HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
|
|
- Aron Brekke
- 7 år siden
- Visninger:
Transkript
1 HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Fredag 7.juni 23 5 klokketimer TLM3- / LM5M- Matematikk Klasse(r): EL FEN Studiepoeng: Faglærer(e): Kåre jørvik, Kontaktperson(adm.)(fylles ut ved behov kun ved kursemner) Hjelpemidler: Kalkulator: Type lt skriftlig materiale Oppgavesettet består av: 2 sider med 3 flervalgsoppgaver På side 2 finner du svarkupongen som du skal fylle ut. en enkelte student må selv kontrollere at dette stemmer. Vedlegg består av: Merknad: Oppgaveteksten kan beholdes av studenter som sitter eksamenstiden ut. Lykke til!
2 TLM3 Matematikk Eksamen Lavpassfilter ifferensialligningen som beskriver spenningen y(t) er lineær med konstante koeffisienter. Karakteristisk ligning til differensialligningen er gitt ved ) R L ) L R ) x L R ) Ingen av forslagene, e 2 Lavpassfilter Lavpassfilteret påtrykkes spenningen:, t,2 xt () 2, t, 2 Utgangsspenningen til filteret, y(t), er vist i figuren under. Tidskonstanten til filteret er lik t ),5 ), ),25 ),5 3 Lavpassfilter Lavpassfilteret dimensjoneres slik at tidskonstanten blir,2. Filteret påtrykkes spenningen: x( t) sin( t). Stasjonær faseforskyvning mellom inn- og utgangssignalet er da tilnærmet ) 27 ) 45 ) 63 ) Ingen av forslagene, e 2
3 TLM3 Matematikk Eksamen Lavpassfilter Lavpassfilteret dimensjoneres som beskrevet i casen, dvs. at R 4 og L,4H. Lavpassfilteret blir påtrykt signalet: x( t) sin( t). Transienten til utgangssignalet er da gitt ved t t t ),5 e ) e ) e 2 ) Ingen av forslagene, e 5 Høypassfilter Høypassfilteret påtrykkes spenningen: x t 4 ( ) sin( t) Utgangsspenningen til filteret, y(t), er vist i figuren under. R er 4. Kapasitansen til kondensatoren er da ) F ) 75 F ) 5 F ) 25 F 6 Høypassfilter Høypassfilteret er dimensjonert slik at tidskonstanten er lik s. Høypassfilteret blir påtrykt signalet: t x -3 5 x(t)=sin( t). Stasjonær faseforskyvning mellom inn- og utgangssignalet er da ) 45 ) 6 ) 9 ) Ingen av forslagene, e 3
4 TLM3 Matematikk Eksamen Høypassfilter Høypassfilteret dimensjoneres som beskrevet i casen. Filteret blir påtrykt signalet: x( t) cos(4 t). Transienten til utgangssignalet er da gitt ved ),5 e ) e ) e 2 ) Ingen av forslagene, e 4 t 4 t 4 t 8 Høypassfilter Høypassfilteret blir påtrykt signalet: x( t) cos(4 t) sin(4 t). Filteret er dimensjonert som beskrevet i casen, dvs. tidskonstanten er 25 s. Stasjonært utgangssignal blir da ) sin 4 t ) sin 4 t ) cos 4t 2 4 ) Ingen av forslagene, e 9 åndpassfilter ifferensialligningen som beskriver spenningen y(t) er lineær med konstante koeffisienter. Karakteristisk ligning til differensialligningen er gitt ved R L R L RL L ) Ingen av forslagene, e ) ) ) åndpassfilter åndpassfilteret, som er dimensjonert med R 4, L,4 H,,F, blir påtrykt signalet: x( t) cos(4 t). Startbetingelsen ) ) 5 ) ) Ingen av forslagene, e dy dt t blir da 4
5 Phase (deg) Magnitude (d) TLM3 Matematikk Eksamen åndpassfilter åndpassfilteret er dimensjonert slik som beskrevet i casen, tilfelle 3. ( R 4, 4 F, L, 25mH ). ersom filteret påtrykkes et enhetssprang, vil utgangsspenningen få et innsvingningsforløp mot stasjonærverdien med svingefrekvens ) 6 ) 8 ) rad rad rad s s s ) Ingen av forslagene, e 2 åndpassfilter åndpassfilteret er dimensjonert med R 4, L,2mH og 78,25 F. For vinkelfrekvensen 6 rad s er forsterkningen (amplituden) til overføringsfunksjonen ) ), 8575 ), 5 ) Ingen av forslagene, e 3 Oppsummering av casen Høypassfilteret er dimensjonert slik at amplituden og fasen til overføringsfunksjonen blir som vist i figuren under ode iagram Frequency (rad/s) Tidskonstanten til høypassfilteret er ), [ ms] ),4 [ ms] ),2 [ ms] ) 2 [ s] 5
6 TLM3 Matematikk Eksamen Oppsummering av casen Et.ordens lavpassfilter har en knekkfrekvens på 2 rad/s. mplituden til overføringsfunksjonen ved vinkelfrekvensen er da ) 4 2 ) ) ) Ingen av forslagene, e rad s 5 Oppsummering av casen åndpassfilteret skal dimensjoneres slik at karakteristisk likning har løsningene og. ersom =,5mF må motstanden være lik 2 ) ) 2 ) 3 ) 4 Oppgave 6 Trigonometriske Funksjoner Gitt funksjonen f ( t) 2cos(2 t) 6sin(2 t) Gjennomsnittsverdien til f(t) er 2 Ingen av forslagene, Oppgave 7 Trigonometriske Funksjoner Gitt funksjonen f ( t) 2cos(2 t) 6sin(2 t) Funksjonen f(t) kan skrives som f ( t) cos( t ) K, der 8,8 ] Fasen er 26,87 53,3 36,87 Ingen av forslagene, 6
7 TLM3 Matematikk Eksamen Oppgave 8 Matriser Gitt kretsen Maskestrømmene I I I I 2 3 T kan finnes ved å løse matriselikningen: E I E der E E, 2 eterminanten til, når alle motstandene i kretsen er lik R, blir 4R 6R 8R Ingen av forslagene, Oppgave 9 Matriser Samme krets som i oppgave 8. Maskestrømmen I 3, når alle motstandene i kretsen er lik R, blir 5E 2E2 8R E 2E2 8R E2 E R Ingen av forslagene, 7
8 TLM3 Matematikk Eksamen Oppgave 2 Matriser Samme krets som i oppgave 8. Maskestrømmen I, når R, R 2, R 3, R 4, R 5, E V og E 2V, blir Ingen av forslagene, Oppgave 2 Komplekse tall Gitt kretsen Med u( t) 5 sin(8 t), R 2, L, 25H og,5f, vil impedansen Z være lik Z j,75 Z Z j Ingen av forslagene, Oppgave 22 Komplekse tall Samme krets som i oppgave 2. Kretsen er dimensjonert slik at Z,8 j,6. ersom påtrykt spenning er det samme som i oppgave 2, vil stasjonær strøm i(t) i kretsen, være lik i( t) sin(8 t) i( t),2 sin(8t 36,87 ) i( t) 5 sin(8t 36,87 ) Ingen av forslagene, 8
9 TLM3 Matematikk Eksamen Oppgave 23 Komplekse tall Samme krets som i oppgave 2. Med R, L H, F og u( t) sin( t) vil stasjonær spenning u () t i kretsen være lik L u ( t) 2sin(t+35 ) L u ( t) cos( t) L u ( t) 2 sin( t 9 ) L Ingen av forslagene, Oppgave 24 Integrasjon Et periodisk signal er vist i figuren under. Gjennomsnittsverdien til signalet er y y y 2 Ingen av forslagene, 9
10 TLM3 Matematikk Eksamen Oppgave 25 Integrasjon Samme periodiske signal som i oppgave 24. Effektivverdien (RMS-verdien) til signalet er y y RMS RMS 2 4 yrms 3 Ingen av forslagene, Oppgave 26 Integrasjon Gitt det bestemte integralet arctan( x) dx. Integralet skal løses numerisk med bruk av trapesmetoden. ersom en benytter 3 trapeser blir integralet tilnærmet lik 2,686 2,774 53,96 Ingen av forslagene, Oppgave 27 erivasjon Likningen ln( x) skal løses vha. Newton-Raphson sin numeriske metode. ersom en x bruker startverdien x =, vil løsningen etter en iterasjon bli,5,5 Ingen av forslagene,
11 TLM3 Matematikk Eksamen Oppgave 28 erivasjon En kurve i xy-planet er beskrevet vha. det implisitte uttrykket 2 2 y x y y 4. Punktet (, 2) ligger på denne kurven. Stigningstallet, dy, i punktet (, 2), er dx 4,5,8 Ingen av forslagene, Oppgave 29 ifferensialligning Gitt differensialligningen 2 d y dy 7 y, y() og y '() 2 dt dt Hvilken påstand er riktig? Stasjonær løsning er lik Stasjonær løsning er lik Stasjonær løsning er lik Ingen av forslagene, Oppgave 3 ifferensialligning Samme differensialligning som i oppgave 29. Transientløsningen til differensialligningen er tilnærmet lik etter ca. 2,5 sekunder sekund,5 sekunder Ingen av forslagene,
12 TLM3 Matematikk Eksamen SVRRK Studentnummer: Inspektør: 2
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Torsdag 3.. 5 klokketimer TALM3-A / ALM5M-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): Studiepoeng: Faglærer(e): Kontaktperson(adm.)(fylles ut ved behov kun ved
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksaensdato: Tirsdag 1.deseber 009 Varighet/eksaenstid: 0900-1400 Enekode: LM005M- Enenavn: Mateatikk 1 Klasse(r): 1E Studiepoeng: 10 Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Eksaensdato: Torsdag 15.deseber 011 Varighet/eksaenstid: 0900-1400 Enekode: LM005M- Enenavn: Mateatikk 1 Klasse(r): 1E Studiepoeng: 10 Faglærer(e):
DetaljerCase: Analyse av passive elektriske filtre
HØGSKOEN I SØR-TRØNDEAG AVDEING FOR TEKNOOGI PROGRAM FOR EEKTRO- OG DATATEKNIKK N7004 TRONDHEIM Telefon jobb: 735 59584 Mobil: 911 77 898 kare.bjorvik@hist.no http://www.edt.hist.no/ Kåre Bjørvik, 15.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi. Torsdag Kalkulator: Type C Alt skriftlig materiale
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Løning Tordag.. 04 5 klokketimer TALM003-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: okmål Mandag 7.mai 0 5 timer LM006M Matematikk E 0 Faglærer(e): (navn og
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 11.1. 014 5 klokketimer TALM1003-A Matematikk
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 14.12.2010 Varighet/eksamenstid: Emnekode: 4 timer EDT210T-A Emnenavn: Elektronikk 1 Klasse(r): 2EL Studiepoeng: 7,5 Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: Mandag 5.mai 04 5 timer TLM004 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Målform: Bokmål Ekamendato: ugut 0 Varighet/ekamentid: Emnekode: 5 timer LM006M Emnenavn: Matematikk Klae(r): E Studiepoeng: 0 Faglærer(e): (navn og telefonnr
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELG vdeling for teknologi Ekamendato: 0 Varighet/ekamentid: Emnekode: Emnenavn: 5 timer TLM00 Matematikk Klae(r): EL FEN Studiepoeng: 0 Faglærer(e): (navn og telefonnr på ekamendagen)
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 6.mai 215 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 14.5.213 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT24T Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: 1 Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 27.5.21 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2ET 2EE Studiepoeng: 1 Faglærer(e):
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnekode: ITD15013 Emnenavn: Matematikk 1 første deleksamen Dato: 13. desember 017 Hjelpemidler: Eksamenstid: 09.00 1.00 Faglærer: To A4-ark med valgfritt innhold på begge sider. Formelhefte. Kalkulator
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM4 Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato:.5.6 Ekamentid (fra-til): 9.-4. Hjelpemiddelkode/Tillatte hjelpemidler: lt kriftlig
DetaljerEKSAMEN Løsningsforslag
5..7 EKSAMEN Løsningsforslag Emnekode: ITD5 Dato:. desember 7 Hjelpemidler: - To A-ark med valgfritt innhold på begge sider. - Formelhefte. - Kalkulator som deles ut samtidig med oppgaven. Emnenavn: Matematikk
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: 12. desember 2003 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 7 sider.
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 11.12.2012 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 13.12.2011 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 4 timer EDT210T-A Grunnleggende elektronikk 2EL Studiepoeng: 7,5
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 16.mai 1 Varighet/eksamenstid: Emnekode: Emnenavn: 5 timer EDT4T Signalbehandling Klasse(r): EI EE Studiepoeng: 1 Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7.mai 24 Varighet/eksamenstid: 5 timer Emnekode: TELE 23 Emnenavn: Signalbehandling Klasse(r): 2EI 2EE Studiepoeng: Faglærer(e):
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.6. 014 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 0.1.009 Varighet/eksamenstid: Emnekode: 5 timer EDT10T Emnenavn: Elektronikk 1 Klasse(r): EL Studiepoeng: 7,5 Faglærer(e): ngrid
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 17.12.2014 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 14H Ingeniørfaglig yrkesutøving og arbeidsmetoder
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 10.desember 2013 Varighet/eksamenstid: 5 timer Emnekode: TELE 2002 Emnenavn: Elektronikk Klasse(r): Studiepoeng: 10 Faglærer(e):
DetaljerEKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
DetaljerEksamen i TMA4122 Matematikk 4M
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk
DetaljerEksamensoppgave i TALM1004 Matematikk 2
Fakultet for teknologi Ekamenoppgave i TLM Matematikk Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: 7. ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler: lt
DetaljerIR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer
Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Ekaendato: Varighet/ekaentid: Enekode: Enenavn: Klae(r): Studiepoeng: Faglærer(e): Tordag 1.1. 01 5 klokketier TALM100-A Mateatikk 1 EL FEN
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 00 Modellering og beregninger. Eksamensdag: Torsdag 6. desember 202. Tid for eksamen: 9:00 3:00. Oppgavesettet er på 8
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerHøgskolen i Telemark Eksamen Matematikk 2 modul Mai Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24.
Høgskolen i Telemark Eksamen Matematikk 2 modul 24. Mai 203 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 24. mai 203 EKSAMEN I MATEMATIKK 2 Modul 5 studiepoeng
DetaljerINF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Kandidatnr: Eksamensdato: 9.desember 2014 Varighet/eksamenstid: 5 timer Emnekode: TELE 2002 Emnenavn: Elektronikk Klasse(r): Studiepoeng: 10 Faglærer(e):
DetaljerTALM 1004 Matematikk 2-Eksamen mandag 4.mai 2015 LØSNING. 5 klokketimer TALM1004-A. Matematikk 2. Kåre Bjørvik. Kalkulator: Type C
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING 5 5 klokketimer TLM- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
Detaljera) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.
Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 20. Desember 2011 Varighet/eksamenstid: 0900-1300 Emnekode: Emnenavn: Klasse: EDT212T Reguleringsteknikk grunnkurs 2EL Studiepoeng: 7.5 Faglærer:
DetaljerEksamensoppgave i TELE2001 Reguleringsteknikk
Fakultet for teknologi Eksamensoppgave i TELE2001 Reguleringsteknikk Faglig kontakt under eksamen: Fredrik Dessen Tlf.: 48159443 Eksamensdato: 7. juni 2016 Eksamenstid (fra-til): 09:00 til 14:00 Hjelpemiddelkode/Tillatte
DetaljerPunktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].
Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen
DetaljerEksamensoppgave i TALM1004 Matematikk 2 LØSNING
Fakultet for teknologi Ekamenoppgave i TLM Matematikk LØSNING Faglig kontakt under ekamen: Kåre jørvik Tlf.: 9 77 898 Ekamendato: ugut 6 Ekamentid (fra-til): 9.-. Hjelpemiddelkode/Tillatte hjelpemidler:
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning
DetaljerHøgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014
Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert
DetaljerAntall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET
Høgskoleni Østfold 1 EKSAMENSOPPGAVE. Kontinuasjonseksamen Fag: IRE10513Elektriskekretser Lærere: Arne Johan Østenby, Even Arntsen Grupper: El E og ElEy Dato: 2015-12-17 Tid: 9-13 Antall oppgavesider:t4
Detaljer1 Lavpassfilter Lavpassfilteret påtrykkes en inngangsspenning på 1 V ved t = 0. Spenningen over spolen er vist i figuren under.
ALM5M-A Matematikk Utatt Ekamen, 9 Lavpafilter Lavpafilteret påtrykke en inngangpenning på V ved t =. Spenningen over polen er vit i figuren under. Spenning [V].9.8.7.6.5.4.3.. Tidkontanten til lavpafilteret
Detaljery = Bx + C innsettes differensiallikningen for å bestemme B:
ØGSKOEN I SØ-TØNDEAG Avdeling for teknologi rogram for elektro- og datateknikk 74 TONDEIM TAM 3 Matematikk Anthon Croft, obert Davison, Martin argreaves, James Flint: Engineering mathematics, 4.utgave
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT1100 Kalkulus. Eksamensdag: Fredag 9. desember 011. Tid for eksamen: 09.00 1.00. Oppgavesettet er på 5 sider. Vedlegg: Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger del 1 Eksamensdag: Tirsdag 7. desember 2004 Tid for eksamen: 14:30 17:30 Oppgavesettet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 1100L Programmering, modellering, og beregninger. Eksamensdag: Fredag 2. Desember 2016. Tid for eksamen: 9:00 13:00.
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Fredag 7. januar 2005. Tid for eksamen: 14:30 17:30. Oppgavesettet er på
DetaljerLØSNINGSFORSLAG KRETSDEL
NORGES TEKNISK- NATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk og telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317
DetaljerEksamensoppgave i MA1102/6102 Grunnkurs i analyse II
Institutt for matematiske fag Eksamensoppgave i MA1102/6102 Grunnkurs i analyse II Faglig kontakt under eksamen: Magnus Landstad Tlf: Eksamensdato: 6. juni 2017 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen i MA0002, Brukerkurs i matematikk B Oppgave 1 En parametrisk linje L og et plan P (i rommet)
DetaljerAnbefalte oppgaver - Løsningsforslag
TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.
DetaljerEksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 30. mai 2017 Eksamenstid (fra
DetaljerIR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer
Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare
DetaljerForelesning nr.6 INF 1411 Elektroniske systemer
Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser
DetaljerEksamensoppgave i MA1101/MA6101 Grunnkurs i analyse I. LØSNINGSFORSLAG
Institutt for matematiske fag Eksamensoppgave i MA/MA6 Grunnkurs i analyse I. LØSNINGSFORSLAG Faglig kontakt under eksamen: John Erik Fornæss /Kari Hag Tlf: 464944/483988 Eksamensdato: 8. desember 5 Eksamenstid
DetaljerViktig informasjon. 1.1 Taylorrekker. Hva er Taylor-polynomet av grad om for funksjonen? Velg ett alternativ
Viktig informasjon MAT-INF1100 - Modellering og beregninger Mandag 10. desember 2018 Kl.09:00-13:00 (4 timer) Tillatte hjelpemiddel: Formelsamling (deles ut på eksamen), Gyldig kalkulator. I dette oppgavesettet
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Eksamensdato: 18.12.2013 Varighet/eksamenstid: Emnekode: Emnenavn: Klasse(r): 3 timer TELE1001A 13H Ingeniørfaglig yrkesutøving og arbeidsmetoder
DetaljerFakultet for teknologi, kunst og design Teknologiske fag
Fakultet for teknologi, kunst og design Teknologiske fag Eksamen i: Elektronikk Målform: Bokmål Dato: 24. mai 2017 Tid: 3 timer/0900-1200 Antall sider (inkl. forside): 5 (inkludert Vedlegg 1 side) Antall
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger. Eksamensdag: Mandag 5. desember 2011. Tid for eksamen: 9:00 13:00. Oppgavesettet er på
DetaljerLøsningsforslag til utvalgte oppgaver i kapittel 10
Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 17. Desember 2012 Varighet/eksamenstid: 0900-1300 Emnekode: Emnenavn: Klasse: EDT212T Reguleringsteknikk grunnkurs 2EL Studiepoeng: 7.5 Faglærer:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 1100 Modellering og beregninger Eksamensdag: Torsdag 10 januar 2008 Tid for eksamen: 9:00 12:00 Oppgavesettet er på 6
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/Utsatt eksamen i: MAT1001 Matematikk 1 Eksamensdag: Torsdag 15 januar 2015 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg:
DetaljerFor å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :
Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
DetaljerForkurs, Avdeling for Ingeniørutdanning
Eksamen i FO99A Matematikk Ordinær Eksamen Dato 8. mai 8 Tidspunkt 9. - 14. Antall oppgaver 4 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 Deriver følgende
DetaljerØving 1 ITD Industriell IT
Utlevert : uke 37 Innlevert : uke 39 (senest torsdag 29. sept) Avdeling for Informasjonsteknologi Høgskolen i Østfold Øving 1 ITD 30005 Industriell IT Øvingen skal utføres individuelt. Det forutsettes
DetaljerINF1411 Obligatorisk oppgave nr. 4
INF1411 Obligatorisk oppgave nr. 4 Fyll inn navn på alle som leverer sammen, 2 per gruppe (1 eller 3 i unntakstilfeller): 1 2 3 Informasjon og orientering I denne oppgaven skal du lære litt om responsen
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
ALM6M-A Matematikk : Kontinuajonekamen augut HØGSKOLEN I SØR-TRØNELAG Avdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Augut 9-4 ALM6M Emnenavn: Matematikk Klae(r): EL Studiepoeng:
DetaljerTMA 4110 Matematikk 3 Høsten 2004 Svingeligningen med kompleks regnemåte
TMA 4 Matematikk Høsten 4 Svingeligningen med kompleks regnemåte H.E.K., Inst. for matematiske fag, NTNU Svingeligningen forekommer i mange sammenhenger, og ofte vil vi møte regning og utledninger der
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 7. januar 2011 Varighet/eksamenstid: 0900-1300 Emnekode: Emnenavn: Klasse: EDT212T Reguleringsteknikk grunnkurs 2EL Studiepoeng:
DetaljerUtsatt eksamen i Matematikk 1000 MAFE ELFE KJFE 1000 Dato: 2. mars 2017 Løsningsforslag.
Utsatt eksamen i Matematikk 1 MAFE ELFE KJFE 1 Dato: 2. mars 217 Løsningsforslag. Oppgave 1 Gitt matrisene 1 2 1 3 A = 2 1, B = 7, C = 2 4 1 2 3 [ ] 1 2 1, v = 1 1 4 [ ] 5 1 og w =. 1 6 a) Regn ut følgende
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNELG vdeling for teknologi Kandidatnr: Ekamendato: Varighet/ekamentid: Emnekode: Emnenavn: LØSNING Mandag 4.. klokketimer TLM4- Matematikk Klae(r): Studiepoeng: EL FEN Faglærer(e): Hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11 Modellering og beregninger Eksamensdag: Mandag 1 Desember 218 Tid for eksamen: 9: 13: Oppgavesettet er på 5 sider
DetaljerLØSNINGSFORSLAG KRETSDEL
NORGES TEKNISKNATURVITENSKAPLIGE UNIVERSITET Institutt for elektronikk telekommunikasjon Faglig kontakt under eksamen: Ragnar Hergum 73 59 20 23 / 920 87 172 Bjørn B. Larsen 73 59 44 93 / 902 08 317 Eksamen
DetaljerForelesning nr.8 INF 1410
Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node
DetaljerEksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK
Institutt for elektronikk og telekommunikasjon LØSNINGSFORSLAG KRETSDEL Eksamensoppgave i TFE4110 DIGITALTEKNIKK MED KRETSTEKNIKK Faglig kontakt under eksamen: Ragnar Hergum - tlf. 73 59 20 23 / 920 87
DetaljerEKSAMEN I FAG SIF 4012 ELEKTROMAGNETISME (SIF 4012 FYSIKK 2) Onsdag 11. desember kl Bokmål
Side av 6 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 4 43 39 3 EKSAMEN I FAG SIF 42 ELEKTROMAGNETISME
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:
Detaljerdifferensiallikninger-oppsummering
Kapittel 12 differensiallikninger-oppsummering I vår verden endres størrelsene og verdiene som populasjon, vekt, lengde, posisjon, hastighet, temperatur ved tiden eller ved en annen uavhengig variabel.
DetaljerEksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger
Institutt for matematiske fag Eksamensoppgave i TMA4320 Introduksjon til vitenskapelige beregninger Faglig kontakt under eksamen: Anton Evgrafov Tlf: 4503 0163 Eksamensdato: 06. juni 2016 Eksamenstid (fra
DetaljerUNIVERSITETET I BERGEN
LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller
DetaljerHØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi
HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 15.desember 2014 Varighet/eksamenstid: 0900-1400 Emnekode: Emnenavn: TELE2001-A Reguleringsteknikk Klasse: 2EL 2FE Studiepoeng:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT-INF 11L Programmering, modellering, og beregninger. Eksamensdag: Fredag 5. Desember 214. Tid for eksamen: 9: 13:. Oppgavesettet
DetaljerTMA4110 Matematikk 3 Høst 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y
DetaljerEksamen i TMA4123/TMA4125 Matematikk 4M/4N
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte
DetaljerFYS1120 Elektromagnetisme, Oppgavesett 11
FYS0 Elektromagnetisme, Oppgavesett 5. november 06 I FYS0-undervisningen legger vi mer vekt på matematikk og numeriske metoder enn det oppgavene i læreboka gjør. Det gjelder også oppgavene som blir gitt
DetaljerEKSAMEN Løsningsforslag Emne: Fysikk og datateknikk
Emnekode: ITD006 EKSAMEN Løsningsforslag Emne: Fysikk og datateknikk Dato: 09. Mai 006 Eksamenstid: kl 9:00 til kl :00 Hjelpemidler: 4 sider (A4) ( ark) med egne notater. Kalkulator. Gruppebesvarelse,
DetaljerEksamensoppgave i TMA4135 Matematikk 4D
Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid
DetaljerLøsningsforslag MAT102 Vår 2018
Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I TFY4155 ELEKTROMAGNETISME Fredag 8. juni 2007 kl
NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG
DetaljerHøgskolen i Oslo og Akershus. = 2xe 2x + x 2 e 2x (2x) = 2xe 2x + 2x 2 e 2x = 2xe 2x (1 + x) e 2x + x 2 ( e 2x) 1 sin x (sin x) + 2x = cos x
Oppgåve a) i) ii) f(x) x e x f (x) ( x ) e x + x ( e x) xe x + x e x (x) xe x + x e x xe x ( + x) g(x) ln(sin x) + x g (x) sin x (sin x) + x cos x sin x + x tan x + x b) i) ( x + ) dx x x dx+ x dx x +
DetaljerPrøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
Detaljer