Tidsskalering f [k] jj F! Tidsreversering f [,k] F (,!) Dualitet F (!) =Fff [k]g f (,!) = FfF [k]g Tabell 6: Egenskaper ved tidsdiskret Fouriertransformasjon Diverse: har løsningen Løsnings av andregradsligninger: ax + bx + c = (46) x b p b, 4ac = : (47) a 7

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling

HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470/4470 Digital signalbehandling Eksamensdag: 5. januar 019 Tid for eksamen: 09:00 13:00 Oppgavesettet er på 9 sider. Vedlegg:

Detaljer

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010

LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010 LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel

Detaljer

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen

STE 6219 Digital signalbehandling Løsning til kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side av 4 STE 629 Digital signalbehandling Løsning til kontinuasjonseksamen Tid: Fredag 03.08.2007, kl: 09:00-2:00

Detaljer

EKSAMEN STE 6219 Digital signalbehandling

EKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 4 EKSAMEN STE 6219 Digital signalbehandling Tid: Tirsdag 07.03.2006, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt.

Bedømmelse: Ved bedømmelse vektlegges oppgavene I, II og III likt. Side 1 av 5 + 2 sider vedlegg NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR TELETEKNIKK Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 94314 KONTINUASJONSEKSAMEN

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag: 1. desember 16 Tid for eksamen: 14.3 18.3 Oppgavesettet er på 8 sider. Vedlegg:

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):

Detaljer

Hjelpemidler/hjelpemiddel: D - "Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt."

Hjelpemidler/hjelpemiddel: D - Ingen trykte eller håndskrevne hjelpemidler tillatt. Enkel kalkulator tillatt. Side av 8 + sider vedlegg NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Signalbehandling Faglig kontakt under eksamen: Navn: Tor A. Ramstad Tlf.: 46660465

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning

Detaljer

STE 6219 Digital signalbehandling Løsningsforslag

STE 6219 Digital signalbehandling Løsningsforslag HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/39 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

Uke 9: Diskret Fourier Transform, I

Uke 9: Diskret Fourier Transform, I Uke 9: Diskret Fourier Transform, I Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/23 Dagens temaer Sampling og periodisitet DFT DFT og DTFT 3/23 Tema Sampling

Detaljer

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 6219 Digital signalbehandling HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT LØSNINGSFORSLAG TIL KONTINUASJONSEKSAMEN STE 629 Digital signalbehandling Tid: Torsdag 0.08.2006, kl: 09:00-2:00 Tillatte

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

Uke 5: Analyse i z- og frekvensdomenet

Uke 5: Analyse i z- og frekvensdomenet Uke 5: Analyse i z- og frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/32 Dagens temaer Fra forrige gang Kausalitet, stabilitet og inverse systemer

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF347/447 Digital signalbehandling Eksamensdag:. desember 5 Tid for eksamen: 9. 3. Oppgavesettet er på 7 sider. Vedlegg: Ingen

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2012 2/30 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Uke 6: Analyse i frekvensdomenet

Uke 6: Analyse i frekvensdomenet Uke 6: Analyse i frekvensdomenet Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/41 Dagens temaer Fra forrige gang Frekvensrespons funksjonen Fourier rekker og

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang

Dagens temaer. Definisjon av z-transformasjonen. Tema. Time 5: z-transformasjon og frekvens transformasjon. Fra forrige gang Dagens temaer Time 5: z-transformasjon og frekvens transformasjon Andreas [email protected], NF3470 fi/uio September 2009 Fra forrige gang Kausalitet, stabilitet og inverse systemer Z 1 { }: nvers z-transformasjon

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2011 2/26 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

1 Tidsdiskret PID-regulering

1 Tidsdiskret PID-regulering Finn Haugen ([email protected]), TechTeach (techteach.no) 16.2.02 1 Tidsdiskret PID-regulering 1.1 Innledning Dette notatet gir en kortfattet beskrivelse av analyse av tidsdiskrete PID-reguleringssystemer.

Detaljer

Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas [email protected], INF3470

Dagens temaer. 3 domener. Tema. Time 4: z-transformasjonen. z-dometet; ett av tre domener. Andreas Austeng@ifi.uio.no, INF3470 Dagens temaer Time 4: z-transformasjonen Andreas [email protected], INF3470 z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper Ifi/UiO September 2009 H(z); systemfunksjonen og

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side1av4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Mandag 27.08.2009, kl: 09:00-12:00

Detaljer

Repetisjon: LTI-systemer

Repetisjon: LTI-systemer Forelesning, 11. mars 4 Tilhørende pensum er 6.1-6.4 i læreboken. repetisjon av FIR-filtre frekvensresponsen til et FIR-filter beregne utgangen fra FIR-filtret ved hjelp av frekvensresponsen steady-state

Detaljer

Tidsdiskrete systemer

Tidsdiskrete systemer Tidsdiskrete systemer Finn Haugen TechTeach 22.juli2004 Innhold 1 Tidsdiskrete signaler 2 2 Z-transformasjonen 3 2.1 Definisjon av Z-transformasjonen... 3 2.2 Egenskaper ved Z-transformasjonen... 4 3 Differenslikninger

Detaljer

STE6146 Signalbehandling =-WUDQVIRUPHQ

STE6146 Signalbehandling =-WUDQVIRUPHQ TE6146 ignalbehandling =-WUDQVIRUPHQ,QWURGXNVMRQ Fourier-transformen er et meget nyttig verktøy for diskrete signaler og systemer Fourier-transformen konvergerer ikke for alle følger Trenger mere generelt

Detaljer

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019

Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019 Transformanalyse Jan Egil Kirkebø Universitetet i Oslo [email protected] 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer

Detaljer

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006

Forelesning, 23.februar INF2400 Sampling II. Øyvind Ryan. Februar 2006 INF2400 Februar 2006 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

Tidsdomene analyse (kap 3 del 2)

Tidsdomene analyse (kap 3 del 2) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 2) Sverre Holm 3.9 Diskret konvolusjon Metode for å finne responsen fra et filter med 0 initialbetingelser, fra impulsresponsen h[n] Enkelt

Detaljer

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005

Forelesning, 17.februar INF2400 Sampling II. Øyvind Ryan. Februar 2005 INF2400 Februar 2005 INF2400 Innhold Delkapitlene 4.4-4.6 fra læreboken, 4.3 er til selvstudium. Repetisjon om sampling og aliasing Diskret-til-kontinuerlig omforming Interpolasjon med pulser Oversamling

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF/ Signalbehandling Eksamensdag: 9. desember Tid for eksamen:. 7. Oppgavesettet er på sider. Vedlegg: Ingen Tillatte hjelpemidler:

Detaljer

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)

Detaljer

Uke 4: z-transformasjonen

Uke 4: z-transformasjonen Uke 4: z-transformasjonen Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 2013 2/31 Dagens temaer z-dometet; ett av tre domener z-transformasjonen; definisjon og egenskaper

Detaljer

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1)

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1) Kap 5 aplace transformasjon a f(t) være definert for t 0. aplace transformasjonen er F (s) = 0 f(t)e st dt (1) for alle s C der dette er veldefinert. Tilstrekkelig betingelse: f(t) stykkevis kontinuerlig

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling

LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Side 1 av 4 HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet EL/RT LØSNINGSFORSLAG TIL EKSAMEN STE 6219 Digital signalbehandling Tid: Fredag 11.03.2005, kl: 09:00-12:00 Tillatte

Detaljer

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt

STE 6146 Digital signalbehandling. Løsningsforslag til eksamen avholdt HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet EL/RT STE 6146 Digital signalbehandling Løsningsforslag til eksamen avholdt 06.02.03 Oppgaver 1. Forklar hva som er

Detaljer

Forelesning nr.13 INF 1410

Forelesning nr.13 INF 1410 Forelesning nr.3 INF 4 Komplekse frekvenser og Laplace-transform Oversikt dagens temaer Me Mer om sinusformede signaler om komplekse frekvenser Introduksjon til Laplace-transform Løsning av kretsligninger

Detaljer

Fasit til midtveiseksamen

Fasit til midtveiseksamen Fasit til midtveiseksamen INF344/444 Signalbehandling 2. november 24 Oppgave Betrakt systemet x(n) T y (n) med y(n) = 4 5 [x(n+)] 2. Avgjør og begrunn ditt svar om hvorvidt dette systemet er. lineært,

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling

Detaljer

pdf

pdf FILTERDESIGN Ukeoppgavene skal leveres som selvstendige arbeider. Det forventes at alle har satt seg inn i instituttets krav til innleverte oppgaver: Norsk versjon: http://www.ifi.uio.no/studinf/skjemaer/erklaring.pdf

Detaljer

A ft tt * 1 ^ an T ii ft. *< X IP * ft ii l> ff ffl *> (2 # * X fa c, * M L 7 ft tf ;U -h h T T* L /< ft * ft 7 g $ /i & 1 II tz ft ft ip ft M.

A ft tt * 1 ^ an T ii ft. *< X IP * ft ii l> ff ffl *> (2 # * X fa c, * M L 7 ft tf ;U -h h T T* L /< ft * ft 7 g $ /i & 1 II tz ft ft ip ft M. Pal 77»_ a< IP ft A 6 * *' -5 m y, m *J 7 7 t< m X D $ ^ 7 6 X b 7 X X * d 1 X 1 v_ y 1 ** 12 7* y SU % II 7 li % IP X M X * W 7 ft 7r SI & # & A #; * 6 ft ft ft < ft *< m II E & ft 5 t * $ * ft ft 6 T

Detaljer

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler.

Repetisjon: Eksempel. Repetisjon: Aliasing. Oversikt, 26.februar Gitt. Alle signaler. Ettersom. vil alle kontinuerlig-tid signaler. Oversikt, 6.februar Tilhørende pensum i boken er. -.. Repetisjon regning med aliasing og folding rekonstruksjon ved substitusjon FIR-filtre glidende middel et generelt FIR-filter enhetsimpulsresponsen

Detaljer

01 Laplace og Z-transformasjon av en forsinket firkant puls.

01 Laplace og Z-transformasjon av en forsinket firkant puls. Innholdsfortegnelse 0 Laplace og Z-transformasjon av en forsinket firkant puls.... 0 Sampling og filtrering og derivering av en trekant strømpuls... 03_Digitalt Chebyshev filter... 3 04 Digitalisering

Detaljer

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver

TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver TTT4110 Informasjons- og signalteori Sortering av tidligere eksamensoppgaver 21. november 2010 1 Kontinuerlige signaler og systemer 1.1 Signaler i tidsdomenet 2009M 3 b gitt x(t), sum av DC og to sinussignaler,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3470 Digital signalbehandling Eksamensdag: 11. desember 01 Tid for eksamen: 14.30 18.30 Oppgavesettet er på 1 sider. Vedlegg:

Detaljer

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t

Detaljer

Repetisjon: Spektrum for en sum av sinusoider

Repetisjon: Spektrum for en sum av sinusoider Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne

Detaljer

Uke 10: Diskret Fourier Transform, II

Uke 10: Diskret Fourier Transform, II Uke 10: Diskret Fourier Transform, II Jo Inge Buskenes Institutt for informatikk, Universitetet i Oslo INF3470/4470, høst 011 /38 Dagens temaer Spektral glatting pga endelig lengde data Bruk av DFT en

Detaljer

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Hjelpemidler: D Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt. Side av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR ELEKTRONIKK OG TELEKOMMUNIKASJON Faglig kontakt under eksamen: Navn: John Torjus Flåm Tlf.: 957602 EKSAMEN I EMNE TTT40 INFORMASJONS-

Detaljer

Fakta om fouriertransformasjonen

Fakta om fouriertransformasjonen Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx

Detaljer

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7)

'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7) TE6146 ignalbehandling 'HQ GLVNUHWH )RXULHU-WUDQVIRUPHQ (')7),QWURGXNVMRQ,, Har tidligere sett på Fourier- og Z-transformene for diskrete følger. For følger av endelig varighet, er det mulig å utvikle

Detaljer

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)

303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s) 303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...

Detaljer

Løsning til eksamen i EK3114 Automatisering og vannkraftregulering ved Høgskolen i Sørøst-Norge

Løsning til eksamen i EK3114 Automatisering og vannkraftregulering ved Høgskolen i Sørøst-Norge Løsning til eksamen i EK3114 Automatisering og vannkraftregulering ved Høgskolen i Sørøst-Norge Eksamensdato: 24.11 2017. Varighet 5 timer. Emneansvarlig: Finn Aakre Haugen ([email protected]). Løsning

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for elektroteknikk og databehandling Eksamen i MIK130, Systemidentifikasjon Dato: Mandag 28. november 2005 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data.

Dagens temaer. Endelig lengde data. Tema. Time 11: Diskret Fourier Transform, del 2. Spektral glatting pga endelig lengde data. Dagens temaer Time : Diskret Fourier Transform, del Andreas [email protected], INF37 Institutt for informatikk, Universitetet i Oslo Spektral glatting pga endelig lengde data Bruk av en Frekvensestimering

Detaljer

Stabilitetsanalyse. Kapittel Innledning

Stabilitetsanalyse. Kapittel Innledning Kapittel 6 Stabilitetsanalyse 6.1 Innledning I noen sammenhenger er det ønskelig å undersøke om, eller betingelsene for at, et system er stabilt eller ustabilt. Spesielt innen reguleringsteknikken er stabilitetsanalyse

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004

Bruk av tidsvindu. Diskret Fourier-transform. Repetisjon: Fourier-transformene. Forelesning 6. mai 2004 Repetisjon: Fourier-transformene Forelesning 6. mai 4 Spektralanalyse Pensum i boken: 3-4 til 3-5. Diskret tid Kontinuerlig tid Diskret frekvens DFT, X[k] Fourierrekker, {a k } Kontinuerlig frekvens DTFT,

Detaljer

Eksamen i SEKY3322 Kybernetikk 3

Eksamen i SEKY3322 Kybernetikk 3 Høgskolen i Buskerud. Finn Haugen([email protected]). Eksamen i SEY3322 ybernetikk 3 Tid: 27. mai 2009. Variget 5 timer. Vekt i sluttkarakteren: 70% Hjelpemidler: Ingen trykte eller åndskrevne jelpemidler.

Detaljer

f(t) F( ) f(t) F( ) f(t) F( )

f(t) F( ) f(t) F( ) f(t) F( ) NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG4045 Geofysisk Signalanalyse Lsningsforslag ving 3 a) ' xy (t) = x()y(t + )d : La oss, for

Detaljer

Kontrollspørsmål fra pensum

Kontrollspørsmål fra pensum INNFHOLD: Kontrollspørsmål fra pensum... Integrasjonsfilter... 5 Lag et digitalt filter ved å digitalisere impulsresponsen til et analogt filter... 5 Laplace... 6 Pulsforsterker... 6 På siste forelesning

Detaljer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer

Matematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like

Detaljer

Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF

Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF Institutt for matematiske fag Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 219 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte

Detaljer

Utregning av en konvolusjonssum

Utregning av en konvolusjonssum Forelesning 4.mars 2004 Tilhørende pensum: 5.4-5.8 byggeklosser i implementasjon av FIR-filtre multiplikator adderer enhets blokkdiagrammer over FIR-filtre LTI-systemer tidsinvarians linearitet utlede

Detaljer

TMA4120 Matematikk 4K Høst 2015

TMA4120 Matematikk 4K Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Løsningsforslag Øving 9 hapter 13.7 La z. Logaritmen til z, ln z, er definert som tallene ln z ln

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

Tidsdomene analyse (kap 3 del 1)

Tidsdomene analyse (kap 3 del 1) INF3470 Digital signalbehandling Tidsdomene analyse (kap 3 del 1) Sverre Holm Mål for kapittel 3: Systemer 1. Forstå linearitet, superposisjon, tidsinvarians og kausalitet t 2. Vite hvordan å identifisere

Detaljer

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5

NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET Side 1 av 5 INSTITUTT FOR TELETEKNIKK + 2 sider vedlegg Signalbehandling Faglig kontakt under eksamen: Navn: Anna Kim Tlf.: 50214 KONTINUASJONSEKSAMEN I

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: 11. desember 006 Tid for eksamen: 15.30 18.30 Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 34 TMA4 Matematikk 4K H-3 Oppgave A-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side

Detaljer

Muntlig eksamenstrening

Muntlig eksamenstrening INNFHOLD: Muntlig eksamenstrening... 1 Finn algoritme fra gitt H(z)... Laplace og Z-transformasjon av en Forsinket firkant puls.... 3 Sampling, filtrering og derivering av en trekant strømpuls... 3 Digitalisering

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag

UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn

Detaljer

Kompendium i. Monovariable systemer og signaler. Trond Andresen

Kompendium i. Monovariable systemer og signaler. Trond Andresen 95-56-X Kompendium i Monovariable systemer og signaler Trond Andresen Institutt for teknisk kybernetikk NTNU høst 998 (leses sammen med Signals and Systems av Oppenheim, Willsky, Young) I Residueregning,

Detaljer

Systemer av differensiallikninger

Systemer av differensiallikninger Kapittel 18 Systemer av differensiallikninger I mange fysiske prosesser vil det være flere enn en størrelse som inngår. Disse størrelsene kan være avhengige av hverandre, slik at en endring av en påvirker

Detaljer

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Institutt for matematiske fag Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Faglig kontakt under eksamen: Anne Kværnø a, Kurusch Ebrahimi-Fard b, Xu Wang c Tlf: a 92 66 38 24, b 96 91 19 85, c 94 43 03

Detaljer

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2

Fasit, Eksamen. INF3440/4440 Signalbehandling 9. desember c 0 + c 1z 1 + c 2z 2. G(z) = 1/d 0 + d 1z 1 + d 2z 2 Fasit, Eksamen INF/ Signalbehandling 9. desember Oppgave : Strukturer To systemfunksjoner, G(z) og H(z), er gitt som følger: G(z) = c + c z + c z /d + d z + d z og H(z) = /d + dz + d z c + c z + c z. Figur

Detaljer

Ghost amplitude spectrum. d=6 m V=1500 m/s c= 1

Ghost amplitude spectrum. d=6 m V=1500 m/s c= 1 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR PETROLEUMSTEKNOLOGI OG ANVENDT GEOFYSIKK Oppgave SIG445 Geofysisk Signalanalyse ving 5 En seismisk kilde er plassert pa endybde d ivann, hvor

Detaljer