EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL
|
|
- Alexandra Ellefsen
- 8 år siden
- Visninger:
Transkript
1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 34 TMA4 Matematikk 4K H-3 Oppgave A-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side a 5. juni 3 () F(xe ax )= iw (a) 3/ e w /4a. Bruk så () og tabell til å bestemme funksjonen f når EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del A: Laplacetransformasjon, Fourieranalyse og PDL Oppgave A- a) La f(x) være definert for x ved når x</, når / x. Finn Fourier-cosinusrekken til f(x) i intervallet x. b) Gitt den partielle differenssialligningen () med randbetingelser t = u, x, t, x () x (,t)= (, t) =, t. x Finn alle løsninger av () og () som er av formen u(x, t) =F (x)g(t). c) Angi en løsning av () og () som oppfyller initialbetingelsen (3) u(x, ) = f(x), x, der f(x) er funksjonen definert i a). Bestem til slutt en løsning av () og () som istedenfor (3) oppfyller initialbetingelsen u(x, ) = sin x, x. Oppgave A- Bruk Laplacetransformasjonen til å løse initialverdiproblemet y +y +y = δ(t ), y()=, y ()=, der δ betegner deltafunksjonen. xe x = f(v) e (x v) dv. Oppgave A-4 a) Finn f(t) og g(t) når deres Laplacetransformerte er b) Løs initialverdiproblemet L(f) =F (s) = s e s, L(g) =G(s) = s ( e s ). y + y = g(t) δ(t ), y() = y () = der g er definert i a) og δ betegner deltafunksjonen. c) Bestem x(t) av integralligningen der f og g er funksjonene definert i a). [x(u) f(u)]x(t u) du = g(t) Oppgave A-5 a) La f(x) være definert for x ved når x</, x når / <x. Finn Fourier-sinusrekken til f(x) i intervallet x. b) Angi summen av sinusrekken i a) for x = / ogforx = 3/4. Finn summen av rekken
2 TMA4 Matematikk 4K H-3 Side 3 av 34 TMA4 Matematikk 4K H-3 Side 4 a Oppgave A-6 La g være en to ganger deriverbar funksjon, sett g (x) og anta at f(x) dx < og at g(x) dx < slik at de Fouriertransformerte av f(x) og g(x) eksisterer. Vi søker en løsning av den partielle differensialligningen slik at og x =, <x<, y y lim u(x, y) = lim (x, y) = x (x, ) = f(x). y a) Overfør problemet ved hjelp av Fouriertransformasjonen til en ordinær differensialligning og løs denne. b) Vis at løsningen på problemet kan skrives på formen og finn funksjonen h(p, y). u(x, y) = g(x p)h(p, y) dp for y> Oppgave A-7 Løs følgende ligning ved hjelp av Laplacetransformasjonen: hvor y() = og t. y (t)+ e u y(t u) du y(t) =5e t 4t, Oppgave A-8 a) Finn de løsninger av den partielle differensialligningen som kan skrives på formen og som tilfredsstiller randkravene x + t t = u(x, t) =F (x)g(t), b) Finn en løsning fra a) som også tilfredsstiller kravet u(x, ) = sin x 3sin3x. Oppgave A-9 Gitt den partielle differensialligningen 4 u x u 4 x + u u t = hvor <x<+ og t> og randbetingelsene lim u(x, t) = = lim k u(x, t) x k for k =,, 3 og lim u(x, t) <. t + a) Benytt Fouriertransformasjonen til å overføre den gitte ligning til en ordinær differensi ning og løs denne. Forklar bruken av randbetingelsene. b) Finn en løsning u(x, t) som tilfredsstiller kravet u(x, ) = f(x), hvor f(x) er en passende funksjon. Uttrykk løsningen så enkelt som mulig ved et konvolusjonsintegral c) Regn ut Fouriertransformasjonene til e x og ( x )e x /. d) Vis at u(x, t) = + e u e (x u) / du er en løsning av den inhomogene ligningen 4 u x u 4 x + u u t =( x )e x /. Oppgave A- Løs initialverdiproblemet f (t) =e t sin t + f()= ved hjelp av Laplacetransformasjonen. Oppgave A- Beregn Fourierintegralet for funksjonen e u (cos u +sinu)f(t u) du, t u(,t)=u(, t) = fort>. e x for <x<
3 TMA4 Matematikk 4K H-3 Side 5 av 34 TMA4 Matematikk 4K H-3 Side 6 a og begrunn at det eksisterer og konvergerer mot f(x) for alle x. Bruk resultatet til åviseat cos x +x dx = e. Det oppgis at Fourierintegralet til en funksjon f(x) kan skrives som der A(w) = [A(w)coswx + B(w)sinwx] dw f(v)coswv dv, B(w) = f(v)sinwv dv. b) Finn den inverse Laplacetransformerte L s(s+) e ns} for n =,,,... Benytt svaret til å finne løsningen av initialverdiproblemet x + x = r(t), x() = som en uendelig rekke. (Funksjonen r(t) er definert i a).) Oppgave A-4 a) Gitt funksjonen x( x) for x. Finn Fouriercosinusrekken til f(x) i det gitte intervallet. Oppgave A- a) Finn alle funksjoner av typen u(x, t) =F (x)g(t), x, t som tilfredsstiller den partielle differensialligningen u xx 4u x + u = u t, x, t og randbetingelsene ( ) u(,t)=u(, t) = for t. b) Finn løsningen u(x, t) av og( ) som også tilfredsstiller initialbetingelsen u(x, ) = e x sin x cos x for x. c) Finn løsningen u(x, t) av og( ) som også tilfredsstiller initialbetingelsen Oppgave A-3 a) La r(t) være trappefunksjonen definert ved u(x, ) = xe x for x. r(t) =n + for n<t<n+, n =,,,... Tegn grafen til r(t) og uttrykk r(t) ved enhetsprangfunksjoner (unit step functions) u(t n). Finn den Laplacetransformerte R(s) = L(r) som en geometrisk rekke. For hvilke s konvergerer rekken, og hva blir summen? b) Finn alle løsninger på formen u(x, y) = F (x)g(y) av randverdiproblemet y = y u for x, y, x x (,y)= (, y) = for y>. x c) Finn en (formell) løsning av på formen u(x, y) = F n (x)g n (y) som oppfyller Finn også en løsning av som oppfyller n= u(x, ) = x( x) for x. u(x, ) = cos x cos 3x for x. Oppgave A-5 a) La a være en positiv konstant. Finn den inverse Fouriertransformerte til b) Gitt den todimensjonale Laplaceligningen () med tilleggsbetingelser () lim u(x, y) = lim e a w. x + u = for <x<, y y (x, y) = x La û(w, y) være den Fouriertransformerte av u(x, y) med hensyn på x. Bruk Fouriert formasjonen til å finne en ordinær differensialligning for û(w, y) og løs denne.
4 TMA4 Matematikk 4K H-3 Side 7 av 34 TMA4 Matematikk 4K H-3 Side 8 a c) Anta at u(x, y) i tillegg til () og () også oppfyller lim u(x, y) = og u(x, ) = f(x), y der f er en gitt funksjon som kan Fouriertransformeres. Vis at u(x, y) kan skrives på formen u(x, y) = y f(t) dt for y>. (x t) + y Oppgave A-6 a) Bestem } L(t sin t), L(t cos t) og L ( + s ) ved å bruke formler for Laplacetransformasjonen i formelsamlingen. b) Finn ved hjelp av Laplacetransformasjonen de løsninger av differensialligningen som tilfredsstiller x() =. Oppgave A-7 a) Gitt funksjonen tx x + tx = x for <x<, for x<; som antas å være periodisk med periode. Finn Fourier-rekken til f(x). b) Funksjonen g(x) er også periodisk med periode og e x for <x<, g(x) = for x<. Det oppgis at g(x) har Fourier-rekke n n + e x ( ( ) n e ) sin nx. Hva er summen av rekken for x = / ogforx =3/? Finn også summen av rekken Oppgave A-8 Gitt den partielle differensialligningen () x +4 +6u + y x y =. a) Finn de løsninger på formen u(x, y) =F (x)g(y) som tilfredsstiller kravene u(,y)=u(, y) = for y>. b) Finn en løsning av () som i tillegg til oppfyller (Oppgitt formel: sin 3 x = 3 sin x sin 3x.) 4 4 u(x, ) = e x sin 3 x. Oppgave A-9 Det oppgis at Fourierintegralet til en funksjon f(x) kan skrives som [A(w)coswx + B(w)sinwx] dw der A(w) = f(x)coswx dx og B(w) = Bestem funksjonene A(w) ogb(w) for funksjonen for x<, e x for x>. Bruk resultatet til å finne verdien av integralene cos w dw og +w w sin w +w dw. Oppgave A- La f(x) være en odde funksjon som oppfyller for <x, for x>. a) Finn den Fouriertransformerte av f(x). f(x)sinwx dx.
5 TMA4 Matematikk 4K H-3 Side 9 av 34 TMA4 Matematikk 4K H-3 Side a b) Bruk den inverse Fouriertransformasjonen til å beregne integralet a) Vis at Fourierrekken til f(x) er Oppgave A- Gitt den partielle differensialligningen ( cos t)sint dt. t x +4 x +3u = u, x, t. t a) Finn alle løsninger av som kan skrives på formen u(x, t) =F (x)g(t) og som oppfyller randbetingelsene (i) u(,t)=u(, t) =, t. b) Finn en løsning av som i tillegg til (i) også oppfyller initialbetingelsene b) Finn summen av rekkene Oppgave A-4 Finn f(x) av ligningen i) a + sin na cos nx. n sin na n, ii) e x = f(u)e (x u) du. sin na n. (ii) u(x, ) = e x (sin x sin3x), (x, ) =, x. t Oppgave A-5 Gitt den partielle differensialligningen Oppgave A- La u(x, y) være en løsning av x = + u, <x<, y, y som oppfyller u(x, ) = f(x) for alle x. Antaatu(x, y) kan Fouriertransformeres med hensyn på x, ogat lim Vis at u(x, y) kan skrives på formen og finn funksjonen h(t). u(x, y) = lim u(x, y) = e y (x, y) =. x f(x t y) h(t) dt Oppgave A-3 La <a<og la f(x) være en like funksjon med periode som oppfyller hvis x a, hvis a<x. x + t =, x, t. t a) Finn alle løsninger av som kan skrives på formen u(x, t) =F (x)g(t) og som opp betingelsene (i) u(,t)=u(, t) =, t. b) Finn en løsning av som i tillegg til (i) også oppfyller betingelsen (ii) u(x, ) = Oppgave A-6 Gitt et system av ordinære differensialligninger der og y i () = y i() = for i =,. sin nx n 3, x. y +y y = f(t) y +y y = f(t) f(t) = hvis t< hvis t>
6 TMA4 Matematikk 4K H-3 Side av 34 TMA4 Matematikk 4K H-3 Side a a) Vis at der Y (s) =L[y (t)]. b) Finn y (t) ogy (t). Y (s) = e s s(s +3) Oppgave A-9 a) Finn Fourierrekken til den funksjonen med periode som er gitt ved x for <x, for x. b) Bruk resultatet fra a) til å finne summen av rekkene Oppgave A-7 a) La f(x) være funksjonen Finn den Fouriertransformerte av f(x). b) Bruk resultatet fra a) til å beregne Oppgave A-8 Gitt den partielle differensialligningen der x og t. x for x, ellers. sin w dw. w x = x + t a) Finn alle løsninger av på formen u(x, t) =F (x)g(t) som oppfyller (i) u(,t)=u(, t) = for alle t. b) Finn den løsningen av som i tillegg til (i) også er slik at Fourierrekken til u(x, )e x er gitt ved (ii) u(x, )e x = for x. n= ( ) n sin(n +)x (n +) n= (n +) og n= ( ) n n +. c) La a + [a n cos nx + b n sin nx] være Fourierrekken fra a). Skisser den kontinuerlige f sjonen som har a + a n cos nx som sin Fourierrekke. Det er nok å skissere funksjonen for x. Oppgave A-3 Gitt den partielle differensialligningen () der c er en positiv konstant. a) Finn alle løsninger av () på formen som tilfredsstiller randkravene t = u c x u(x, t) =F (x)g(t) () u(,t)= (L, t) =fort> x der L er en positiv konstant. b) Finn løsningen u av () og () som også tilfredsstiller initialbetingelsene u(x, ) = sin L x, 3 (x, ) = sin t L x, x [,L].
7 TMA4 Matematikk 4K H-3 Side 3 av 34 TMA4 Matematikk 4K H-3 Side 4 a Oppgave A-3 La funksjonen g være definert ved for x, + x for <x, g(x) = x for <x<, for x. a) Finn den Fouriertransformerte, ĝ, til g. b) Bruk resultatet til å beregne integralet cos w dw. w Oppgave A-3 La h være definert ved h(t) =t + t for t (, ] ogh(t +) =h(t) for t R. a) Skisser funksjonen h for alle t R. b) Finn Fourierrekken til h. c) Bestem summen av Fourierrekken for alle t R. d) Finn summen av rekken Oppgave A-33 La funksjonen f α være definert ved der α er positiv konstant. f α (t) = a) Finn den Laplacetransformerte, L(f α ), til f α. b) Løs differensialligningen der f α er funksjonen ovenfor. ( 4 n + ). 4 n α for t [, +/α], ellers, y + y = f α, y() = y () =, c) Løsningen y av differensialligningen vil avhenge av parameteren α. Finn ϕ(t) = lim y(t). Hvilken differensialligning vil ϕ tilfredsstille? α Oppgave A-34 a) Finn L(te t sin t). } e as b) Finn L(t + b)u(t a)} og L der a og b er positive konstanter. (s + b) c) Bruk Laplacetransformasjonen til å finne funksjonen y(t) når for alle t. Oppgave A-35 Løs den partielle differensialligningen y(t) = d dt t u x = t der <x< og t, under betingelsene (i) (ii) lim u(x, t) = og lim u(x, ) = f(x) e τ y(t τ) dτ + t (x, t) = x der f(x) er en funksjon som har en Fouriertransformert. Vis at svaret kan skrives på formen u(x, t) = f(x st)g(s) ds der funksjonen g(s) skal bestemmes. Oppgave A-36 Funksjonen x,<x<, er gitt. a) Finn sinusrekken til funksjonen f(x). b) La for alle x, S(x) betegne summen av sinusrekken til f(x) ia). ( Hva blir S ) ( 5 ) og S? 4 4 Skisser grafen til S(x) i det lukkede intervallet [, +].
8 TMA4 Matematikk 4K H-3 Side 5 av 34 TMA4 Matematikk 4K H-3 Side 6 a Gitt den partielle differensialligningen e) Finn den løsningen av som i tillegg til (i) også oppfyller med randkrav x = u +4 t, t (ii) u(x, ) = f(x), x, der f(x) er som i a). ( ) u(,t)==u(, t), t. c) Finn alle løsningene av på formen u(x, t) =F (x)g(t) som også tilfredsstiller ( ), og bestem en løsning av som tilfredsstiller ( ) og initialbetingelsen u(x, ) = f(x), <x<, t. Oppgave A-37 Bruk Laplacetransformasjonen til å finne f(t) når for alle t. f(t) =e t cos(t u)f(u) du Oppgave A-38 a) Finn Fouriercosinusrekka til funksjonen coshx, x. (Husk at sinh x = ex e x og cosh x = ex + e x.) b) Bruk resultatet i a) til åviseat n= ( ) n n + = sinh. c) Hvor mange ledd måvitamedirekkaib)forå beregne summen med feil mindre enn, 4? d) Finn alle løsninger av x = t, x, t >, t på formen u(x, t) = F (x)g(t) som oppfyller (i) x (,t)= (, t) =, t >. x Oppgave A-39 } } a) Finn L e 3s og L. s(s +) s(s +) b) Gitt et system av differensialligninger der og x() = x () = y() = y ()=. Finn x(t) ogy(t). x + x y = r(t) y + y x = r(t) r(t) = når t<3 når t>3 Oppgave A-4 a) La x( x) for x. Hva blir Fourier-sinusrekken til f(x)? Du kan bru Fourier-sinusrekken til x for x<er [ m 4 (m ) 3 b) Finn alle løsninger av Laplaces ligning ] sin (m )x } sin mx. m () u xx + u yy =, x, y på formen u(x, y) = F (x)g(y) som tilfredsstiller () u(x, ) = u(, y)=u(, y) =. c) Bestem en løsning av () og () som oppfyller (3) u(x, ) =f(x), x der f(x) er funksjonen definert i a).
9 TMA4 Matematikk 4K H-3 Side 7 av 34 TMA4 Matematikk 4K H-3 Side 8 a Oppgave A-4 a) Finn Fouriertransformasjonen til funksjonen e x cos x. b) Bruk resultatet fra a) til å finne verdien av integralet w + cos wdw. w 4 +4 Oppgave A-4 La f være definert ved cos x, x [,/),, x [/,). La g betegne den odde, periodiske utvidelsen av f med periode,oglah være den like, periodiske utvidelsen av f med periode. a) Skisser g og h på intervallet ( 3, 3]. (Merk av enhetene på aksene.) b) Finn Fourierrekken til h. Oppgave A-43 a) Finn Fouriertransformasjonen til funksjonen x for x for x >. b) Bruk resultatet fra a) til å finne verdien av integralet (Hint: cos w =sin w/) sin t dt. t Oppgave A-44 La a være en positiv konstant. Funksjonene f a og g a er definert ved f a (t) =e at for <t<a, for t> og g a (t) = e at for a<t. a) Finn de Laplacetransformerte Lf a } og Lg a }, og beregn (f a g a )(t). La G og H betegne summen av Fourierrekkene til henholdsvis g og h. c) Bestem G og H i punktene x = /4, x =ogx = /. d) Finn summen av rekkene ( ) m+ (m) og (m). e) Finn alle løsninger u av randverdiproblemet utt = u xx + u, x [,] u x (,t)=u x (, t) =, t > på formen u(x, t) =F (x)g(t). f) Bestem løsningen av som tilfredsstiller initialbetingelsene u(x, ) = f(x), u t (x, ) = der f er funksjonen gitt i begynnelsen av oppgaven. b) Bruk Laplacetransformasjonen til å finne en løsning av integralligningen y(t) der g er funksjonen g a for a =. e u y(t u) du = g (u)e t u du Oppgave A-45 a) Finn Fourier-sinusrekken til funksjonen på intervallet [,]. b) Differensialligningen (i) u xx +u x + u = tu t er gitt for <x<, t. Finn alle funksjoner av formen u(x, t) =F (x)g(t) tilfredsstiller (i) og randbetingelsen (ii) u(,t)=u(, t) = fort. c) Finn en formell løsning av (i) og (ii) som tilfredsstiller initialbetingelsen (iii) u(x, ) = e x for <x<.
10 TMA4 Matematikk 4K H-3 Side 9 av 34 TMA4 Matematikk 4K H-3 Side a Oppgave A-46 a) Finn de Fouriertransformerte til funksjonene e x for x> og g(x) = for x< b) Bruk Fouriertransformasjonen til åviseatf g = (f + g). cos(aw) Beregn integralet dw der a er et reelt tall. +w Oppgave A-47 } a) Finn L }, L s + ω s(s + ω ) b) Løs initialverdiproblemet: for x> e x for x<. } e og L as når ω>, a. s + ω y +4y = r(t), y()=,y ()= for <t< der r(t) = når t> c) Skisser grafen til y(t) når y +4y = δ(t ), y()=,y ()=. Oppgave A-48 Funksjonen, <x<, er gitt. Beregn koeffisientene i Fourier-sinusrekken til f(x) og skriv opp rekken. Skisser også grafen til rekkens sum i det lukkede intervallet [, ]. Oppgave A-49 Gitt en sirkulær skive med radius og sentrum i origo. Temperaturen i et punkt på skiven med polarkoordinater (r, θ) betegnes u(r, θ). Den kontinuerlige funksjonen u(r, θ) er løsning av ligningen () r + r r + r θ = og oppfyller (selvsagt) betingelsen () u(r, θ +) =u(r, θ). (<r<, <θ< ) a) La p og bestem alle løsninger av () på formen u(r, θ) = r p G(θ). Hvilke av disse løsningene tilfredsstiller ()? b) (Kan besvares uavhengig av pkt. a)) La f(θ) være en funksjon med periode gitt ved for <θ< f(θ) = for <θ</ for / <θ<. Finn Fourierrekken til f(θ). c) Temperaturen på randen av sirkelskiven, u(,θ), er gitt ved u(,θ)=f(θ). Finn på rekkeform et uttrykk for temperaturen i et vilkårlig punkt (r, θ) på sirkelskive Oppgave A-5 Bruk Fouriertransformasjonen til å finne f(x) når e ax = f(u)e b(x u) du, b > a >. Oppgave A-5 a) Finn den inverse Laplacetransformerte til funksjonen F (s) =e as (s + b). b) Bruk Laplacetransformasjonen til å finne en løsning av initialverdiproblemet ẍ +ẋ + x = δ(t ) δ(t ) x()= ẋ() =. Oppgave A-5 a) Finn alle funksjoner av formen u(x, y) = F (x)g(y) i rektanglet < x < a, < y < b, tilfredsstiller u xx + u yy = u x (,y)=u x (a, y) =u(x, )=. b) Finn den funksjonen, som i tillegg til betingelsene under punkt a, tilfredsstiller u(x, b) =cos x a +cosx a.
11 TMA4 Matematikk 4K H-3 Side av 34 TMA4 Matematikk 4K H-3 Side a Oppgave A-53 a) Finn Fourier-cosinusrekken til funksjonen e x på intervallet [,]. b) Skisser summen av rekken i intervallet [, ]. c) Evaluer rekken for x =ogx = og bruk dette til å beregne summen av rekkene ( ) n (i) og (ii) +n +n. n= n= Oppgave A-57 Funksjonen u(x, y) er definert for x, y. Den tilfredsstiller differensialligningen () u xxy u = for x, y og randvilkårene () u(,y)=u(, y) = for y. a) Finn først alle funksjoner u(x, y) på formen u(x, y) = F (x)g(y) som tilfredsstiller () og Oppgave A-54 Strømmen i(t) tilfredsstiller ligningen C b) Finn deretter en funksjon u(x, y) som tilfredsstiller (), () og initialvilkåret (3) u(x, ) = sin x +sinx for x. Ri(t)+ i(τ) dτ = v(t), t<, C der v(t) =når t<5, v(t) =7når 5 t<, og v(t) =når t. a) Finn Laplacetransformasjonen b) Bestem i(t). Beregn i(), i(7) og i(). I(s) =Li(t)}. v(t) R c) Finn tilslutt en formell rekke u(x, y) som tilfredsstiller (), () og initialvilkåret (4) u y (x, ) = for <x<. Oppgave A-58 a) Funksjonen f er definert ved for a<x<b ellers Oppgave A-55 Bestem på kompleks form Fourierrekken til e x for <x der f(x) erperiodisk med periode. Oppgave A-56 a) Løs integralligningen b) Funksjonen f er definert ved y(t) =(t +)e t e t e τ y(τ) dτ. f(t) = 8sint for t, for t>. Løs differensialligningen y +9y = f(t) med initialverdier y() =, y () =. der a, b er konstanter, <a<b. Regn ut den Fouriertransformerte av f(x). Uttrykk dernest den inverse Fouriertransformasjonen ved f(x). b) Bruk resultatet i a) til å finne verdien av integralene e iwa dw og w Oppgave A-59 Gitt følgende partielle differensialligning sin aw w t u x = e x, <x<, t med randkravene lim u(x, t) = lim u x(x, t) = Vis at en løsning som oppfyller initialbetingelsen u(x, ) = dw.
12 TMA4 Matematikk 4K H-3 Side 3 av 34 TMA4 Matematikk 4K H-3 Side 4 a er gitt på formen u(x, t) = e s /4 g(s, t)cossx ds. Funksjonen g(s, t) skal bestemmes. ( Husk at differensialligningen dy/dt + ay = b, a og b konstanter, a, har generell løsning y = Ce at + b/a. ) Oppgave A-6 Løs følgende system av differensialligninger med initialbetingelse y () = og y () =. Oppgave A-6 La funksjonen f være definert ved y + y + y = δ(t ) y +3y y = ( a)x for x a ( x)a for x>a når x [,]oga er en gitt konstant i intervallet (,). a) Bestem Fourier-sinusrekken til f. Hva er summen av Fourier-sinusrekken til f i x = a? b) Sett a =. Hva er summen av Fourier-sinusrekken til f i x =? c) Bruk Parsevals teorem (også kalt Parsevals identitet) til å bestemme sin na n 4. Oppgave A-6 a) La g være en funksjon med Fouriertransformert ĝ(ω). Vis at F (ĝe αω )= g(y)e (x y) /4α dy α b) Anta at u tilfredsstiller initialverdiproblemet u t = u xx + F (x, t) u(x, ) = f(x) der u og u x når x.laf og F være slik at de Fouriertransform eksisterer. Vis at den Fouriertransformerte û oppfyller û(ω, t) = f(ω)e t ωt + F (ω, τ)e ω (t τ) dτ. c) Vis at u kan skrives som u(x, t) = G(x y, t)f(y) dy + G(x y, t τ)f (y, τ) dy dτ der G(x, t) = t e x /4t. Oppgave A-63 a) Bestem en løsning på formen v(x, t) =Ax + B av randverdiproblemet v t = v xx v x (,t)=k v(, t) =K der K og K er gitte reelle tall. La u og v være vilkårlige løsninger av. Vis at da vil w = u v tilfredsstille b) Finn løsningen u(x, t) av w t = w xx w x (,t)=w(, t) =. u t = u xx u x (,t)= u(, t) =3 u(x, ) = x + +cos(x/) cos(3x/).
13 TMA4 Matematikk 4K H-3 Side 5 av 34 TMA4 Matematikk 4K H-3 Side 6 a Oppgave A-64 a) Funksjonen f(x) er definert for x ved Det oppgis at x x. f(x)sinnxdx= ( cos n) for n =,,... n3 Skriv opp Fourier-sinusrekken til f(x). b) Funksjonen u(x, t) tilfredsstiller differensialligningen () u t + tu u xx = for x, t. Finn alle løsninger på formen u(x, t) =F (x)g(t) som også tilfredsstiller randvilkårene () u(,t)=,u(, t) = for t. c) Finn en løsning av () og () som tilfredsstiller initialvilkåret (3) u(x, ) = f(x) 8 sin x for x, c) Bestem løsningen av som oppfyller Oppgave A-67 La x = x(t) ogy = y(t) løse u(x, ) =xe x. x x +5y = t y 4y x = med initialbetingelse x() = y() = x () = y () =. a) Vis at X = L(x) ogy = L(y) kan skrives på formen X = s + 8 3(s +4) 5 3(s +) s Y = (s +4)(s +). b) Bestem løsningen x = x(t) ogy = y(t). der f(x) er funksjonen definert i punkt a). Oppgave A-65 Gitt funksjonen e ax, a > a) Regn ut den Fouriertransformerte av f konvolusjon med seg selv (dvs. F(f f)). Oppgave A-68 Bruk Fouriertransform til å vise for alle x R og a>. a cos ωx dω = ω e a x + a b) Bruk resultatet i a) til å finne verdien av e a(x u) e au du for alle x R. Oppgave A-66 a) Bestem Fourier-sinusrekka til x for x [,]. b) Finn alle løsninger på form u(x, y) = F (x)g(y) av u xx u x + u yy = u(x, ) =, x [,] u(,y)=u(, y) =, y [, Fasit A- a) + 6 ( ) n cos (n +)x (n +) n= b) u n (x, t) =A n e nt cos nx, n =,,,... c) u(x, t) = + 6 ( ) n (n +) e (n+)t cos (n +)x n= u(x, t) = e 4t cos x A- y(t) =e t (cos t +sint) e e t sin t u(t )
14 TMA4 Matematikk 4K H-3 Side 7 av 34 TMA4 Matematikk 4K H-3 Side 8 a A-3 4 xe x for t<, A-4 a) f(t) = for t, t sin t for t< b) y = sin t for t c) x (t) =, x (t) = A-5 a) sin x = sin x ( ) m [ b) /4, /4, /8 A-6 a) û(w, y) =ĝ(w)e w y b) h(p, y) = y e p /4y A-7 y = e t (cos t +3sint)+t g(t) = for t< for t sin 3x sin 4x sin(m )x (m ) A-8 a) u n (x, t) =A n t n sin nx, n =,,... b) u(x, t) =t sin x 3t 9 sin 3x A-9 a) U(w, t) =B(w)e (w +)t + t for t< for t + sin 5x ] sin mx m b) u(x, t) = e t f(u)e (x u) /4t du t c) F ( e x ) = w + } F ( x )e x / =(w +)e w / A- f(t) = 4 4 et + tet 5 ++ A- a) u n (x, t) =B n e x sin nx e (n +3)t, n =,, 3,... b) u(x, t) =e x sin xe 7t c) u(x, t) = ( ) n+ n ex sin nx e (n +3)t n= A-3 a) r(t) = u(t n), R(s) = n= b) [ e (t n)] u(t n), x(t) =r(t) A-4 a) 6 cos mx m s e ns = s( e s ) e (t n) u(t n) b) u n (x, y) =C n e n y / cos nx, n =,,,... c) u(x, y) = 6 cos mx my e m u(x, y) =e y cos x + e 8y cos 4x a A-5 a) x + a b) û(w, y) =A(w)e w y + B(w)e w y s A-6 a) (s +), s (s +), (sin t t cos t) b) x(t) =C(sin t t cos t) A-7 a) 4 cos (n )x (n ) + b) e /, e /, ( ) n sin nx n e / +e A-8 a) u n (x, y) =C n e x sin nx e ( n )/y, n =,, 3,... b) u(x, y) = 3 4 e x sin x e /y 4 e7 x sin 3x e 7/y for s> cos wx A- +w dw A-9 A(w) = +w, B(w) = w +w, cos w +w dw = w sin w +w dw = e
15 TMA4 Matematikk 4K H-3 Side 9 av 34 TMA4 Matematikk 4K H-3 Side 3 a A- a) b) / cos w i w A- a) u n (x, t) = [ A n cos n +t + B n sin n +t ] e x sin nx, n =,,3,... b) u(x, t) =e x[ cos t sin x cos t sin 3x ] A- h(t) =e t A-3 b) i) a, ii) 4 a A-4 e x A-5 a) u n (x, t) =C n t n sin nx, n =,, t n b) u(x, t) = sin nx n3 A-6 b) y = 3 3 cos 3 t u(t ) [ 3 3 cos 3(t ) ], y = y A-7 a) b) / cos w w A-8 a) u n (x, t) =B n e (n +)t e x sin nx, n =,,... b) u(x, t) =e x ( ) n +]t (n +) e [(n+) sin (n +)x n= A-9 a) 4 + [ ( ) n n b) /8, /4 cos nx + ( )n n ( (n )ct A-3 a) u n (x, t) = A n cos + B n sin L b) u(x, t) =cos ct x sin L L + L 3c ] sin nx 3ct 3x sin sin L L (n )ct ) sin L (n )x, n =,,... L cos w A-3 a) w b) / A-3 b) 3 + [4 ( )n n h(t) c) d) cos nt + ( )n+ n for t (n ), n heltall for t =(n ), n heltall ] sin nt A-33 a) αe s α ( e s/α ) for t b) y(t) = α[ cos(t )] for <t +/α α[cos(t /α) cos(t )] for t>+/α for t, c) ϕ(t) = y + y = δ(t ), y() = y () = sin(t ) for t>; A-34 a) 4(s +) [(s +) +4] ( a + b b) e as + ), (t a)e b(t a) u(t a) s s c) y(t) =t A-35 g(s) =e s / ( ) n A-36 a) sin nx n b) 7/8, 5/8 c) u n (x, t) =B n e [(n +)/4]t sin nx, n =,,3,... ( ) n u(x, t) = e [(n +)/4]t sin nx n A-37 f(t) =e t (t )
16 TMA4 Matematikk 4K H-3 Side 3 av 34 A-38 a) sinh + sinh ( ) n n + cos nx c) 4 (fra restleddsestimat for alternerende rekke) d) u n (x, t) =A n t n cos nx, n =,,,... e) u(x, t) = sinh + sinh ( ) n n + t n cos nx A-39 a) [ cos t]; [ cos (t 3)]u(t 3) b) x(t) = [ cos t] [ cos (t 3)]u(t 3), y(t) = x(t) A-4 a) 8 sin (m )x (m ) 3 b) u n (x, y) =C sin nx sinh ny, n =,,... c) u(x, y) = 8 sin (m )x sinh (m )y (m ) 3 sinh (m ) w + A-4 a) w 4 +4 b) cos e TMA4 Matematikk 4K H-3 A-44 a) s a, e a(s a) s a ; eat (t a)u(t a) b) (f g )(t) =e t (t )u(t ) A-45 a) 4 sin(n +)x n + n= b) u n (x, t) =e x sin nx t n, n =,,3,... c) u(x, t) = 4 sin(n +)x e x (n +)t (n+) A-46 a) f(w) = b) e a n= iw ( + w ), ĝ(w) = +iw ( + w ) A-47 a) ω sin ωt; ω ( cos ωt); sin ω(t a)u(t a) ω b) sin t + ] 4[ cos (t ) u(t ) A-48 4 sin (m )x m Side 3 a A-4 b) + cos x + ( ) m+ cos mx 4m c) G( /4) = /, G() =, G(/) = H( /4) = /, H() =, H(/)= d) ; 4 e) u (x, t) =A e t + B e t u (x, t) =(A + B t)cosx u n (x, t) =(A n cos n t + B n sin n t)cosnx, n =,3,4,... f) u(x, t) = cosh t + cos x + ( ) m+ 4m cos 4m t cos mx A-43 a) f(w) = b) cos w w A-49 a) u(r, θ) =A + Bθ (p =) og u(r, θ) =r p (A cos pθ + B sin pθ) (p>) u (r, θ) =A og u n (r, θ) =r n (A n cos nθ + B n sin nθ) (n =,,...) b) a = 4, a n = sin(n/) ( ) (n )/ /n for n =,3,5,... = n for n =,4,6,... b n = cos(n/) /n for n =,3,5,... = /n for n =,6,,... n for n =4,8,,... f(θ) 4 + [ ] m cos(m +)θ sin(m +)θ sin (m +)θ ( ) + + m + m + m + m= c) 4 + [ ] } r m+ m cos(m +)θ sin(m +)θ (m+) sin (m +)θ ( ) + + r m + m + m + A-5 m= b (b a) e abx /(b a) A-5 a) e b(t a) (t a)u(t a)
17 TMA4 Matematikk 4K H-3 Side 33 av 34 TMA4 Matematikk 4K H-3 Side 34 a b) e t (t +)+e (t ) (t )u(t ) e (t ) (t )u(t ) A-5 a) u (x, y) =B y og u n (x, y) =B n cos nx ny sinh a a sinh (y/a) x sinh (y/a) x b) u(x, y) = cos + cos sinh (b/a) a sinh (b/a) a A-53 a) [ ] e + b) n= +n = cosh sinh +, ( ) n e +n cos nx n= ( ) n +n = sinh + (n =,,...) A-54 a) I(s) = 7C ( e 5s e s) CRs + b) i(t) = 7 ( e (t 5)/RC u(t 5) e (t )/RC u(t ) ) R i() =, i(7) = (7/R)e /RC, i() = (7/R) ( e 6/RC e /RC) A-55 ( ) n e +n e inx A-56 a) y(t) =cosht sin t sin 3t b) y(t) = for t 3 for t> A-57 a) u n (x, y) =A n e y/n sin nx (n =,,...) b) u(x, y) =e y sin x + e y/4 sin x c) u(x, y) = 4 (m )e y/(m ) sin(m )x A-58 a) f(w) = i e ibw e iaw w i e i(x b)w e i(x a)w dw = w b) i, / f(x +)+f(x ) A-6 y = sinh t + ( 4 e (t ) +3e (t )) u(t ) y = 3 4 et 4 e t 3 sinh (t ) u(t ) sin na A-6 a) sin nx, ( a)a n b) ( )(3 ) c) ( a) a /6 A-63 a) v(x, t) =K x + K K b) u(x, t) =x + + e t/4 cos(x/) e 9t/4 cos(3x/) A-64 a) 8 sin(m +)x (m +) 3 m= b) u n (x, t) =B n e n t t / sin nx (n =,,...) c) u(x, t) = 8 / e t (m +) 3 e (m+)t sin(m +)x e w /a A-65 a) a / b) a e ax A-66 a) ( ) n+ sin nx n b) u n (x, y) =A n e x sin nx sinh( n +y) (n =,,...) c) u(x, y) = ( ) n+ sinh( n +y) n sinh( n +) ex sin nx A-67 b) x = t 5 sin t + 4 sin t 3 3 y = (cos t cos t) 3 A-59 g(s, t) = e s t s
EKSAMENSOPPGAVER MATEMATIKKDELEN AV TMA4135 MATEMATIKK 4D H-03
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 36 TMA435 Matematikk 4D H-3 Oppgave D-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side
DetaljerTMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag
Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.
Detaljerx(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved
NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.
DetaljerLØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/4N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte
DetaljerEKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG
EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.
DetaljerLøsningsførslag i Matematikk 4D, 4N, 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y
DetaljerEksamen i TMA4122 Matematikk 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk
DetaljerTMA4135 Matematikk 4D Høst 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid
DetaljerLøsningsforslag, Ma-2610, 18. februar 2004
Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ
DetaljerTMA4120 Matematikk 4K Høst 2015
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Chapter 6.7 Systemer av ODE. Vi bruker L t} 1 s, L e at f(t } F (s a 6.7:9 Løs IVP. y 1 y 1 + y,
Detaljer(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)
NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )
DetaljerFakta om fouriertransformasjonen
Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx
DetaljerLØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 EKSAMEN I MATEMATIKK N/D (TMA25 TMA3 TMA35 3. August 27 LØSNINGSFORSLAG Oppgave a Løsning: fouriersinusrekken til
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerEksamensoppgave i TMA4130/35 Matematikk 4N/4D
Institutt for matematiske fag Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Faglig kontakt under eksamen: Anne Kværnø a, Kurusch Ebrahimi-Fard b, Xu Wang c Tlf: a 92 66 38 24, b 96 91 19 85, c 94 43 03
DetaljerVi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.
TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete
Detaljery = x y, y 2 x 2 = c,
TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete
DetaljerLøsningsforslag eksamen i TMA4123/25 Matematikk 4M/N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5
DetaljerEksamensoppgave i TMA4125 Matematikk 4N
Institutt for matematiske fag Eksamensoppgave i TMA4125 Matematikk 4N Faglig kontakt under eksamen: Morten Andreas Nome Tlf: 90849783 Eksamensdato: 6. juni 2019 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte
Detaljers 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.
NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g
DetaljerEksamensoppgave i TMA4122,TMA4123,TMA4125,TMA4130 Matematikk 4N/M
Institutt for matematiske fag Eksamensoppgave i TMA422,TMA423,TMA425,TMA430 Matematikk 4N/M Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 9. august 207 Eksamenstid (fra til):
DetaljerTMA4123/TMA4125 Matematikk 4M/4N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk
DetaljerEksamensoppgave i TMA4135 Matematikk 4D: Løysing
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte
DetaljerEksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N
Institutt for matematiske fag Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Faglig kontakt under eksamen: Dag Wessel-Berg Tlf: 924 48 828 Eksamensdato: 1. juni 216 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte
DetaljerEKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen
DetaljerTMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s.
NTNU Institutt for matematiske fag TMA43/5 Matematikk 4M/N, 8 august, Løsningsforslag TMA43M regnet oppgavene 7, mens TMA45N regnet oppgavene 6 a) Andre forskyvningsteorem side 35 i læreboken) gir at der
DetaljerEksamensoppgåve i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne
DetaljerUNIVERSITETET I BERGEN
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller
DetaljerLøsningsforslag til eksamen i TMA4105 matematikk 2,
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)
DetaljerTMA4123/TMA4125 Matematikk 4M/4N Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved
DetaljerUNIVERSITETET I BERGEN
BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus
DetaljerFYS2140 Kvantefysikk, Løsningsforslag for Oblig 1
FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag
DetaljerEKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid:
. EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 3. des. 3 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver: 6 Antall
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks
DetaljerKap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1)
Kap 5 aplace transformasjon a f(t) være definert for t 0. aplace transformasjonen er F (s) = 0 f(t)e st dt (1) for alle s C der dette er veldefinert. Tilstrekkelig betingelse: f(t) stykkevis kontinuerlig
DetaljerL(t 2 ) = 2 s 3, 2. (1. Skifteteorem) (s 2) 3. s 2. (Konvolusjonsteoremet) s 2. L 1 ( Z. = t, L 1 ( s 2 e 2s) = (t 2)u(t 2). + 1
NTNU Institutt for matematiske fag Eksamen i TMA5 Matematikk D høsten 008 Løsningsforslag a i Lt s, Lt e t Skifteteorem s ii Z t L sinτsint τdτ 0 s Konvolusjonsteoremet + b i L s t, L s e s t ut ii L s
DetaljerEKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:
. EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall
DetaljerEksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:
Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske
DetaljerHØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning
HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL
DetaljerTMA4120 Matte 4k Høst 2012
TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerEKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 25 2. januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet
DetaljerTMA4100 Matematikk 1, 4. august 2014 Side 1 av 12. x 2 3x +2. x 2
TMA4 Matematikk, 4. august 24 Side av 2 Oppgave Den rasjonale funksjonen p er definert som p(x) x2 3x +2 3x 2 5x +2. Finn de tre grenseverdiene lim xæ p(x), lim xæ p(x) og lim xæœ p(x). Løsning: x 2 3x
DetaljerEKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene
Detaljer13.1 Fourierrekker-Oppsummering
3. Fourierrekker-Oppsummering Fourierrekken til en periodisk funksjon f med periode = L er gitt ved F f (x) = a + a n cos(nωx) + b n sin(nωx) der x D (konvergensområdet) a = / / f(x) dx = L b n = f(x)
DetaljerMA1101 Grunnkurs Analyse I Høst 2017
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en
DetaljerOptimal kontrollteori
Optimal kontrollteori 1. og 2. ordens differensialligninger Klassisk variasjonsregning Optimal kontrollteori er en utvidelse av klassisk variasjonsregning, som ble utviklet av Euler og Lagrange. Et vanlig
Detaljerdg = ( g P0 u)ds = ( ) = 0
NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,
DetaljerUNIVERSITETET I BERGEN
BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er
Detaljer(1 + x 2 + y 2 ) 2 = 1 x2 + y 2. (1 + x 2 + y 2 ) 2, x 2y
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA45 Matematikk vår 9 Løsningsforslag til eksamen.5.9 Gitt f(, y) = + +y. a) Vi regner ut f = f y = + + y ( + + y ) = + + y
DetaljerBYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8
Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)
DetaljerForelesning Matematikk 4N
Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er
DetaljerEksamen i TMA4122 Matematikk 4M
Noreg teknik naturvitkaplege univeritet Intitutt for matematike fag Side av 5 Fagleg kontakt under ekamen: Erik Lindgren Mobil: 454 75 993 Ekamen i TMA422 Matematikk 4M Nynork Måndag 9. deember 20 Tid:
Detaljer2 Fourierrekker TMA4125 våren 2019
Fourierrekker TMA45 våren 9 I M lærte du at mange glatte funksjoner kan skrives som en potensrekke. En mye større klasse av funksjoner kan skrives som rekker av sinus- cosinusfunksjoner. Komplekse funksjoner
DetaljerEksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål
Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret
Detaljere x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),
Detaljerdifferensiallikninger-oppsummering
Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.
DetaljerLøsningsforslag Eksamen M100 Høsten 1998
Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim
DetaljerOppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.
NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel
DetaljerMatematikk 4 TMA4123M og TMA 4125N 20. Mai 2011 Løsningsforslag med utfyllende kommentarer
h og f g og f Matematikk TMA3M og TMA 5N 0. Mai 0 Løsningsforslag med utfyllende kommentarer Oppgave Funksjonen f () = sin, de nert på intervallet [0; ], skal utvides til en odde funksjon, g, og en like
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.
DetaljerMAT1110. Obligatorisk oppgave 1 av 2
30. mai 2017 Innleveringsfrist MAT1110 Obligatorisk oppgave 1 av 2 Torsdag 23. FEBRUAR 2017, klokken 14:30 i obligkassen, som står i gangen utenfor ekspedisjonen i 7. etasje i Niels Henrik Abels hus. Instruksjoner
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerLøsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
DetaljerLøsningsforslag eksamen 18/ MA1102
Løsningsforslag eksamen 8/5 009 MA0. Dette er en alternerende rekke, der leddene i størrelse går monotont mot null, så alternerenderekketesten gir oss konvergens. (Vi kan også vise konvergens ved å vise
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Fredag. mars Tid for eksamen: 5. 7. Oppgavesettet er på 8 sider. Vedlegg: Tillatte
DetaljerLØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode
DetaljerTMA4100 Matematikk1 Høst 2009
TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +
DetaljerArne B. Sletsjøe. Oppgaver, MAT 1012
Arne B. Sletsjøe Oppgaver, MAT 101 1 En-variabel kalkulus 1.1 I de følgende oppgavene, i) finn alle kritiske punkter til f(x), ii) beskriv monotoniegenskapene til funksjonene ved å se på fortegnet til
DetaljerLøsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7
Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerEKSAMEN i MATEMATIKK 30
Eksamen i Matematikk 3 1. desember 1999 1 Høgskolen i Gjøvik Avdeling for teknologi EKAMEN i MATEMATIKK 3 1 desember 1999 kl. 9 14 Fagnummer: V139A Faglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 10 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 10 Derivasjon I dagens forelesning skal vi se på følgende: 1 Antideriverte. 2 Differensiallikninger
DetaljerTMA4110 Matematikk 3 Høst 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y
DetaljerNTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2
NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerLøsningsforslag. e n. n=0. 3 n 2 2n 1. n=1
Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene
Detaljer2 n+2 er konvergent eller divergent. Observer først at; 2n+2 2 n+2 = n=1. n=1. 2 n > for alle n N. Denne summen er.
MA2 Vår 28 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag 9.2.9 Ønsker å finne ut om 3+ 2 n+2 er konvergent eller divergent. Observer først at; 3 + 2 n 2 n+2 = ( 3 ) + +2
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: Eksamensdag: Fredag 1. april 2011 Tid for eksamen: 15.00 17.00 Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler:
DetaljerHøgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar
Detaljer=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,
DetaljerUNIVERSITETET I BERGEN
Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.
DetaljerLøsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning
DetaljerEksamen R2, Våren 2011 Løsning
R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene
DetaljerEksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF
Institutt for matematiske fag Eksamensoppgave i TMA4125 EKSEMPELEKSAMEN - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 219 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte
DetaljerEksamen i TMA4135 Matematikk 4D
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.
DetaljerDen deriverte og derivasjonsregler
Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)
DetaljerEksamen i TMA4130 Matematikk 4N
Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Yura Lyubarkii: mobil 9647362 Anne Kværnø: mobil 92663824 Ekamen i TMA430 Matematikk 4N Bokmål
DetaljerOppgaver og fasit til seksjon
1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos
DetaljerEksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
DetaljerTMA4115 Matematikk 3 Vår 2012
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA4115 Matematikk 3 Vår 01 Oppgaver fra læreboka, s lxxxiv 9 a) Likninga for systemet vert y + 4y = 4 cos ωt Me løyser først den
DetaljerLøsningsforslag. og B =
Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og
DetaljerLøsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.
Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +
DetaljerUniversitetet i Oslo Det matematisk-naturvitenskapelige fakultet
Universitetet i Oslo Det matematisk-naturvitenskapelie fakultet Eksamen i: FYS4-Matematiske metoder i fysikk Dato: juni 9 Tid for eksamen: 9- Oppavesettet: sider Tillatte hjelpemidler: Elektronisk kalkulator,
Detaljer