Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4

Størrelse: px
Begynne med side:

Download "Generell informasjon om faget er tilgjengelig fra It s learning. 1 En kort oppsummering Adaptiv filtrering 2. 3 Prediksjon 4"

Transkript

1 Stavanger, 13. august 2013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 1 En kort oppsummering. 1 2 Adaptiv filtrering 2 3 Prediksjon 4 4 Bratteste nedstigning 5 5 LMS algoritmen 7 1 En kort oppsummering. Det står ikke noe spesielt om adaptiv filtrering i læreboka til Haugen, men egentlig er både Kalman filter og RLS en form for adaptiv filtrering. De kan betraktes som en samtidig filtrering av både inngangsignaler og målinger for å estimere tilstander og/eller parametre i modellen. Filterkoeffisientene endres da fra steg til steg i filtreringen, de er adaptive. Dette notatet prøver å presentere RLS filteret med utgangspunkt i en adaptiv filter tankegang. Jeg har prøvd å lage presentasjonen her både enkel og fullstendig. Karl Skretting, Institutt for data- og elektroteknikk (IDE), Universitetet i Stavanger (UiS), 4036 Stavanger. Sentralbord Direkte E-post: karl.skretting@uis.no.

2 2 Adaptiv filtrering Vi starter med å se på lineær prediksjon, det vil si at estimatet finnes med lineær filtrering av inngangsignalet. Det som er adaptivt er filterkoeffisientene, men form (lengde) på filteret er fast. En skisse som viser problemstillingen ved adaptiv filtrering er i figur 1. d(k) x(k) Adaptivt filter ˆd(k) + + w(k) - w(k + 1) e(k) Algoritme Figur 1: Prinsippskisse for adaptiv filtrering. Se tekst for forklaring av symbol. Det adaptive filteret er gitt ved filterkoeffisientene som her er samlet i en kolonnevektor w med lengde N. Filterkoeffisientene kan endres for hvert tidssteg, notasjonen w(k) i figuren viser at det er koeffisientene ved steg k. Inngangsignalet til det adaptive filteret er x(k). Utgangsignalet er ˆd(k), det er en vekta sum av inngangsverdier og tidligere inngangsverdier, vektene er filterkoeffisientene. De inngangsverdiene en bruker ved steg k samles gjerne i en vektor x(k) med lengde N. Altså x(k) = x(k) x(k 1). x(k N + 1) ˆd(k) = N 1 i=0, w(k) = w 0 (k) w 1 (k). w N 1 (k). (1) w i (k)x(k i) = x T (k)w(k). (2) Poenget med et adaptivt filter er at en ønsker at utgangen skal bli så likt som råd et ønsket signal, det kalles ofte d(k). For at en skal ha noen mulighet til å estimere d(k) med det adaptive filteret må det være korrelert med inngangsignalet x(k). Differansen mellom utgangen av det adaptive filteret, ˆd(k), og det ønska signalet, d(k), blir feilen, e(k). e(k) = d(k) ˆd(k) = d(k) x T (k)w(k). (3) 2

3 En har en algoritme som beregner filterkoeffisientene for hvert tidssteg, inngangen til denne algoritmen er både x(k) og e(k) og de brukes, gjerne sammen med lagrede tidligere verdier, for å beregne de adaptive filterkoeffisientene for neste tidssteg, w(k + 1). En ønsker disse koeffisientene slik at feilen blir minst mulig, altså å minimere e(k + 1). Siden en ikke vet hva som blir neste verdier, hverken d(k + 1) eller x(k + 1), er det selvsagt umulig å få feilen e(k + 1) til å bli null. En ønsker ei algoritme som finner w(k + 1) slik at forventningsverdien til feilen blir minst mulig, E[ e(k + 1) ] minimeres. Absoluttverdier er kompliserte, fordi funksjonen abs() ikke er deriverbar i 0, så en bruker gjerne heller at E[e 2 (k + 1)] minimeres. En kan, og det blir ofte gjort, regne videre med forventningsverdier og da får en at det optimale filterkoeffisientene må oppfylle Wiener-Hopf ligningene, det er et lineært ligningssystem, R x w = r dx. (4) R x er, den generelt tidsvarierende, autokorrelasjonsmatrisa til x(k), r dx er, også generelt tidsvarierende, krysskorrelasjonsvektoren til d(k) og x(k), og w er da vektoren med de tidsvarierende filterkoeffisientene, w(k). Alternativt kan en se mer praktisk på det å finne de til enhver tid optimale filterkoeffisientene basert på antakelsen at det som er de optimale filterkoeffisientene nå, er de samme som det som var de optimale filterkoeffisientene i steget før, og gjerne også stegene litt før det igjen. Det viser seg, ikke overraskende, at disse praktiske metodene finner løsningen på Wiener-Hopf ligningene, eller tilnærmede løsninger, der en bruker ulike metoder for å estimere R x og r dx på. La oss se praktisk på dette. Vi ser på de L siste ligningene av 3, L N, og ønsker å finne den beste w vi kunne bruk her, der den er fast og ikke får endre seg fra gang til gang. Altså e(k) = d(k) x T (k)w e(k 1) = d(k 1) x T (k 1)w. e(k L + 1) = d(k L + 1) x T (k L + 1)w Med åpenbare definisjoner kan dette skrives (5) e = d Xw. (6) Dimensjonene her er L 1 for e og d, L N for X, linje n i X er x T (k +1 n), og N 1 for w. En ønsker å minimere sum av kvadrerte feil her, det er det samme som å minimerer 2-normen kvadrert L 1 f(w) = e 2 (k i) = e T e = e 2 2 = d Xw 2 2. (7) i=0 Fra lineær algebra har en at når en minimerer uttrykket over med hensyn på w så får en least squares løsningen w = (X T X) 1 X T d. (8) 3

4 Å vise at løsningen til ligning 7 er som i ligning 8 er ikke så vanskelig når en først kan derivere f(w) med hensyn på w og så sette den deriverte til null. En må bruke derivasjonsregler fra lineær algebra, ligningene 11 og 12, og får da f(w) = e T e = (d T w T X T ) (d Xw) f(w) = d T d w T X T d d T Xw + w T X T Xw f w = 0 dt X d T X + 2w T (X T X) Når en setter dette til 0 får en w T (X T X) = d T X Transponerer og multipliserer med (X T X) 1 og får så ligning 8. Mye det samme gjøres når en finner bratteste nedstigning i del 3 her. 3 Prediksjon Vi skal nå ha en prediktor som går et steg fram, det vil si at en ønsker å predikere x n+1 ut fra x n og tidligere verdier. x n+1 x n p n + + e n - z 1 P Figur 2: Prinsippskisse for prediksjon ett steg fram. Se tekst for mer forklaring. En enkel skisse for prediksjon viser i figur 2. Utgangen fra prediktoren figur 2 er p n (tilsvarer ˆd(k) i figur 1). Prediksjonsfeilen er e n (tilsvarer e(k) i figur 1). Vi skal nå la prediktoren, figur 2, være et adaptivt filter og tegner nå figuren om igjen, altså figur 1 innsatt i figur 2. Vi bruker symboler som i figur 1, og resultatet er i figur 3. Bruk av forsinkelseblokker er her slik at en tydelig ser at prediktoren bruker x(k) og tidligere verdier, samt filterkoeffisientene w(k), for å prediktere neste verdi ˆx(k + 1). På samme måte bruker oppdateringsalgoritmen både x(k) og e(k), og gjerne også tidligere verdier (informasjonen i disse er akkumulert i w(k)) for å beregne nye filterkoeffisienter w(k + 1). I andre tilsvarende figurer kan forsinkelsene være underforstått som del av henholdsvis prediktor og oppdateringsalgoritmen. Utfordringen ved adaptiv filtrering er å bruke en god og effektiv algoritme for oppdateringen. Flere alternativer finnes. Vi skal se på noen av dem. 4

5 x(k + 1) d(k) z 1 x(k) Adaptiv prediktor ˆx(k + 1) + + w(k) ˆd(k) - e(k) w(k + 1) Algoritme e(k) Figur 3: Prinsippskisse for adaptiv prediksjon ett steg fram. Se tekst for mer forklaring. 4 Bratteste nedstigning En kjenner Newtons metode for å finne x slik at f(x) = 0, en starter med en x 0 og så finner en neste verdi med formelen x i+1 = x i 1 f (x i ) f(x i). En tilsvarende iterativ metode kan brukes for å finne minimum av funksjonen. En kan i hvert steg gå i motsatt retning av den deriverte, x i+1 = x i µ sign(f (x i )), der sign(a) = a/ a, men steglengden µ er nå vanskeligere å sette optimalt. Velger en en passelig liten steglengde vil en ende opp med at x i og x i+1 er på hver sin side av et lokalt minimum for funksjonen. Det er samme prinsipp som brukes i bratteste nedstigning metoden for adaptiv filtrering. For adaptiv filtrering har en en funksjon med flere variabler (samlet i vektoren w). Funksjonen er som i ligning 7 f(w) = e T e = (d Xw) T (d Xw). (9) For bratteste nedstigning metode skal en altså gå i motsatt retning av den deriverte, eller mer presist gradienten. Fra matematikken husker en at gradienten til en funksjon med flere variabler (samlet i en vektor) er en vektor med sammen størrelse, like mange elementer som det er variabler i funksjonen, og at hvert element er den partiell deriverte av funksjonen med hensyn på hver av variablene. Altså blir oppdateringsligningen w(k + 1) = w(k) µ f(k), f(k) = f(w(k)). (10) 5

6 En kan bruke følgende formler fra lineær algebra (x T Ax) x = 2Ax (11) (b T x) = (xt b) = b (12) x x og finne gradienten til f i ligning 9. For enkelhets skyld skriver vi nå w i stedet for w(k) og får f(k) = f(w(k)) = f(w) w = [ (d T w T X T ) (d Xw) ] w = [ d T d w T X T d d T Xw + w T X T Xw ] w = [ w T (X T X)w 2(d T X)w ] w f(k) = 2(X T X)w(k) 2(X T d) (13) Negativ retning av gradienten er da gitt med (faktoren 2 fjernes) f(k) = X T d X T Xw (14) = X T (d Xw) = X T e. (15) Retningen kan en gange med en passende faktor, for eksempel 1/L, og da får vi f(k) = ( 1 L XT d) ( 1 L XT X)w = 1 L XT e (16) f(k) = ˆr dx ˆR x w(k) = ˆr ex. (17) Her har vi brukt at det som står inni parentesene er estimat for krysskorrelasjon og autokorrelasjon. Husk at definisjonen på krysskorrelasjon, for Wide Sense Stationary signaler (prosesser), er 1 r xy (l) = E[x(n)y(n l)] = lim M 2M + 1 M n= M x(n)y(n l). (18) Autokorrelasjonen er tilsvarende, en setter x inn i stedet for y og får r xx. Oppdaterinsalgoritmen skrives da som w(k + 1) = w(k) + µ (ˆr dx ˆR x w(k)) = w(k) + µ ˆr ex. (19) Dette stemmer med resultatet en får hvis en regner med forventningsverdier, og en antar at både x(k) og d(k) er Wide Sense Stationary signaler (prosesser) da får en w(k + 1) = w(k) + µ (r dx R x w(k)) = w(k) + µ r ex. (20) 6

7 Feilen e(k) er et resultat av det adaptive filteret og dermed av oppdateringsalgoritmen, det er altså ikke et signal som en i utgangspunktet har, derfor er r ex ikke en gitt egenskap, og en skriver gjerne oppdaterinsalgoritmen litt løsere som w(k + 1) = w(k) + µ E[e(k)x(k)]. (21) 5 LMS algoritmen Problemet med bratteste nedstigning metoden er at E[e(k)x(k)] i ligning 21 generelt er ukjent og må estimeres, for eksempel som i ligning 16. Spesielt enkelt blir det hvis en nå har L = 1, da får en den enkle LMS oppdateringsalgoritmen w(k + 1) = w(k) + µ e(k)x(k) (22) Egenskapene for denne algoritmen er godt utforsket, både teoretisk og i praksis. Her skal vi bare nevne at valg av µ er viktig, for liten verdi og algoritmen konvergerer sakte og for stor verdi og algoritmen hopper for mye i hytt og vær. En har vist at for WSS-prosesser så vil LMS algoritmen konvergerer (for middelverdi) hvis 0 < µ < 2 λ max (23) der λ max er største egenverdi for R x. Denne er ikke alltid enkel å finne, men en kan for eksempel bruke at λ max N i=1 λ i = tr(r x ) = N E[ x(k) 2 ], hvis x(k) er WSS. Det er utallige varianter av LMS, men vi skal ikke se på de her. 7

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Adaptiv filtrering 2. Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentikasjon (0 sp) Dato: Tirsdag 5 desember 205 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess...

Generell informasjon om faget er tilgjengelig fra It s learning. 7.1 Stokastisk prosess Lineær prediktor AR-3 prosess... Stavanger, 1. september 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 7.1 Stokastisk prosess..........................

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. med Kalman-filter og RLS.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. med Kalman-filter og RLS. Stavanger, 9. august 2016 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S

Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun standard enkel kalkulator, HP 30S DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp)

Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentifikasjon ( sp) Dato: Mandag 8 desember 28 Lengde på eksamen: 4 timer Tillatte

Detaljer

Dato: fredag 14 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen. 1 Diskret tilstandsrommodell 2. 2 Stående pendel 4

Dato: fredag 14 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen. 1 Diskret tilstandsrommodell 2. 2 Stående pendel 4 DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK30, Systemidentifikasjon Dato: fredag 4 desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning. 1 Stokastiske system og prosesser 2 Stavanger, 4. august 016 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 016. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes It s learning.

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon (10 sp) Dato: Mandag 8 desember 2008 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004

MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004 MIK-130 Systemidentifikasjon Løsningsforslag eksamen 28 mai 2004 Oppgave 1 a Energibalanse: Endring i energi = sum av tilført energi - sum av avgitt energi. Her får en da for vannet E t = (m vc pv T v

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK30, Systemidentifikasjon Dato: Fredag 4. desember 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen

Detaljer

Generell informasjon om faget er tilgjengelig fra It s learning.

Generell informasjon om faget er tilgjengelig fra It s learning. Stavanger, 6. august 013 Det teknisknaturvitenskapelige fakultet ELE500 Signalbehandling, 013. Generell informasjon om faget er tilgjengelig fra It s learning. Innhold 5.1 Implementering av IIR filter....................

Detaljer

4.1 Diskretisering av masse-fjær-demper-system. K f m. x m u m y = x 1. x m 1 K d. Dette kan skrives på matriseform som i oppgaven med 0 1 A =

4.1 Diskretisering av masse-fjær-demper-system. K f m. x m u m y = x 1. x m 1 K d. Dette kan skrives på matriseform som i oppgaven med 0 1 A = Stavanger, 5. september 08 Det teknisknaturvitenskapelige fakultet ELE60 Systemidentifikasjon, 08. Innhold 4 Løsningsforslag og kommentarer, noen regneoppgaver. 4. Diskretisering av masse-fjær-demper-system...........

Detaljer

6 Modellering av smelteovn Modellering Tilstandsromform Diskretisering Observerbarthet Tidssteg...

6 Modellering av smelteovn Modellering Tilstandsromform Diskretisering Observerbarthet Tidssteg... Stavanger, 28. mai 2019 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2019. Innhold 6 Modellering av smelteovn. 1 6.1 Modellering............................. 1 6.2 Tilstandsromform..........................

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Stavanger, 26. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk. Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp)

DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk. Løsningsforslag Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentifikasjon ( sp) Dato: torsdag 6 desember Lengde på eksamen: 4 timer Tillatte

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: 21 februar 2007 Lengde på eksamen: 4 timer Tillatte hjelpemidler: ingen Bokmål

Detaljer

Løsningsforslag Eksamen i MIK130, Systemidentikasjon (10 sp)

Løsningsforslag Eksamen i MIK130, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Løsningsforslag Eksamen i MIK3, Systemidentikasjon ( sp) Dato: onsdag 23 november 2 Lengde på eksamen: 4 timer Tillatte

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon (10 sp) Dato: onsdag 24 november 2010 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK130, Systemidentifikasjon Dato: Tirsdag 28. november 2006 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

Det matematisk-naturvitenskapelige fakultet

Det matematisk-naturvitenskapelige fakultet UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i IN 227 Numerisk lineær algebra Eksamensdag: 5. desember 2001 Tid for eksamen: 9.00 15.00 Oppgavesettet er på 5 sider. Vedlegg:

Detaljer

Eksamen i MIK130, Systemidentifikasjon (10 sp)

Eksamen i MIK130, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksaen i MIK130, Systeidentifikasjon (10 sp) Dato: Torsdag 17 deseber 2009 Lengde på eksaen: 4 tier Tillatte hjelpeidler:

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

Side av 5 fra matriseteori har vi at en symmetrisk matrise alltid er ortogonalt diagonaliserbar. Det vil si at X kan skrives på formen X = M M (6) der

Side av 5 fra matriseteori har vi at en symmetrisk matrise alltid er ortogonalt diagonaliserbar. Det vil si at X kan skrives på formen X = M M (6) der Side av 5 Norges teknisk- naturvitenskapelige universitet Institutt for teknisk kybernetikk SIE38 Stokastiske og adaptive systemer Fasit til ving Oppgave Gitt at den stokastiske vektoren v er normalfordelt

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

Ikke lineære likninger

Ikke lineære likninger Ikke lineære likninger Opp til nå har vi studert lineære likninger og lineære likningsystemer. 1/19 Ax = b Ax b = 0. I en dimensjon, lineære likninger kan alltid løses ved hjelp av formler: ax + b = 0

Detaljer

Eksamen i ELE620, Systemidentifikasjon (10 sp)

Eksamen i ELE620, Systemidentifikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i ELE620, Systemidentifikasjon (10 sp) Dato: tirsdag 17 desember 2013 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8

Detaljer

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato:

SENSORVEILEDNING. Emnenavn: Matematikk 2. Dato: SENSORVEILEDNING Emnekode: IRF2004 Emnenavn: Matematikk 2 Eksamensform: Skriftlig Dato: 26..8 Faglærer(e): Tore August Kro Eventuelt: Dette er revidert versjon av sensorveiledningen. Denne sensorveiledningen

Detaljer

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave.

Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk og stil variere noe fra oppgave til oppgave. NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

LØSNING, KOMMENTAR & STATISTIKK

LØSNING, KOMMENTAR & STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Faglig kontakt under eksamen: Steffen Junge (73 59 7 73 / 94 6 27 27) Eksamen i Brukerkurs i Matematikk for Informatikere

Detaljer

Ridge regresjon og lasso notat til STK2120

Ridge regresjon og lasso notat til STK2120 Ridge regresjon og lasso notat til STK2120 Ørulf Borgan februar 2016 I dette notatet vil vi se litt nærmere på noen alternativer til minste kvadraters metode ved lineær regresjon. Metodene er særlig aktuelle

Detaljer

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Øving med systemidentifikasjon.

Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. 1 Øving med systemidentifikasjon. Stavanger, 23. juni 2017 Det teknisknaturvitenskapelige fakultet ELE620 Systemidentifikasjon, 2017. Generell informasjon om faget er tilgjengelig fra fagets nettside, og for øvinger brukes canvas. Innhold

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s. 1. Oppgave 1 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Løsninger til oppgavesett 5, s AR2-modell: Oppgave X t φ X t φ 2 X t 2 Z t Antas å være kausal slik at X t ψ j Z t j er ukorrelert med Z t+,

Detaljer

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3

Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1. Oppgave 1. Oppgave 2. Oppgave 3 Matematisk statistikk og stokastiske prosesser B, høsten 2006 Oppgavesett 5, s. 1 Oppgave 1 For AR(2)-modellen: X t = 0.4X t 1 + 0.45X t 2 + Z t (der {Z t } er hvit søy med varians 1), finn γ(3), γ(4)

Detaljer

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk.

MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Stavanger, 25. januar 2012 Det teknisknaturvitenskapelige fakultet MIK 200 Anvendt signalbehandling, 2012. Lab. 5, brytere, lysdioder og logikk. Vi skal i denne øvinga se litt på brytere, lysdioder og

Detaljer

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at

Løsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =

Detaljer

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1

Eksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1 Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09

LØSNINGSFORSLAG EKSAMEN MA0002, VÅR 09 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN MA000, VÅR 09 Oppgave a) (0%) Løs initialverdiproblemet gitt ved differensialligningen med

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t)

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t) NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 013 Løsningsforslag Notasjon og merknader En vektor boken skriver som ai + bj + ck, vil vi ofte skrive som (a, b, c), og tilsvarende

Detaljer

SIF5030/75047 Optimeringsteori, 5 timer. Ingen hjelpemidler.

SIF5030/75047 Optimeringsteori, 5 timer. Ingen hjelpemidler. Oppgave1: SIF5/757 Optimeringsteori, 5 timer Ingen hjelpemidler. (a) Forklar hva som menes med en konveks funksjon, og argumentér for at alle minima til en konveks funksjon på en konveks mengde er globale

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00

EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag 7. desember 2012 Tid: 09:00 13:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Bokmål Faglig kontakt under eksamen: John Tyssedal 73593534/41645376 EKSAMEN I TMA4285 TIDSREKKEMODELLER Fredag

Detaljer

Kalmanfilter på svingende pendel

Kalmanfilter på svingende pendel Kalmanfilter på svingende pendel Rolf Henriksen og Torbjørn Houge Institutt for teknisk kybernetikk NTNU 2005 Vi skal se på hvordan Kalmanfilteret fungerer på et velkjent eksempel, den svingende pendel

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker

Enkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

Eksamen i MIK130, Systemidentikasjon (10 sp)

Eksamen i MIK130, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for data- og elektroteknikk Eksamen i MIK3, Systemidentikasjon ( sp) Dato: onsdag 23 november 2 Lengde på eksamen: 4 timer Tillatte hjelpemidler: Kun

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 9, blokk II Oppgave 1 X er kontinuerlig fordelt med sannsynlighetstetthet f(x) = 2xe

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.

Detaljer

LØSNINGSFORSLAG EKSAMEN MA0002, V08

LØSNINGSFORSLAG EKSAMEN MA0002, V08 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 LØSNINGSFORSLAG EKSAMEN MA000, V08 Oppgave 1 Litt av hvert. a) (10%) Løs initialverdiproblemet gitt ved differensialligningen

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i STK2520 Problemer og metoder i aktuarfag. Eksamensdag: Onsdag 4. desember 2013 Tid for eksamen: 09.00 13.00 Oppgavesettet er på

Detaljer

Sensitivitet og kondisjonering

Sensitivitet og kondisjonering Sensitivitet og kondisjonering Gitt en lineær likningssystem Ax = b vi skal studere effekten av perturbasjoner av input data: 1/19 på output data: Man kan A, b x perturbere bare b perturbere b og A samtidig.

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Eksamen i ELE620, Systemidentikasjon (10 sp)

Eksamen i ELE620, Systemidentikasjon (10 sp) DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for ata- og elektroteknikk Eksamen i ELE620, Systemientikasjon (10 sp) Dato: Manag 15 esember 2014 Lenge på eksamen: 4 timer Tillatte hjelpemiler: Kun

Detaljer

STE 6219 Digital signalbehandling Løsningsforslag

STE 6219 Digital signalbehandling Løsningsforslag HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi Masterstudiet EL/RT Side 1 av 3 STE 6219 Digital signalbehandling Løsningsforslag Tid: Fredag 20.04.2007, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Løsningsforslag til eksamen i MAT 1100, H06

Løsningsforslag til eksamen i MAT 1100, H06 Løsningsforslag til eksamen i MAT, H6 DEL. poeng Hva er den partiellderiverte f z xyz cosxyz x sinyz + xyz cosyz xy cosyz x sinyz + xz cosyz cosyz xyz sinyz når fx, y, z = xz sinyz? Riktig svar b: x sinyz

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

TMA4245 Statistikk Eksamen desember 2016

TMA4245 Statistikk Eksamen desember 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA4245 Statistikk Eksamen desember 2016 Oppgave 1 En bedrift produserer elektriske komponenter. Komponentene kan ha to typer

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

Eksamen i MIK130, Systemidentifikasjon

Eksamen i MIK130, Systemidentifikasjon DET TEKNISK - NATURVITENSKAPELIGE FAKULTET Institutt for elektroteknikk og databehandling Eksamen i MIK130, Systemidentifikasjon Dato: Mandag 28. november 2005 Lengde på eksamen: 4 timer Tillatte hjelpemidler:

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man

Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF5009 MATEMATIKK 3 Bokmål Man Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Mandag. desember Oppgave a) Karakteristisk polynom er + = ;

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Eksamensoppgave i TMA4240 Statistikk

Eksamensoppgave i TMA4240 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4240 Statistikk Faglig kontakt under eksamen: Mette Langaas a, Ingelin Steinsland b, Geir-Arne Fuglstad c Tlf: a 988 47 649, b 926 63 096, c 452 70 806

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Onsdag 9 mai 9 Tid for eksamen: 4:3 8:3 Oppgavesettet er på 7 sider Vedlegg: Tillatte

Detaljer

Tilstandsestimering Oppgaver

Tilstandsestimering Oppgaver University College of Southeast Norway Tilstandsestimering Oppgaver HANS-PETTER HALVORSEN http://home.hit.no/~hansha Innholdsfortegnelse 1 Grunnlag... 3 1.1 Statistikk og Stokastiske systemer... 3 1.2

Detaljer

Flervariable funksjoner: Linearisering

Flervariable funksjoner: Linearisering Flervariable funksjoner: Linearisering Forelest: 10. Nov, 2004 Vi har nå kommet til høyepunktet i pensumet for flervariable funksjoner, der vi lærer å regne omtrentlig på en nøyaktig måte. Metoden heter

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver

Matematikk 1000. Eksamensaktuelle numerikk-oppgåver Matematikk 1000 Eksamensaktuelle numerikk-oppgåver Som kj er numeriske metodar ein sentral del av dette kurset. Dette vil også sette preg på eksamen. Men vi kjem ikkje til å bruke datamaskin på sjølve

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Dette kan selvfølgelig brukes direkte som en numerisk tilnærmelse til den deriverte i et gitt punkt.

Dette kan selvfølgelig brukes direkte som en numerisk tilnærmelse til den deriverte i et gitt punkt. Numerisk derivasjon Anne Kværnø Problemstilling Gitt en tilstrekkelig glatt funksjon. Finn en tilnærmelse til i et gitt punkt. Den deriverte av (https://wiki.math.ntnu.no/tma4100/tema/differentiation?

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer