Case: Analyse av passive elektriske filtre
|
|
|
- Sidsel Dahlen
- 10 år siden
- Visninger:
Transkript
1 HØGSKOEN I SØR-TRØNDEAG AVDEING FOR TEKNOOGI PROGRAM FOR EEKTRO- OG DATATEKNIKK N7004 TRONDHEIM Telefon jobb: Mobil: [email protected] Kåre Bjørvik, 15. oktober 2008 AM005-A Matematikk 1 ærebok: Anthony Croft, Robert Davison, Martin Hargreaves: Engineering mathematics, 3.utgave (Grunnlagsfag, 10 studiepoeng) Case: Analyse av passive elektriske filtre es dette først. Casen er en "hjemmeoppgave" som du skal arbeide med før eksamen. Resultatet av arbeidet skal ikke innleveres. Eksamen vil være en flervalgseksamen med 30 spørsmål. De 15 første spørsmålene har en tilknytning til casen. Under denne delen av eksamen er caseteksten og din besvarelse nødvendige hjelpemidler. Husk derfor å ta med både caseteksten og besvarelsen på eksamensdagen. Det er viktig at du før eksamen setter deg godt inn i casens problemstillinger, og at du behersker løsningsmetodene og er i stand til å tolke de resultatene du kommer fram til. Hvis du i en flervalgsoppgave blir spurt om ting du ikke har regnet direkte på, bør du være klar over at svaralternativene ofte er utformet slik at du likevel kan avgjøre hvilket alternativ som er riktig, ut fra den generelle innsikt du har fått gjennom arbeidet med casen. Under arbeidet med casen kan du bruke de hjelpemidler du finner hensiktsmessig (kalkulator /programvare). Vær imidlertid oppmerksom på at noen av spørsmålene på eksamen kan forutsette at du vet hvordan et problem fra casen kan løses for hånd. Du kan arbeide alene med casen, eller sammen med andre. Det avgjørende er at du selv tilegner deg innsikt i problemene. ykke til med arbeidet!
2 Oppgave 1 avpassfilter Figur 1 Passivt lavpassfilter (P-filter) R representerer motstandsverdien til en høyttaler. avpassfilteret vil fungere som et bassfilter til høyttaleren. y(t). Bestem startbetingelsen y(0). Bestem også et uttrykk for tidskonstanten τ. Anta at impedansen til høyttaleren er reell og lik 4 Ω og at spolen har en induktans på 0,004H. En likespenning på 1V påtrykkes kretsen ved t = 0. øs differensiallikningen og bestem spenningen y(t), og angi hva som er transient spenning og hva som er stasjonær spenning. Plott utgangsspenningen y(t) i samme diagram som inngangsspenningen x(t). Anta at impedansen til høyttaleren er reell og lik 4 Ω og at spolen har en induktans på 0,004H. En sinusspenning med amplitude på 1V og vinkelfrekvens 1000 rad/s påtrykkes kretsen ved t = 0. Benytt kompleks regning til å bestemme stasjonær utgangsspenning. Plott den stasjonære utgangsspenningen i samme diagram som inngangsspenningen x(t). For å beregne amplituden til utgangssignalet i forhold til amplituden til inngangssignalet må en beregne forholdet mellom disse to amplitudene. Dersom en benytter kompleks regning får en da også faseforskjellen mellom inngang- og utgangssignalet, fordi et komplekst tall kan angis med en lengde og en vinkel. a X være amplituden til inngangssignalet og Y være amplituden til utgangssignalet. Vi får da R Y R 1 Y = X H ( jω) = = = R + jω X R + jω 1+ j ω H ( jω) er overføringsfunksjonen til lavpassfilteret. Absoluttverdien (lengden) til H kalles for amplitudeforsterkningen og vinkelen til H kalles for fasen. Anta at impedansen til høyttaleren er reell og lik 4 Ω og at spolen har en induktans på 0,004H. Tegn opp amplitudeforsterkningen og fasen til H som funksjon av vinkelfrekvensen ω. Velg ω -aksen 2 4 logaritmisk, og plott funksjonene i hvert sitt diagram i frekvensområdet rad / s. Benytt grader på funksjonsaksen når dere tegner fasekurven til overføringsfunksjonen. R
3 Oppgave 2 Høypassfilter C Figur 2 Passivt høypassfilter (HP-filter) R representerer motstandsverdien til en høyttaler. Høypassfilteret vil fungere som et diskantfilter til høyttaleren. y(t). Bestem startbetingelsen y(0). Bestem også et uttrykk for tidskonstanten τ. Anta at impedansen til høyttaleren er reell og lik 4 Ω og at kondensatoren har en kapasitans på 6,25µ F. En likespenning på 1V påtrykkes kretsen ved t = 0. øs differensiallikningen og bestem spenningen y(t), og angi hva som er transient spenning og hva som er stasjonær spenning. Plott utgangsspenningen y(t) i samme diagram som inngangsspenningen x(t). Anta at impedansen til høyttaleren er reell og lik 4 Ω og at kondensatoren har en kapasitans på 6,25µ F. En sinusspenning med amplitude på 1V og vinkelfrekvens rad/s påtrykkes kretsen ved t = 0. Benytt kompleks regning til å bestemme stasjonær utgangsspenning. Plott den stasjonære utgangsspenningen i samme diagram som inngangsspenningen x(t). Bestem overføringsfunksjonen til høypassfilteret. Anta at impedansen til høyttaleren er reell og lik 4 Ω og at kondensatoren har en kapasitans på 6,25µ F. Tegn opp amplitudeforsterkningen og fasen til H som funksjon av vinkelfrekvensen ω. Velg ω -aksen 3 6 logaritmisk, og plott funksjonene i hvert sitt diagram i frekvensområdet rad / s.
4 Oppgave 3 Båndpassfilter C Figur 3 Passivt båndpassfilter (BP-filter) R representerer motstandsverdien til en høyttaler. Båndpassfilteret vil fungere som et mellomtonefilter til høyttaleren. dy y(t). Bestem startbetingelsene y(0) og. dt t= 0 Anta at impedansen til høyttaleren er reell og lik 4 Ω. En likespenning på 1V påtrykkes kretsen ved t = 0. øs differensiallikningen og bestem spenningen y(t) for følgende tre tilfeller: 1. C = 78,125µ F og = 0, 2mH 2. C = 62,5µ F og = 0, 25mH 3. C = 40µ F og = 0, 25mH Angi hva som er transient spenning og hva som er stasjonær spenning. Plott utgangsspenningene y(t) i samme diagram som inngangsspenningen x(t). Anta at impedansen til høyttaleren er reell og lik 4 Ω, kondensatoren har en kapasitans på 78,125µ F og at spolen har en induktans på 0,2mH. En sinusspenning med amplitude på 1V og vinkelfrekvens 8000 rad/s påtrykkes kretsen ved t = 0. Benytt kompleks regning til å bestemme stasjonær utgangsspenning. Plott den stasjonære utgangsspenningen i samme diagram som inngangsspenningen x(t). Bestem overføringsfunksjonen til høypassfilteret. Anta at impedansen til høyttaleren er reell og lik 4 Ω, kondensatoren har en kapasitans på 78,125µ F og at spolen har en induktans på 0,2mH. Tegn opp amplitudeforsterkningen og fasen til H som funksjon av vinkelfrekvensen ω. Velg ω -aksen logaritmisk, og plott funksjonene i hvert sitt diagram i frekvensområdet rad / s.
5 Oppgave 4 Oppsummering Knekkfrekvenser Dere har nå analysert et lavpassfilter, et høypassfilter og et båndpassfilter. Et filter har en eller flere knekkfrekvenser. Knekkfrekvensen er den vinkelfrekvensen der amplitudeforsterkningen til filteret er lik 1. Hva er knekkfrekvensene til lav- og høypassfilteret? Hvilken 2 sammenheng er det mellom knekkfrekvensene og tidskonstantene til henholdsvis lav- og høypassfilteret? Dere fant stasjonær sinusrespons ved regning. Amplitudeforsterkningskurven og fasekurven til filtrene kan benyttes til å lese ut slike sinusresponser uten å foreta beregninger. Benytt disse kurvene til å øve dere opp til å finne sinusresponsen når en påtrykker filtrene andre vinkelfrekvenser enn det dere har regnet på tidligere. Tips: y = A H ( jω ) sin( ω t + H ( jω )) A stasjonær inn inn = Amplituden til inngangssignalet H ( jω 1) og H ( jω1 ) leses av i henholdsvis amplitude- og fasediagrammet. Matlabtips Opptegning av amplitude- og fasediagram (AFF-diagram) kan med fordel utføres i matlab, likeså plotting av sprangresponsene og sinusresponsene. (AFF-diagram) Før du finner overføringsfunksjonene bytter du ut jω i impedansuttrykkene til en spole og en 1 kondensator med s, d.v.s. impedansen til en spole blir da s og til en kondensator sc. Anta 0.001s + 0 at du har følgende overføringsfunksjon: H ( s) =. Før du får tegnet AFFdiagrammene må telleren og nevneren i H(s) leses inn, og de leses inn som rekkevektorer med 0.001s + 1 riktige koeffisienter. Du må også lese inn hvilket frekvensområde du ønsker å tegne AFFdiagrammene over. Kommando i matlab Forklaring >> w=logspace(2,5,2000); 2 Genererer w-verdier i området 10 5 til 10, 2000 punkter >> Teller=[ ]; Teller lik 0.001s+0 >> Nevner=[ ]; Nevner lik 0.001s+1 >> [a,f]=bode(teller,nevner,w); Her beregnes amplituden (a) og fasen (f) for alle w-verdier >> semilogx(w,a); Her plottes amplituden som funksjon av w med logaritmisk w-akse >>grid; Rutemønster tegnes opp i diagrammet >> semilogx(w,f); Her plottes fasen som funksjon av w med logaritmisk w-akse >>grid; Plotting av vanlige funksjoner har dere prøvd i ENTERing-uka, og øvingen dere da gjennomførte ligger ut på it s learning. Dere kan også se på andre matlabtips og simulinktips som ligger ut på it s learning.
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Kontaktperson(adm.)(fylles ut ved behov kun ved
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Fredag 7.juni 23 5 klokketimer TLM3- / LM5M- Matematikk Klasse(r): EL FEN Studiepoeng:
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
Analyse av passive elektriske filtrer
HØGSKOEN I SØ-TØNDEAG Avdeling for teknologi Program for elektro- og datateknikk 7004 TONDHEIM TAM004-A Matematikk 2 (Grunnlagfag, 0 tudiepoeng) ærebok: Anthony roft, obert Davion, Martin Hargreave: Engineering
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 7. juni 2016 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet
y = Bx + C innsettes differensiallikningen for å bestemme B:
ØGSKOEN I SØ-TØNDEAG Avdeling for teknologi rogram for elektro- og datateknikk 74 TONDEIM TAM 3 Matematikk Anthon Croft, obert Davison, Martin argreaves, James Flint: Engineering mathematics, 4.utgave
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
Forelesning nr.6 INF 1411 Elektroniske systemer
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser
EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk
Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,
INF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):
303d Signalmodellering: Gated sinus a) Finn tidsfunksjonen y(t) b) Utfør en Laplace transformasjon og finn Y(s)
303d Signalmodellering: Gated sinus... 1 610 Operasjonsforsterkere H2013-3... 1 805 Sallen and Key LP til Båndpass filter... 2 904 Z-transformasjon av en forsinket firkant puls.... 4 913 Chebyshev filter...
LØSNINGSFORSLAG TIL SIGNALBEHANDLING 1 JUNI 2010
LØSNINGSFORSLAG TIL SIGNALBEHANDLING JUNI Løsningsforslag til eksamen i Signalbehandling, mai Side av 5 Oppgave a) Inngangssignalet x(t) er gitt som x( t) = 5cos(π t) + 8cos(π 4 t). Bruker Eulers formel
Innhold Oppgaver om AC analyse
Innhold Oppgaver om AC analyse 30 a) Finn krets og bodeplot vedhjelp av målt impulsrespons.... 30 b) Finn krets og bodeplot vedhjelp av målt respons.... 30 Gitt Bodeplot, Del opp og finn systemfunksjon...
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
INF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
Øving 1 ITD Industriell IT
Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes
7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS
7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2016 Tid: 0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall oppgaver:
Kapittel 5. Frekvensrespons. Beregningavfrekvensresponsfrasignaler. Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system.
Kapittel 5 Frekvensrespons Oppgave5.1 Beregningavfrekvensresponsfrasignaler Figur 25 viser sammenhørende inngangssignal og utgangssignal for et system. Figur 25: Oppgave 5.1: Inngangssignalet u og utgangssignalet
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk - naturvitenskapelige fakultet Eksamen i : FYS1210 - Elektronikk med prosjektoppgaver Eksamensdag : Tirsdag 2. juni 2015 Tid for eksamen : 09:00 12:00 (3 timer) Oppgavesettet
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 17.12.2014 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 14H Ingeniørfaglig yrkesutøving og arbeidsmetoder
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 27 Tid for eksamen: 14.3 17.3 Oppgavesettet er på 5 sider. Vedlegg: INF 347 / INF 447 Digital Signalbehandling
EKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons
Oppgaven må gis etter at vi har gjennomgått bodeplot for resonanskretser. Anta at opampen er ideell og kun fungerer som en ren forsterker Rf
Oppgaver med løsningsforslag FYS30 H009 Uke 40 H.Balk 4.4 Bodeplot for krets med reelle og komplekse poler Oppgaven må gis etter at vi har gjennomgått bodeplot for resonanskretser Anta at opampen er ideell
Eksamensoppgave i TELE2001 Reguleringsteknikk
Fakultet for teknologi Eksamensoppgave i TELE2001 Reguleringsteknikk Faglig kontakt under eksamen: Fredrik Dessen Tlf.: 48159443 Eksamensdato: 7. juni 2016 Eksamenstid (fra-til): 09:00 til 14:00 Hjelpemiddelkode/Tillatte
Praktiske målinger med oscilloskop og signalgenerator Vi ser på likerettere og frekvensfilter
Kurs: FYS1210 Elektronikk med prosjektoppgaver Gruppe: Gruppe-dag: Oppgave: LABORATORIEØVELSE NR 2 Omhandler: Praktiske målinger med oscilloskop og signalgenerator Vi ser på likerettere og frekvensfilter
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på
Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av. Per Hveem og Kåre Bjørvik
Dette er et utdrag fra kapittel 6 i boka: Reguleringsteknikk, skrevet av Per Hveem og Kåre Bjørvik Kapittelnummering og eksempelnummering stemmer ikke overens med det står i boka. 1 5.1 Fra overføringsfunksjon
Løsningsforslag til EKSAMEN
Løsningsforslag til EKSAMEN Emnekode: ITD006 Emne: Fysikk og datateknikk Dato: 09. Mai 007 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,
FYS1210 Løsningsforslag Eksamen V2015
FYS1210 Løsningsforslag Eksamen V2015 K. Spildrejorde, M. Elvegård Juni 2015 1 Oppgave 1: Frekvensfilter Frekvensfilteret har følgende verdier: 1A C1 = 1nF C2 = 100nF R1 = 10kΩ R2 = 10kΩ Filteret er et
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Eksamensdag: mandag 3.juni 2013 Tid for eksamen: 14.30-18.30 Oppgavesettet er på 6 sider Vedlegg: Ingen Tillatte
Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning.
1 Noen gruppeoppgaver for uke 20 våren 2008 i FYS2130: Svingninger i en elektrisk RCL-krets med og uten påtrykt vekselspenning. Vi har på forelesninger i uke 19 vist hvordan vi kan løse den andre ordens
01-Passivt Chebychevfilter (H00-4)
Innhold 01-Passivt Chebychevfilter (H00-4)... 1 0-Aktivt Butterworth & Besselfilter (H03-1)... 04 Sallen and Key lavpass til båndpass filter... 3 05 Butterworth & Chebychev (H0- a-d):... 5 06 Fra 1-ordens
Operasjonsforsterkeren
Operasjonsforsterkeren En kort innføring og oversikt Forelesningsnotat for SIE3040 Reguleringsteknikk med elektriske kretser ved Odd Pettersen. utgave pril 2000 (noen korreksjoner mars 2003) NORGES TEKNISK-NTURVITENSKPELIGE
Oppgaver for gruppeundervisningen i FYS2130 uke 18 våren 2009
1 Oppgaver for gruppeundervisningen i FYS2130 uke 18 våren 2009 Noen av ukas oppgaver er vanskelig å gjennomføre for dem som ikke var til stede på forelesningene i uke 17, siden vi ikke har et egnet kompendium
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTISITET OG MAGNETISME I TFY4155
Filterkretser Prosjekt i faget FY1013 Høsten 2005 av Jon Alm Eriksen og Lodve Brastad
Filterkretser Prosjekt i faget FY3 Høsten 5 av Jon Alm Eriksen og Lodve Brastad Abstract Denne oppgaven presenterer teori rundt passive filterkretser, samt forsøk med passive filterkretser for å teste
Forelesning nr.14 INF 1410
Forelesning nr.14 INF 1410 Frekvensrespons 1 Oversikt dagens temaer Generell frekvensrespons Resonans Kvalitetsfaktor Dempning Frekvensrespons Oppførselen For I Like til elektriske kretser i frekvensdomenet
EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Side 1 av 5 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME
Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel
Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester
Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):
Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn
Side 1 Høgskolen i Oslo Avdelingfor ingeniørutdanning Kandidaten må selv kontrollerer at oppgavesettet er fullstendig. Innføring skal være med blå eller sort penn Les igjennom ~ oppgaver før du begynner
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 2 september 1998 (utsatt grunnet streik V-98) Tid for eksamen : l.0900-1500 Oppgavesettet er på
KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4E. FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS
KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 09.12 OPPG.NR.: DS4E FREKVENS OG SPRANGRESPONSANALYSE Med ELVIS BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser
Løsningsforslag eksamen inf 1410 våren 2009
Løsningsforslag eksamen inf 1410 våren 2009 Oppgave 1- Strøm og spenningslover. (Vekt: 15%) a) Finn den ukjente strømmen I 5 i Figur 1 og vis hvordan du kom frem til svaret Figur 1 Løsning: Ved enten å
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 / FY108 Eksamensdag : 16 juni 2003 Tid for eksamen : Kl.0900-1500 Oppgavesettet er på 5 sider. Vedlegg : Logaritmepapir
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 29. mars 2007 Tid for eksamen: 09.00 2.00 Oppgavesettet er på 5 sider. Vedlegg: INF 3470 / INF 4470 Digital Signalbehandling
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider
UNIVERSITETET I OSLO.
UNIVERSITETET I OSLO. Det matematisk - naturvitenskapelige fakultet. Eksamen i : FY-IN 204 Eksamensdag : 18 juni 2002 Tid for eksamen : l.0900-1500 Oppgavesettet er på 5 sider. Vedlegg Tillatte hjelpemidler
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 2. august 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg
FYS3220 Forelesningsnotat AC-respons uke 39 H.Balk
FYS3 Forelesningsnotat uke 39 H.Balk Repetisjon...3 Etabler reglene for å tegne bode plot....7 Normalisering og eksempel på Bodeplot for sammensatt reell funksjon...9 Resonans og komplekskonjugerte -punkter,
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 4; løysing Oppgave R R 3 R 6 E R 2 R 5 E 2 R 4 Figuren over viser et likestrømsnettverk med ideelle spenningskilder og resistanser. Verdiene er: E = 40,0
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny og utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 1. august 01 Tid: 0900-100 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side)
En del utregninger/betraktninger fra lab 8:
En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden
Lab 3: AC og filtere - Del 1
Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator
Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 28. mai 2014 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider
For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:
FYS 2150. ØVELSE 3 KONDENSATOREN OG RC-FILTRE
FYS 2150. ØELSE 3 KONDENSATOREN OG RC-FILTRE Fysisk institutt, UiO Mål. Etter å ha gått gjennom denne øvelsen, skal du kjenne til hvordan kondensatorer oppfører seg ved oppladning og utladning, og hvordan
7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER
78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i INF3440/4440 Signalbehandling Eksamensdag: xx. desember 007 Tid for eksamen: Oppgavesettet er på 6 sider. Vedlegg: Tillatte hjelpemidler:
Kontinuasjonseksamensoppgave i TFY4120 Fysikk
Side 1 av 10 Bokmål Institutt for fysikk Kontinuasjonseksamensoppgave i TFY4120 Fysikk Faglig kontakt under eksamen: Ragnvald Mathiesen Tlf.: 97692132 Eksamensdato: 13.08.2014 Eksamenstid (fra-til): 09:00-13:00
Eksamen i emne TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Side 1 av 12 NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44
a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
HØGSKOLEN - I - STAVANGER. Institutt for elektroteknikk og databehandling
HØGSKOLEN - I - STAVANGER Institutt for elektroteknikk og databehandling EKSAMEN I: TE 559 Signaler og systemer VARIGHET: 5 timer TILLATTE HJELPEMIDLER: Kalkulator, K. Rottmanns formelsamling OPPGAVESETTET
Fakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Ny/utsatt eksamen i: Elektronikk Målform: Bokmål Dato: 2. august 2016 Tid: 0900-1200 Antall sider (inkl. forside): 6 (inkludert Vedlegg 1 side)
En periode er fra et punkt på en kurve og til der hvor kurven begynner å gjenta seg selv.
6.1 BEGREPER L SNSKRVE 1 6.1 BEGREPER L SNSKRVE il sinuskurven i figur 6.1.1 er det noen definisjoner som blir brukt i vekselstrømmen. Figur 6.1.1 (V) mid t (s) min Halvperiode Periode PERODE (s) En periode
Oppgave 3: Motstand, Kondensator og Spole
Lab i TFY412 Oppgave 3: Motstand, Kondensator og Spole Institutt for fysikk, NTNU 1.1. INNLEDNING 1 1.1 Innledning Ohms lov, = I, gir sammenhengen mellom spenningsfallet over og strømmen gjennom en motstand.
Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere.
Laplace-transform: Et nyttig hjelpemiddel Side - Laplace-transformen et nyttig hjelpemiddel Hva er Laplace-transformen? Vi starter med å definere Laplace-transformen: Definisjon : La f t være en funksjon
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 9; godkjenning øvingsdag veke 7 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av
KYBERNETIKKLABORATORIET. FAG: Dynamiske systemer DATO: OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE
KYBERNETIKKLABORATORIET FAG: Dynamiske systemer DATO: 08.14 OPPG.NR.: DS4 FREKVENS OG SPRANGRESPONSANALYSE BESVARELSE: Protokollen skal besvare alle spørsmål. Diagrammene skal ha definerte akser og forklarende
Løsningsforslag til øving 5
Institutt for fysikk, NTNU FY1013 Elektrisitet og magnetisme II Høst 2005 Løsningsforslag til øving 5 Veiledning mandag 26. og onsdag 28. september a) Med motstand og kapasitans C i serie: cos ωt = I +
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1
Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar
Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene:
3. juni 2010 Side 2 av 16 Oppgave 1 (30%) a) De to nettverkene gitt nedenfor skal forenkles. Betrakt hvert av nettverkene inn på klemmene: Reduser motstandsnettverket til én enkelt resistans og angi størrelsen
Forelesning nr.7 IN 1080 Elektroniske systemer. Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L
Forelesning nr.7 IN 1080 Elektroniske systemer Spoler og induksjon Praktiske anvendelser Nøyaktigere modeller for R, C og L Dagens temaer Induksjon og spoler RL-kretser og anvendelser Fysiske versus ideelle
Oppgave 1.1. Den første er en klassiker. Studer figur A4.1 i vedlegg 1. Finn overføringsfunksjonen ved hjelp av manuelle, grafiske metoder.
Inst. for teknisk kybernetikk TELE2001 Reguleringsteknikk Øving 4 Revidert sist Fredrik Dessen 2017-10-12 Del 1. En klassiker, og en litt mer utfordrende Du skal her finne overføringsfunksjonen representert
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME
NORGES LANDBRUKSHØGSKOLE Institutt for matematiske realfag og teknologi EKSAMEN I FYS135 - ELEKTROMAGNETISME Eksamensdag: 10. desember 2004 Tid for eksamen: Kl. 09:00-12:30 (3,5 timer) Tillatte hjelpemidler:
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: mai 2002 IN 155 Digital Signalbehandling Tid for eksamen: 6. mai 9.00 21. mai 12.00 Oppgavesettet er på 5 sider.
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning
EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 9. desember 2005 kl
NORGES TEKNSK- NATURTENSKAPELGE UNERSTET NSTTUTT FOR FYSKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 EKSAMEN FY1013 ELEKTRSTET OG MAGNETSME Fredag 9. desember 2005 kl.
Forelesning nr.12 INF 1410
Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro
Operasjonsforsterkeren
Operasjonsforsterkeren En kort innføring og oversikt Forelesningsnotat for TTK440 Reguleringsteknikk med elektriske kretser ved Odd Pettersen 2. utgave Mars 2004 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT
Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 10; godkjenning øvingsdag veke 9 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt
En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme.
7. EFFEK YER OG ARBED VEKSELSRØM 1 7. EFFEK YER OG ARBED VEKSELSRØM AKV EFFEK OG ARBED EN DEELL RESSANS En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. Det er bare
Contents. Oppgavesamling tilbakekobling og stabilitet. 01 Innledende oppgave om ABC tilbakekobling. 02 Innledende oppgave om Nyquist diagram
Contents Oppgavesamling tilbakekobling og stabilitet... Innledende oppgave om ABC tilbakekobling... Innledende oppgave om Nyquist diagram... 3 Bodeplott og stabilitet (H94 5)... 4 Bodediagram og stabilitet
Transformanalyse. Jan Egil Kirkebø. Universitetet i Oslo 17./23. september 2019
Transformanalyse Jan Egil Kirkebø Universitetet i Oslo [email protected] 17./23. september 2019 Jan Egil Kirkebø (Inst. for Inf.) IN3190/IN4190 17./23. september 2019 1 / 22 Egenfunksjoner til LTI-systemer
