Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:
|
|
- Christopher Thorsen
- 8 år siden
- Visninger:
Transkript
1 Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n y x = nn a n x n 2. n= n= n=2 Dette innsatt i likninga gir: x 2 n=2 nn a n x n 2 2x n= na n x n = 2a 2 + 6a 3 2a x + n=2 [n + 2n + a n+2 n + na n ]x n =. Samanliknar koeffisientar framfor ledd av same grad og får: a 2 = 2, a 3 = 3 a, a n+2 = n n + 2 a n, a 2n =, n =, 2,... 2n a 2n+ = a 2n+, n =, 2,..., som gir generell løysing yx = a + a n= Startkrava gir at a = og a =, slik at b Observerer at yx = Skal dette samsvare med likninga må x 2n 2n + n= x 2n 2n. n= d dx fxy = fxy + f xy. fx = x 2 f x = 2x, x 2n 2n.
2 og vi ser at venstre sida i likninga kan skrivast på forma gitt i b med fx = x 2. Integrerer likninga og får: : x 2 y = x + C. Startkravet y = gir C =, dvs.: x 2 y = x + y = x y = x yx = ln x + y, som saman med det andre startkravet gir løysinga yx = ln x. c Dersom skal vere oppfyllt når x = får vi at C =. Dette gir at y x = + x x 2 = x y = 2. Alternativt ser vi dette direkte av likninga ved å sette x =. Eksistens- og eintydeteoremet for lineære likninger gir at vilkårlige startverdiproblem har ei eintydig løysing. I vårt tilfelle ser vi at vi berre får løysing for bestemte starverdi krav, men i dette tilfellet kan vi ikkje bruke teoremet fordi likninga er singulær i x =. 2a Finn eigenverdier og eigenvektorer til systemet: Eigenverdier: Eigenvektorer: i r = : ii r 2 = : r 2 r 3 r ξ ξ 2 ξ 3 ξ ξ 2 ξ 3 = = = + r r3 r = 2ξ 2 = ξ + 4ξ 3 = ξ = 2xi + 2ξ 2 = ξ + 2ξ 3 = ξ2 = 2 4 2
3 iii r = 3 : ξ ξ 2 ξ 3 = 4xi + 2ξ 2 = 2ξ 2 = ξ = ξ 3 = Dette gir generell løysing av tilhøyrande homogent problem: xt = C exp tξ + C 2 exptξ 2 + C 3 exp3tξ 3 2b Utrykker ei fundamentalmatrise v.h.a løysinga i a: Ψt = e t ξ e t ξ 2 e 3t ξ 3 = 4e t e t e t e t 2 et e 3t Løysing av inhomogent problem finn vi v.h.a variasjon av parametre. La xt = Ψt ut Ψt u t = ht ut = som gir generell løysing: xt = Ψt C + Ψt Ψ τ hτdτ., Initialkravet gir at C =. Finn Ψ t v.h.a rekkereduksjon: 4e t e t e t e t 2 et e 3t 2, e t 3+ 4 e t e 3t 4 4 Skriv ut løysinga: xt = Ψ t = Ψt Ψ τ hτdτ = Ψ τ hτ, 4e t e t e t e 3t 2 4 et 4 et e t 4 e 3t 4 e 3t e 3t. e3t τ hτdτ 3
4 2c Innsatt ht = exp3t får vi xt = e3t τ e 3τ dτ = te 3t 3a Skriv ut likningsystemet i 2a med initialkrav frå 2b: Deriverer og 3 og får: : x = x + 2y x = 2 : y = 2y y = 3 : z = x + 3z + h z = h. x = x + 2y 2 x = x + 2y 4 : x = x, 3 5 : z = x + 3z + h z = 3h + h. Deriverer 5 og får: 5 z = x +3z 4 +h z = x+3z 3 +h z 3z z + 3z = h h. 3b La L{zt} = Zs og L{ht} = Hs. Laplace transformerer likninga og får v.h.a tab nr. 8: s 3 Zs s 2 z sz z 3s 2 Zs sz z szs + z + 3Zs = s 2 Hs sh h Hs. Bruker initialkrava saman med at og får: s 3 3s 2 s + 3 = s + s s 3 = s 2 s 3, Zs = s 3 Hs. Vi finn den inverse Laplace transformen v.h.a konvulusjonsintegralet, tab nr. 6, og tab nr. 2: zt = e 3t τ hτdτ. 4
5 Skifte av integrasjonsvariabel τ t τ omformer svaret til løysinga vi fann for z-komponenten i 2b. Med ht = exp3t får vi svaret i 2c: zt = e 3t τ e 3τ dτ = te 3t. 4a Dette er ein modell for konkurrerande arter fordi koblingsleddet xyleddet har negativt forteikn i begge likningane, noko som reduserer veksten i begge populasjonane. 4b La F x, y = x2 x y og Gx, y = y + α y αx. Likevektspunkt er gitt ved at F = G =. Vi får: x = y = eller + α y =, 2 x y = y = eller + α y αx =, som gir flg. likevekter: x, y = {,,, + α, 2,,, }, når α. For α = får vi uendelig mange likvekter på linja x + y = 2. 4c Vi undersøker stabiliteten til det ikkje-linære systemet ved å linearisere omkring likevekten,, og studere stabiliteten av det tilhøyrande lineære sytemet. La u = x og v = y. Det lineariserte systemet kan skrivast: d u Fx, F = y, u d dt v G x, G y, v dt u v u = α v. Finn eigenverdier og eigenvektorer til dette systemet: Eigenverdier: λ α λ = + λ2 α = λ,2 = ± α. Eigenvektorer: 5
6 i λ = α : α α α ξ ξ 2 ii λ 2 = + α : α α ξ α ξ 2 = = αξ ξ 2 = ξ = αξ ξ 2 = ξ 2 =. α α. Det følgjer at og λ < λ 2 < for < α < λ < < λ 2 for α >. Vi har dermed ein asymptotisk stabil node i, når < α < og eit ustabilt sadelpkt. i, når α >. Stabiliteten endrar karakter for α = α =. 4d Når α er litt mindre enn α = vil trajektoriane til det lineært system vere parallelle med eigenvektoren ξ =, α, når t, og nærme seg likevekten, langs eigenvektoren ξ 2 =, α, når t +. Når α er litt større enn α = vil trajektoriane til det lineært system nærme seg likevekten parallelt med eigenvektoren ξ, og fjerne seg frå likevekten, parallellt med eigenvektoren ξ 2,. Når α = α = vil alle trajektorier for det lineære systemet nærme seg linja x + y = 2 parallelt med eigenvektoren ξ =,. Det lineariserte systemet er dermed stabilt i dette tilfellet, men vi kan ikkje uttale oss om det ikkjelineære systemet utifrå denne diskusjonen. 4e Når α = α = kan systemet skrivast x t = x2 x y y t = y2 x y } dy dx = y x yx = y x x. Her er x = x og y = y. Det følgjer at trajektorier for det ikkje-lineære systemet blir rette linjer gjennom origo når α = α. Substituerer utrykket for linja tilbake i likningane og får: x t = x2 + y } x x y t = y2 + x y y 6
7 Dette ser vi er logistikklikninga for xt og yt. Ved å studere denne kan vi enkelt konkludere med at den asymptotiske oppførselen når t er gitt ved i x + y x, y langs y = y x x eller x =, ii x + y > x + y 2 langs y = y x x eller x =. Det ikkje-lineære systemet er altså stabilt når α = α = og x + y >. 5a La ux, t = wx, t + vx. Vi skal kreve at w tilfredstiller varmelikninga med homogene randkrav. Det følgjer då at v =, v =, v =. Som gir vx = x og wx, = ux, vx = fx + x. Løyser for w = wx, t v.h.a separasjonsmetoden: wx, t = XxT t X X = T k T = σ { X + σx = 2 T + kσt = Løyser med randkrava X = X =. For separasjonskonstanten σ får vi kun den trivielle løysinga -løysinga. Vi kan difor gå utifrå at σ = λ 2, λ > som gir generell løysing av : Randkrava fører til: Xx = C cosλx + C 2 sinλx. X = C =, X = sinλ = λ = nπ, n =, 2,.... Eigenverdier og eigenfunksjoner for problemet er dermed: λ n = nπ, og X n x = sinnπx, n =, 2,.... Løyser likning 2 med gitte eigenverdier: T n t = exp kλ 2 nt, n =, 2,..., 7
8 som gir fundamentalløysingar w n x, t = X n xt n t. Superposisjon av fundamentalløysingane gir: wx, t = c n exp kn 2 π 2 t sinnπx. n= Koeffisientane i rekka må finnast slik at initialkravet er oppfyllt. Vi ser at rekka er sinus-rekka for den odde utvidinga til fx + x. Det følgjer at c n = 2 fx + x sinnπxdx, n =, 2,.... 5b Fourierkoeffisientane er gitt ved: c n = 2 fx + x sinnπxdx = 2 = 2x nπ cosnπx + 2 nπ = 2 nπ cosnπ 2 Dette gir løysinga, n =, 2,.... x sinnπxdx 2 x cosnπxdx + 2 nπ cosnπx 2 ux, t = x 2 cos nπ π n= 2 exp kn2 π 2 t sinnπx = = x + 2 n exp 4kn 2 π 2 t sin2nπx. π n= 2 sinnπxdx I grensa t vil T n t eksponentielt raskt. Det følgjer av dette at bidraget til løysinga frå Fourierrekka blir vilkårlig lite, wx, t, og vi har dermed at lim ux, t = vx = x. t 8
Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:
Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske
DetaljerUNIVERSITETET I BERGEN
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller
DetaljerEksamen i emnet M117 - Matematiske metodar Onsdag 6. november 2002, kl Løysingsforslag:
Eksamen i emnet M117 - Matematiske metodar Onsdag 6 noember 2002, kl 09-15 Løysingsforslag: 1a Her er r 0 løysing a det karakteristiske polynomet med mltiplisitet 2 pga t 3 -faktor i den partiklære løysinga
DetaljerUNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
DetaljerLøsningsforslag eksamen i TMA4123/25 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5
DetaljerLØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 EKSAMEN I MATEMATIKK N/D (TMA25 TMA3 TMA35 3. August 27 LØSNINGSFORSLAG Oppgave a Løsning: fouriersinusrekken til
DetaljerHøgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar
DetaljerLØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t
DetaljerTMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.
DetaljerHøgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x
Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +
DetaljerLØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x
LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)
DetaljerLøysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 2011
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4305 Ikkjelineær dynamikk Haust 011 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131
DetaljerLøsningsforslag Eksamen M100 Høsten 1998
Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim
DetaljerHøgskolen i Oslo og Akershus. ln x sin x 2 (ln x) (ln x) 2 = cos ( x2. (ln x) 2 = cos x 2 2x ln x x sin x 2 (ln x) 2 x + 2 = 1, P = (2, 2 4 y4 = 0
Løysingsforslag. Oppgåve a f cos f cos + cos cos + sin cos sin g g sin ln sin ln sin ln ln cos ln sin ln cos ln sin ln cos ln sin ln b 4 4 + y 4, P, 4 5 Implisitt derivasjon: d 4 y 4 + d d 4 d d d 4 4
DetaljerHøgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel
DetaljerMAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
DetaljerHØGSKOLEN I BERGEN Avdeling for ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for ingeniørutdanning EKSAMEN I FOA94 Differensialligninger KLASSAR : 08HETK, 08HMAM, 08HMMT, 08HMPR, 08HUVT DATO : 0. desember 200 ANTALL OPPGAVER 3 ANTALL SIDER 3 VEDLEGG
Detaljers 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.
NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g
Detaljer(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)
NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )
DetaljerEKSAMEN I MA0002 Brukerkurs B i matematikk
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:
DetaljerOPPGAVE 1 NYNORSK. LØYSINGSFORSLAG Eksamen i MAT111 - Grunnkurs i matematikk I onsdag 16. mai 2012 kl. 09:00-14:00. a) La z 1 = 3 3 3i, z 2 = 4 + i,
LØYSINGSFORSLAG Eksamen i MAT - Grunnkurs i matematikk I onsdag 6. mai kl. 9:-4: NYNORSK OPPGAVE a) La z = i, z = 4 + i, finn (skriv på forma a + bi): i) z z og ii) z z. : i) z z = ( i)(4 + i) = i i =
DetaljerTMA4120 Matte 4k Høst 2012
TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerLøysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2013
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 013 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131
DetaljerMA0002 Brukerkurs i matematikk B Vår 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn
DetaljerLøsningsforslag til utvalgte oppgaver i kapittel 10
Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte
DetaljerTMA4123/TMA4125 Matematikk 4M/4N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/4N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte
DetaljerLøsningsforslag, Ma-2610, 18. februar 2004
Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEksamen, høsten 14 i Matematikk 3 Løsningsforslag
Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene
DetaljerTMA4100 Matematikk1 Høst 2009
TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +
DetaljerLøysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 2012
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY4305 Ikkjelineær dynamikk Haust 01 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Telefon: 73593131
DetaljerLøysingsforslag for oppgåvene veke 17.
Løysingsforslag for oppgåvene veke 17. Oppgåve 1 Retningsfelt for differensiallikningar gitt i oppg. 12.6.3 med numeriske løysingar for gitt initalkrav (og eit par til). a) b) c) d) Oppgåve 2 a) c) b)
DetaljerForelesningsplan M 117
Forelesningsplan M 117 Innledning Kan du gi et eksempel på et fenomen eller en prosess som er lineær? Har du eksempel på ikke-lineære fenomen? Hva er henholdsvis en ordinær (ODL) og en partiell differensialligning
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerLøsningsforslag Eksamen M001 Våren 2002
Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerLøsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
DetaljerEksamen i emnet MAT111/M100 - Grunnkurs i matematikk I Mandag 15. desember 2003, kl. 09-13(15) LØYSINGSFORSLAG OPPGÅVE 2:
Eksamen i emnet MAT/M00 - Grunnkurs i matematikk I Mandag 5. desember 2003, kl. 09-3(5) LØYSINGSFORSLAG Finn dei deriverte til i) f(x) = x 2 ln x OPPGÅVE : exp(u 2 )du, x, ii) f(x) = x cos(x). i) d x 2
Detaljery (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t)
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 013 Løsningsforslag Notasjon og merknader En vektor boken skriver som ai + bj + ck, vil vi ofte skrive som (a, b, c), og tilsvarende
Detaljer=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,
DetaljerSom vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.
NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerLØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med
DetaljerLøsningsførslag i Matematikk 4D, 4N, 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y
DetaljerRandkurva C til flata S orienteres positivt sett ovenfra, og kan parametriseres ved: r (t) = [ sin t, cos t, sin t] dt, 0 t 2π.
Ma - Løsningsforslag til uke 17 i 7 Eks. mai 1999 oppgave 4 ylinderen x + y = 1 skjærer ut ei flate av planet z = x + 1 dvs. x + z = 1 med enhetsnormal i positiv z-retning lik n= 1 [ 1 1]. Flata blir en
DetaljerHØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
DetaljerFY1006/TFY Løysing øving 5 1 LØYSING ØVING 5. Krumning og stykkevis konstante potensial
FY006/TFY45 - Løysing øving 5 Løysing oppgåve LØYSING ØVING 5 Krumning og stykkevis konstante potensial a) I eit område der V er konstant (lik V ), og E V er positiv, er området klassisk tillate og vi
DetaljerTMA4135 Matematikk 4D Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)
Detaljery(x) = C 1 e 3x + C 2 xe 3x.
NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks
Detaljer1 Algebra og likningar
Algebra og likningar Repetisjon av gamalt sto Løysingsforslag Oppgåve a) ln( + y) = ln + ln y F b) sin( + y) = sin + sin y F c) k ( + y) = k + ky R d) e +y = e e y R e) cos( + y) = cos cos y sin sin y
DetaljerNorges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;
Detaljerdifferensiallikninger-oppsummering
Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.
DetaljerEksamensoppgave i TMA4135 Matematikk 4D: Løysing
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag, midtsemesterprøve MA1103, 2.mars 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven
DetaljerTMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s.
NTNU Institutt for matematiske fag TMA43/5 Matematikk 4M/N, 8 august, Løsningsforslag TMA43M regnet oppgavene 7, mens TMA45N regnet oppgavene 6 a) Andre forskyvningsteorem side 35 i læreboken) gir at der
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerTillegg om strømfunksjon og potensialstrøm
Kapittel 9 Tillegg om strømfunksjon og potensialstrøm 9.1 Divergensfri strøm 9.1.1 Strømfunksjonen I kompendiet, kap. 4.6 og kap. 9, er det påstått at dersom et todimensjonalt strømfelt v(x y) = v x (x
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 15. november 2011 Kapittel 8.9. Konvergens av Taylorrekker 3 i 3 i Løs likningen x 2 + 1 = 0 3 i Løs likningen
Detaljer3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)
Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:
DetaljerLøysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011
Løysingsframlegg/skisse Eksamen TFY 4210 Kvanteteorien for mangepartikkelsystem 24. mai 2011 May 24, 2011 Oppgave 1 1) Ein global fasetransformasjon er på forma ψ ψe iα ψ ψ e iα, (1) der α er ein konstant.
DetaljerOppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen.
NTNU Istitutt for matematiske fag SIF53 Matematikk 4N eksame 453 Løsigsforslag Oppgavesettet har pukter, ab, abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelse a Vi har h(t = t e (t τ f(τ dτ = e t f(t
Detaljery = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerLøsningsforslag Eksamen M100 Våren 2002
Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.
DetaljerUniversitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl.
1 MAT131 Bokmål Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet Mat131 - Differensiallikningar I Onsdag 25. mai 2016, kl. 09-14 Oppgavesettet er 4 oppgaver fordelt på
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4 Matematikk Haust Løysingsforslag Øving Oppgåver frå læreboka kap. 6., s. 7 u v = ( 7)+( 5) ( 4)+( ) 6 = u = +( 5) +( ) = v
DetaljerMAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
Detaljer1 Mandag 1. februar 2010
Mandag. februar 200 I dag skal vi fortsette med rekkeutviklinger som vi begynte med forrige uke. Vi skal se på litt mer generell rekker og vurdere når de konvergerer, bl.a. gi et enkelt kriterium. Dette
DetaljerFasit til utvalgte oppgaver MAT1110, uka 11/5-15/5
Fasit til utvalgte oppgaver MAT0, uka /5-5/5 Øyvind Ryan (oyvindry@i.uio.no May, 009 Oppgave 5.0.a Ser at f(x, y = (, 3, og g(x, y = (x, y. g(x, y = 0 hvis og bare hvis x = y = 0, og dette er ikke kompatibelt
DetaljerUNIVERSITETET I BERGEN
NYNORSK TEKST UNIVERSITETET I BERGEN Det matematisk-naturvitskaplege fakultet, V. 2004. Eksamen i emnet MAT25 - Mekanikk. Måndag 7. juni 2004, kl 09.00-4.00. Tillatne hjelpemiddel: Ingen Oppgåver med svar
DetaljerLøsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I
Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.
DetaljerEksamensoppgåve i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerEksamen i TMA4122 Matematikk 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk
Detaljer2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =
Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FAG SIF5045 NUMERISK LØSNING AV DIFFERENSIALLIGNINGER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Syvert P. Nørsett 7 59 5 45 LØSNINGSFORSLAG TIL EKSAMEN I FAG SIF545 NUMERISK LØSNING
DetaljerLøysingsframlegg øving 1
FY6/TFY425 Innføring i kvantefysikk Løysingsframlegg øving Oppgåve Middelverdien er x = x Ω X xp (x) = 2 + 2 = 2. (.) Tilsvarande har vi x 2 = x Ω X x 2 P (x) = 2 2 + 2 2 = 2. (.2) Dette gjev variansen
DetaljerPotensrekker Forelesning i Matematikk 1 TMA4100
Potensrekker Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 11. november 2011 Kapittel 8.8. Taylorrekker og Maclaurinrekker 3 Taylor-polynomer Definisjon (Taylorpolynomet
DetaljerLøysingsforslag for TMA4120, Øving 6
Løysingsforslg for TMA42, Øving 6 October, 26 2..3 Set inn i likning: 2 u t 2 = c2 2 u x 2 2 (cos 4t sin 2x t 2 = c 2 2 (cos 4t sin 2x x 2 6 cos 4t sin 2x = 4c 2 cos 4t sin 2x. u er med ndre ord ei løysing
DetaljerEKSAMEN. Valgfag, ingeniørutdanning (3. klasse). ANTALL SIDER UTLEVERT: 5 (innkl. forside og 2 sider formelark.)
KANDIDANUMME: EKAMEN FAGNAVN: Matematikk 3 FAGNUMME: EA32 EKAMENDAO: 1. desember 26 KLAE: Valgfag, ingeniørutdanning (3. klasse). ID: kl. 9. 13.. FAGLÆE: Hans Petter Hornæs ANALL IDE ULEVE: 5 (innkl. forside
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerLøysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016
Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerUNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
DetaljerLøsningsforslag MAT 120B, høsten 2001
Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()
DetaljerFasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015
Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Fasit TFY4215/FY1006 Innføring i kvantefysikk Vår 2015 Faglærar: Professor Jens O. Andersen Institutt for Fysikk, NTNU Mandag 27. mai 2015 kl.
Detaljer