EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3

Størrelse: px
Begynne med side:

Download "EKSAMENSOPPGAVER FOR TMA4110/TMA4115 MATEMATIKK 3"

Transkript

1 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av januar 25 EKSAMENSOPPGAVER FOR TMA4/TMA45 MATEMATIKK 3 Oppgave A- a) Finn kvadratrøttene til det komplekse tallet i. b) Finn løsningene til ligningen z 2 + 2( + i)z = 2 + 2( 3 )i. Oppgave A-2 a) Finn alle komplekse tall z slik at z 3 = + i, og vis på en figur hvordan de ligger i det komplekse plan. b) La w være den løsningen fra a) som ligger i annen kvadrant. Finn et positivt helt tall n slik at w n er reell. Oppgave A-3 Løs ligningen λ 32 λ λ λ λ = Tegn røttene i det komplekse plan.

2 TMA4/TMA45 Matematikk 3 Side 2 av 25 Oppgave A-4 a) Finn alle de komplekse tredjerøttene til 8i. Skriv røttene på formen a + ib der a, b R. Tegn røttene i det komplekse plan. b) Finn en løsning y av differensialligningen slik at y() = 3. xy + 3y = 3x 3/2 (x > ) Oppgave A-5 a) Finn den generelle løsningen av differensialligningen y + y = 4 cos x. b) Finn alle konstanter k slik at y = x k er løsning av x 2 y + xy y =, x >, og finn den generelle løsningen av differensialligningen. c) Finn den generelle løsningen av differensialligningen x 2 y + xy y = 2x 2 e x, x >. d) Bevegelsesligningen for en partikkel med masse m > som beveger seg langs x-aksen er gitt ved mx + 2x + x =. For hvilke m vil bevegelsen være svingende (dvs. være en underdempet svingning)? Oppgave A-6 Finn den generelle løsningen av differensialligningene a) y + y 2y = 4x 2 b) y 2y + y = ex x, x >.

3 TMA4/TMA45 Matematikk 3 Side 3 av 25 Oppgave A-7 a) Løs differensialligningen xy + 2y = cos x, x >. b) Løs initialverdiproblemet y 2y + 5y =, y() = 3, y () =. Finn den generelle løsningen av differensialligningene c) y 2y + 5y = sin x d) y + 4y + 4y = e 2x x 2, x >. Oppgave A-8 Bevegelsen til et mekanisk system er gitt ved differensialligningen my + ky = cos ωt der m = 2 og k = 8. For hvilke ω vil løsningen y(t) ikke være begrenset når t? Oppgave A-9 Gitt differensialligningen ( ) y (a + )y + ay = e x der a er et reelt tall. a) Finn en generell løsning av ( ) for alle a. b) Løs initialverdiproblemet gitt ved ( ) og y() = y () = for a. Oppgave A- Vis at y = x k er løsning av differensiallikningen ( ) x 2 y 3xy + 3y = (x > ) for passende verdi(er) av k. Hva blir den generelle løsningen av ( )?

4 TMA4/TMA45 Matematikk 3 Side 4 av 25 Oppgave A- a) Finn løsningen av differensiallikningen y + 4y = cos x som tilfredsstiller y() = 4/3, y () = 4 b) Finn den generelle løsningen av differensiallikningen y + a 2 y = cos x for alle reelle tall a. Oppgave A-2 Finn den generelle løsning av differensialligningene a) y + x y = ex2, x > b) y + 4y + 4y = e 2x c) y + y = sin x, < x < π Oppgave A-3 Løs initialverdiproblemet y + 4y + 5y = 5x, y() =, y () = 2. Oppgave A-4 Finn generell løsning av differensialligningen y (a + b)y + aby = for alle reelle tall a og b. Finn deretter generell løsning av differensialligningen y 2ay + a 2 y = e ax. Oppgave A-5 Gitt initialverdiproblemet y = + y sin x, y() =.

5 TMA4/TMA45 Matematikk 3 Side 5 av 25 Bruk Eulers metode med skrittlengde. til å finne en tilnærmet verdi av løsningen for x =.5. Bruk svaret til å finne en tilnærmet verdi av integralet.5 e cos t dt. Oppgave A-6 Løs differensialligningen y + 9y = 2 cos 3x, π 6 < x < π 6. Oppgave A-7 En deriverbar funksjon f (som ikke er identisk lik null) tilfredsstiller ligningen x [f(x)] 2 = e x f(t) dt. Vis at y = f(x) tilfredsstiller differensialligningen ( ) 2yy = y 2 + e x y, og finn alle løsninger av ( ). Bestem funksjonen f. Oppgave A-8 a) Finn generell løsning av differensialligningen y x 3 + y 3 4 x2 (y 2 + ) =, x >. Bestem løsningen som oppfyller y() =. b) Finn generell løsning av differensialligningen y 3y y = x + e 2x. Oppgave A-9 a) Løs initialverdiproblemet y y =, y() =, y () = 2.

6 TMA4/TMA45 Matematikk 3 Side 6 av 25 b) Finn den generelle løsningen av differensialligningen y y = x sin x. Oppgave A-2 Finn den generelle løsningen av differensialligningen y + 4y + 5y = 5x 2 2x. Oppgave A-2 Finn den generelle løsningen av differensialligningene: a) b) y 2y + 2y = y 2y + 2y = 2x + e x Oppgave A-22 I en by er det fire enveiskjørte gater som krysser hverandre som på figuren. 45 x x 2 x 4 52 x Figur : viser trafikkflyten i oppgave 6 Antall biler som passerer pr. time er angitt på figuren.

7 TMA4/TMA45 Matematikk 3 Side 7 av 25 Vis at x = x x 2 x 3 x 4 tilfredsstiller et ligningssystem på formen og løs det. Hva blir x, x 2 og x 3 når x 4 = 2? Ax = b Oppgave A-23 I byen Patos blir hvert år 3% av de gifte kvinnene skilt og 2% av de ugifte blir gift. I byen er det i øyeblikket 8 gifte kvinner og 2 ugifte. Anta at det totale kvinneantallet er konstant. Ifølge lokale lover kan en kvinne kun gifte eller skille seg en gang i året. Vis hvordan antallet gifte og ugifte kvinner etter n år bestemmer antallet av gifte og ugifte kvinner etter (n + ) år. Bruk dette til å regne ut hvor mange gifte og ugifte kvinner det er etter, 2 og 3 år. Oppgave A-24 Finn en 2 2-matrise A slik at differensiallikningssystemet x = Ax har generell løsning [ ] [ ] 2 x = c e 3t + c 2 e t. Oppgave A-25 l/s 3 l/s 3 l/s l l 4 l/s Tank Tank 2 De to tankene på figuren inneholder liter hver av en oppløsning av salt i vann. Inn i Tank strømmer det rent vann med en rate av 3 liter pr. sekund. Mellom tankene og ut av Tank 2 strømmer det saltoppløsning som vist på figuren med de ratene som er angitt. I hver tank holdes saltet jevnt fordelt ved omrøring. Ved tiden t = inneholder Tank 3 g salt og Tank 2 2 g salt. Finn saltmengdene x (t) og x 2 (t) i de to tankene for alle t.

8 TMA4/TMA45 Matematikk 3 Side 8 av 25 Oppgave A-26 Eksperimenter viser at radioaktive stoffer desintegrerer (spaltes) med en hastighet proporsjonal med mengden stoff som er til stede. Proporsjonalitetsfaktoren kaller vi desintegrasjonskonstanten. Nedenfor ser vi på en kjede av to radioaktive spaltinger. a) Anta at stoffet desintegrerer til stoffet 2 som i sin tur desintegrerer til stoffet 3. Desintegrasjonskonstantene er hhv k og k 2 der k k 2. Vis at hvis mengden av de tre stoffene ved tiden t = er A, B og C, så er mengden av stoffet 3 ved tiden t > lik ( C + B ( e k2t ) + A k 2 e kt + k ) e k 2t. k 2 k k 2 k b) La nå stoffene, 2 og 3 representere hhv uran, thorium og radium. Dersom uran har halveringstid på 2 5 år og thorium har halveringstid på 8 4 år, hvor mye radium vil vi ha etter 6 år hvis vi starter med g uran og ikke noe thorium eller radium? Oppgave A-27 La A og A 2 være to fylte vannkar hver med konstant volum V som inneholder en saltoppløsning. Mengden salt i A og A 2 ved tidspunktet t = er henholdsvis Q og Q 2. Anta at A tilføres vann med en saltkonsentrasjon C (t). La tankene være forbundet som på figuren med rater som angitt. k k A A 2 k3 k 2 La u (t) og u 2 (t) betegne saltinnholdet i karene ved tiden t. a) Begrunn hvorfor ratene må oppfylle betingelsene k = k 2, k = k + k 3, k = k 2 + k 3 og gjør rede for at u og u 2 tilfredsstiller følgende system av differensialligninger Hva blir initialbetingelsene? du dt = k V u + k k 2 u 2 + k C (t) V du 2 dt = k V u k V u 2. b) Anta først at det tilføres rent vann, og at k > k 2. Hva blir løsningen av differensialligningssystemet?

9 TMA4/TMA45 Matematikk 3 Side 9 av 25 c) La k = 9, k 2 = 5, k = 28, V =, Q = 8, Q 2 = 9. Anta C (t) = e t. Finn løsningen av differensialligningssystemet. Oppgave A-28 a) Finn den inverse til matrisen La a være et reelt tall, og la A = M a = 2 a a a a a a.. b) Drøft hvordan rangen til M a varierer med a. c) Drøft dimensjonen til Col(M a ) og Null(M a ) for varierende a. For a =, finn en basis for Col(M a ) og Null(M a ). Oppgave A-29 Gitt matrisen A = a) Vis at [ ] T er en egenvektor for A. Hva er den tilhørende egenverdien? Finn de andre egenverdiene med tilhørende egenvektorer. b) Finn en ortogonal matrise P slik at A = P DP T der D er en diagonalmatrise. Angi D. c) Løs differensialligningssystemet x = Ax og finn en løsning med x() = [3 ] T. Oppgave A-3 a) Tegn et endimensjonalt underrom av R 2. Er mengden av vektorer [x y z] T i R 3 slik at 3x + 2y + z = et underrom av R 3? b) Vis at dersom v, v 2,, v k er parvis ortogonale vektorer i R n, og ingen av dem er nullvektoren, så er v, v 2,, v k lineært uavhengige.

10 TMA4/TMA45 Matematikk 3 Side av 25 Oppgave A-3 La A = [ ]. a) Finn en ortogonal matrise P med det(p ) = slik at D = P T AP blir en diagonalmatrise. Angi D. b) Ligningen 5x 2 + 6x x 2 + 5x 2 2 = 8 fremstiller et kjeglesnitt. Innfør et nytt, rotert koordinatsystem slik at kjeglesnittet ligger i standard posisjon i forhold til det nye systemet. Tegn kjeglesnittet og de nye aksene i x x 2 -planet. Hva slags kjeglesnitt har vi? Oppgave A-32 Gitt matrisen A = a) Bestem en basis for Row(A) (radrommet til A) og Col(A) (kolonnerommet til A) ved å bringe A over på echelon form. b) Finn også en basis for Null(A) (nullrommet til A). c) Bestem alle vektorer slik at ligningssystemet ikke har løsning. a b c Ax = a b c

11 TMA4/TMA45 Matematikk 3 Side av 25 Oppgave A-33 a) Finn en ortogonal matrise P som diagonaliserer matrisen ( ) 9 2 A =, 2 6 det vil si at der D er en diagonal matrise. P T AP = D Skriv opp D og velg P slik at den representerer en rotasjon i planet. Et kjeglesnitt er gitt ved ligningen ( ) 9x xy + 6y 2 2x + 5y =. b) Innfør et nytt koordinatsystem slik at ( ) kommer på enklest mulig (standard) form. Bestem hva slags kjeglesnitt ( ) representerer, skisser dette, og tegn også inn aksene i det nye koordinatsystemet. c) Finn generell løsning til differensialligningssystemet x = 9x + 2y y = 2x + 6y. Oppgave A-34 Gitt matrisen A = a) Finn en basis for vektorrommene Row(A) (radrommet til A) og Col(A) (kolonnerommet til A) ved å bringe matrisen over på echelon form. b) Bestem videre en basis for Null(A) (nullrommet til A.) c) Bestem uten ny regning en basis for Null(A).

12 TMA4/TMA45 Matematikk 3 Side 2 av 25 d) For hvilke α har ligningssystemet løsninger? Ax = 2 α Oppgave A-35 Gitt matrisen A = a) Regn ut egenverdiene og egenvektorene til A. (Hint: er en egenverdi til A). b) Bestem en matrise S og en diagonalmatrise D slik at S AS = D. c) Kan en i b) finne en matrise S som er ortogonal? I såfall finn en slik. d) Finn den generelle løsningen av systemet x y = A z x y z e) Sett Regn ut P. P = f) Finn den generelle løsningen av systemet x + y + z = 4x + 4y + 4z x + z = 3x + 2y + 3z y z = y z

13 TMA4/TMA45 Matematikk 3 Side 3 av 25 Oppgave A-36 Gitt matrisen a) Løs ligningssystemet A = Ax = ved å bringe totalmatrisen (den augmenterte matrisen) til systemet på redusert echelon form. Bestem også en basis for Null(A). b) Finn en basis for Row(A) og Col(A). Oppgave A-37 Et kjeglesnitt er gitt ved ligningen ( ) 8x 2 + 2x x 2 + 7x 2 2 = 8. Innfør et nytt, rotert koordinatsystem slik at ( ) kommer på enklest mulig (standard) form. Bestem hva slags kjeglesnitt ( ) representerer, skisser dette i x x 2 -planet, og tegn også inn aksene i det nye koordinatsystemet. Oppgave A-38 La V være underrommet i R 4 gitt ved a) Finn en basis for V. V = span{ b) Finn en 3 4 -matrise A slik at V = Null(A)., }.

14 TMA4/TMA45 Matematikk 3 Side 4 av 25 Oppgave A-39 Gitt matrisen og likningssystemet der a, b og c er reelle konstanter. A = ( ) Ax = a) Avgjør for hvilke a, b, c likningssystemet ( ) har løsning. b) Løs ( ) når a = 4, b = 2 og c = 3. Finn en basis for Null(A) (nullrommet til A). c) Finn en basis for Row(A) (radrommet til A) og finn en basis for Col(A) (kolonne-/søylerommet) til A. d) Finn en basis for Col(A). Bruk for eksempel resultatet fra a). a b c Oppgave A-4 a) Bruk Gram-Schmidts ortogonaliseringsalgoritme til å finne en ortogonal basis for underrommet V R 4 utspent av vektorene 2 v =, v 2 =, v 3 = 3 5. b) Finn (den ortogonale) projeksjonen av b = ned på underrommet V. Oppgave A-4 La α være et reelt tall og sett α A = α. α

15 TMA4/TMA45 Matematikk 3 Side 5 av 25 a) For hvilke verdier av α har ligningssystemet Ax = α + α ) nøyaktig én løsning? 2) uendelig mange løsninger? 3) ingen løsninger? b) Løs ligningssystemet i tilfellet 2) i a). I resten av oppgaven settes α = 2 slik at A = c) Finn egenverdiene og egenvektorene til A. d) Finn en ortogonal matrise P slik at der D er diagonal. Hva blir D? P AP = D e) La den kvadratiske formen Q(x) være gitt ved der x R 3. Vis at Q(x) for alle x R 3. f) Løs differensialligningssystemet Q(x) = x T Ax. y = 2y +y 2 y 3 y 2= y +2y 2 y 3 y 3 = y y 2 +2y 3. Oppgave A-42 La A være en n n-matrise som oppfyller matriseligningen A 2 = 2A I (I betegner identitetsmatrisen). Vis at dersom A er diagonaliserbar, så er A = I. Oppgave A-43 Gitt matrisen A = α α α α α α og vektoren b = + α α α

16 TMA4/TMA45 Matematikk 3 Side 6 av 25 a) Bestem rangen til A for alle reelle tall α. b) For hvilke verdier av α er A invertibel? Finn A når α =. c) For hvilke verdier av α har likningssystemet Ax = b nøyaktig en løsning, mer enn en løsning, ingen løsning? Løs likningssystemet når α =. Oppgave A-44 Gitt matrisen a) Vis at A har egenverdier, og 6. b) Det oppgis at 2 og 2 A = egenvektor svarende til egenverdien 6. c) Bestem en 3 3-matrise K slik at i) K AK er en diagonal matrise ii) K = K T d) Den kvadratiske formen er egenvektorer svarende til egenverdiene og. Finn en f(x, x 2, x 3 ) = x 2 + 5x2 2 + x x x 2 + 2x 2 x 3 kan skrives som f(x) = x T Ax, x = x x 2 x 3 Innfør et nytt koordinatsystem slik at f(x) = ay 2 + by2 2 + cy2 3 der y, y 2, y 3 er koordinatene til x i det nye koordinatsystemet. Hva blir a, b, og c?

17 TMA4/TMA45 Matematikk 3 Side 7 av 25 Oppgave A-45 [ ] 5 3 a) La A = 3 5 Finn en ortogonal matrise P med determinant lik slik at P T AP blir en diagonalmatrise. b) Ligningen 5x 2 6xy + 5y 2 2 = framstiller et kjeglesnitt K. Innfør et nytt rotert koordinatsystem slik at ligningen til K får enklest mulig form. Tegn K og de nye koordinataksene i xy-planet. Oppgave A-46 La vektorrommet V R 4 være mengden av løsninger til ligningen x + x 2 + x 3 + x 4 = Finn en basis for V og bestem dimensjonen. Oppgave A-47 Vis at ligningssystemet 5x y + z = 2x + y 2 z = a 9x + 3y + z = 2a har løsning for nøyaktig én verdi av a. Løs systemet for denne verdien av a. Oppgave A-48 La A være en invertibel matrise med egenverdi λ og tilhørende egenvektor v. Vis at da er v også en egenvektor for A. Hva er den tilhørende egenverdien? Oppgave A-49 En reell n n-matrise har egenskapen A 2 = A. Vis at determinanten til A er eller. Vis at hvis det(a) =, så er A = I (identitetsmatrisen). Må A være nullmatrisen hvis det(a) =? Begrunn svaret. Oppgave A-5 La x, y og z være lineært uavhengige vektorer i et vektorrom V. Vis at vektorene u, v og w, der u = x, v = x + y og w = x + y + z er lineært uavhengige.

18 TMA4/TMA45 Matematikk 3 Side 8 av 25 Oppgave A-5 La A være en kvadratisk matrise som oppfyller betingelsen: A 2 3A + 2I =, hvor I er identitetsmatrisen og er nullmatrisen. Begrunn at A da er invertibel, og finn A uttrykt ved A og I. Fasit A- a) ±( 3 + i) b) 3, ( + 3) 2i A-2 a) z = 6 2 e πi/4 ; z = 6 2 e πi/2 ; z 2 = 6 2 e 9πi/2 b) n = 2 A-3 λ k = 2e i(π/5+2kπ/5), k =,, 2, 3, 4 A-4 a) ± 3 + i; 2i b) y = x x 3/2 A-5 a) y = c + c 2 cos x + c 3 sin x 2x cos x b) k = ±; y = c x + c 2 x, x > c) y = c x + c ( ) 2 2 x + x 2 e x, x > d) m > A-6 a) y = c e x + c 2 e 2x x + 2x 2 b) y = c e x + c 2 xe x + xe x ln x cos x + x sin x + C A-7 a) y =, x > x 2 b) y = 3e x cos 2x 2e x sin 2x c) y = c e x cos 2x + c 2 e x sin 2x + cos x + 2 sin x d) y = c e 2x + c 2 xe 2x e 2x ln x, x >

19 TMA4/TMA45 Matematikk 3 Side 9 av 25 A-8 ω = ±2 A-9 a) y = b) y = A- y = C x + C 2 x 3 { c e x + c 2 xe x + 2 x2 e x, a = c e x + c 2 e ax + a xex, a ( a) 2 (eax e x ) + ( a) xex A- a) y = cos 2x + 2 sin 2x + 3 cos x A-2 a) b) a = : y = C x + C 2 cos x a = ± : y = C cos x + C 2 sin x + 2 x sin x a / {, ±} : y = C cos ax + C 2 sin ax + a 2 cos x C x + 2x ex2 b) C e 2x + C 2 xe 2x + 2 x2 e 2x c) C sin x + C 2 cos x + sin x ln(sin x) x cos x A-3 C e 2x cos x + C 2 e 2x sin x x A-4 C e ax + C 2 e bx når a b C e ax + C 2 xe ax når a = b C e ax + C 2 xe ax + 2 x2 e ax A-5.53;.27 A-6 y = C cos 3x + C 2 sin 3x ln(cos 3x) cos 3x + 2 x sin 3x 3 A-7 y = e x + Ce x/2, f(x) = e x e x/2 A-8 a) y 2 = + Ce +x 3, y = + 2e +x 3

20 TMA4/TMA45 Matematikk 3 Side 2 av 25 b) y = C e 5x + C 2 e 2x + 3 x 7 xe 2x A-9 a) e x e x b) C e x + C 2 e x (cos x + x sin x) 2 A-2 y = C e 2x cos x + C 2 e 2x sin x + x 2 2x + A-2 a) y = e x (C cos x + C 2 sin x) b) y = e x (C cos x + C 2 sin x + ) + + x A-22 x = 33 + t Når x 4 = 2, er x = 53 x 2 = 7 + t x 2 = 37 x 3 = 2 + t x 3 = 4 x 4 = t x 4 = 2 A-23 [ Gn+ U n+ ] = [ ] [ Gn U n ] ; n 2 3 G n U n A-24 A = [ ] A-25 x (t) = e 3t/5 + 2e t/5 x 2 (t) = 2e 3t/5 + 4e t/5 A-26 b) 94.8 g A-27 a) u () = Q, u 2 () = Q 2 [ ] [ ] [ u b) = c k k k 2 u e λt + c 2 (k k 2 ) 2 k k 2 k (k k 2 ) ] e λ 2t der λ = k + k (k k 2 ), λ 2 = k k (k k 2 ) og V V Q c = 2(k k 2 ) + Q 2 2 k (k k 2 ), c Q 2 = 2(k k 2 ) Q 2 2 k (k k 2 ) c) u (t) = 8e t, u 2 (t) = 9e t

21 TMA4/TMA45 Matematikk 3 Side 2 av 25 2 A-28 a) A = 2 2 for a = b) Rang(M a ) = 2 for a = 3 for a ± for a = c) Dim Col(M a ) = 2 for a = 3 for a ± 3 for a = Dim Null(M a ) = 2 for a = for a ± a = : Basis for Col(M a ) : {u, u 2 } der u = [,, ] T, u 2 = [,, ] T f.eks. Basis for Null(M a ) : {v, v 2 } der v = [,,, ] T, v 2 = [,,, ] T f.eks. A-29 a) λ = 9 med oppgitt egenvektor k = [,, ] T ; λ 2,3 = 3 med egenvektorer: rk 2 + sk 3 der k 2 = [,, ] T, k 3 = [,, ] T, (r, s) (, ) 2 3 b) P = D = c) x = c k e 9t + c 2 k 2 e 3t + c 3 k 3 e 3t x() = [3,, ] T hvis c =, c 2 = c 3 = A-3 a) Nei A-3 a) P = [ ] ; D = 2 b) Ellipse [ ] 2 8 A-32 a) 3 2 (f.eks) Basis radrom A: (, 3,, 2), (,,, ) (f.eks)

22 TMA4/TMA45 Matematikk 3 Side 22 av 25 Basis søylerom A: b) Basis for Null(A): c) 5a 2b + c (f.eks) (f.eks.) A-33 a) D = b) Parabel [ ] [ ] x 4 c) = c y 3 [ ], P = c 2 e 25t [ 3 4 [ 4 ] ] (f.eks.) A-34 a) Basis Row(A): [ 2 ] T, [ 5 ] T, [ ] T (f.eks.) Basis Col(A): [ 2 3] T, [ ] T, [ ] T (f.eks) b) Basis Null(A): [ 5 ] T, [ 2 ] T (f.eks) c) Null(A) = Row(A) d) Løsning kun for α = 3 A-35 a) λ =, v = a b) S = c) S = 6 d) x y z = c e t e) P = f) Som 3 d) + b (f.eks); D = + c 2 e t, (a, b) (, ); λ = 4, v = c (f.eks) 4 + c 3 e 4t, c

23 TMA4/TMA45 Matematikk 3 Side 23 av 25 2 A-36 a) x = 2 + s + t ; s, t R Basis for Null(A): [2,,,, ] T, [,,,, ] T (f.eks.) b) Basis for Row(A) : [2,,,, ] T, [,,,, ] T (f.eks.) Basis for Col(A) : [, 2,, 2] T, [2,, 5, 3] T, [2, 3, 4, ] T (f.eks.) A-37 Ellipse A-38 a) Basis for V : [,,, ] T, [,,, ] T (f.eks.) b) A = (f.eks.) A-39 a) a b + 2c = b) x = r + s 2 + t 2 + Basis for Null(A): [2,,,, ] T, [,, 2,, ] T, [ 3,, 2,, ] T c) Basis for Row(A): [, 2, 2, 3, ] T, [,,, 2, 2] T (f.eks.) (f.eks) e) A-4 a) b) Basis for Col(A): [ 3,, 2] T, [ 8, 2, 5] T (f.eks) 2,, 3 4 (f.eks.) (f.eks.)

24 TMA4/TMA45 Matematikk 3 Side 24 av 25 A-4 a) ) α / {, 2} 2) α = 2 3) α = b) + t, t R c) λ =, egenvektorer r λ 4 =, egenvektorer r + s, r, (r, s) (, ) 3 2 d) P = , D = (f.eks) 2 4 f) y = c e t + c 2 e t + c 3 e 4t, c i R 2 A-43 a) α ± : rang A = 4 α = ± : rang A = 3 b) α ± : A = c) α ± : nøyaktig en løsning α = : mer enn en løsning α = : ingen løsning x = [ ] T A-44 b) [2 5 ] T 2/ 6 / 5 2/ 3 c) K = / 6 5/ 3 / 6 2/ 5 / 3 d) a, b, c blir egenverdiene fra a). A-45 a) F.eks. P = 2 [ b) 4(x ) 2 + (y ) 2 = ]

25 TMA4/TMA45 Matematikk 3 Side 25 av 25 A-46 Basis f.eks.,,, dim V = 3 A-47 a = 2 ; x = 6 ( t), y = (t ), z = t, t R 6 A-48 λ A-5 A = 3 2 I 2 A

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

EKSAMEN I MATEMATIKK 3 (TMA4110)

EKSAMEN I MATEMATIKK 3 (TMA4110) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 EKSAMEN I MATEMATIKK 3 (TMA) Tirsdag 3. november Tid: 9: 3: LØSNINGSFORSLAG MED KOMMENTARER Oppgave I denne oppgaven

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.

=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til!

Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag. Eksamen MA desember Lykke til! Universitetet i Agder Fakultetet for teknologi og realfag Institutt for matematiske fag Eksamen Emnekode: Emnenavn: MA-2 Lineær algebra Dato: Varighet:. desember 2 9. - 4. Antall sider: Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Eksamensoppgave i TMA4115 Matematikk 3

Eksamensoppgave i TMA4115 Matematikk 3 Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

UiO MAT1012 Våren Ekstraoppgavesamling

UiO MAT1012 Våren Ekstraoppgavesamling UiO MAT1012 Våren 2011 Ekstraoppgavesamling I tillegg til eksamen og prøveeksamen fra våren 2010 inneholder denne samlingen en del oppgaver som er blitt gitt til eksamen i diverse andre emner ved UiO i

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra

Eksamensoppgavehefte 2. MAT1012 Matematikk 2: Mer lineær algebra Eksamensoppgavehefte 2 MAT1012 Matematikk 2: Mer lineær algebra Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor temaet Lineær algebra

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

MA1202/MA S løsningsskisse

MA1202/MA S løsningsskisse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta

Detaljer

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001

LØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)

12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5) Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.

Løsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009. Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og

R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010

LØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010 LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1;

SIF5010 Matematikk 3. y 00, 2y 0 +5y = sin x 4A, 2B =0 4B +2A =1; for fakultet E og F varen 998 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Lsningsforslag eksamen varen 998 Eksamen SIF5, mai 98 a) y, y +5y sin x P (r) r, r +5; r i Som

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

5.5 Komplekse egenverdier

5.5 Komplekse egenverdier 5.5 Komplekse egenverdier Mange reelle n n matriser har komplekse egenverdier. Vi skal tolke slike matriser når n = 2. Ved å bytte ut R med C kan man snakke om komplekse vektorrom, komplekse matriser,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2

e x = 1 + x + x2 2 + R 2(x), = e 3! ( 1) n x n = n! n=0 y n+1 = y 0 + f(t, y n (t)) dt 1 dt = 1 + x (1 + t) dt = 1 + x x2 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving 2 Avsnitt 8.9 23 Ved Taylors formel (med a = 0) har vi at der R 2 (x) = f (n+) (c) (n+)! e x = + x + x2 2 + R 2(x),

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, V08

LØSNINGSFORSLAG EKSAMEN MA0002, V08 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN MA000, V08 Oppgave 1 Litt av hvert. a) (10%) Løs initialverdiproblemet gitt ved differensialligningen

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

LO510D Lin.Alg. m/graf. anv. Våren 2005

LO510D Lin.Alg. m/graf. anv. Våren 2005 TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

Løsningsforslag øving 7

Løsningsforslag øving 7 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x

Høgskolen i Oslo og Akershus. e 2x + x 2 ( e 2x) = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) 1 sin x (sin x) + 2x = cos x Oppgåve a) i) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) ii) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) Sidan både teljar og nemnar

Detaljer

MA1101 Grunnkurs Analyse I Høst 2017

MA1101 Grunnkurs Analyse I Høst 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs Analyse I Høst 7 9.5. a) Har at + x b arctan b = π + x [arctan x]b (arctan b arctan ) f) La oss først finne en

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer