Matematikkkurs M0 Oppgaver

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Matematikkkurs M0 Oppgaver"

Transkript

1 Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel eller sirkel, på tallinja eller på annen måte. (a) Illustrer disse utregningen ved hjelp av en flate som enhet, eller bruk tallinja. (a) : : : : : :. Lag regnefortellinger (tekstoppgaver) til oppgavene og.. Tegn strek mellom det som er like myet. / 0, /8 0, / 0, / 0, 7. Sortér disse brøkene etter størrelse, den minste først: 7, 7,,. Gjør om til uekte brøk og regn ut. og. (a) (c)

2 (d) (e) Hvilken brøk er størst? Finn forskjellen. (f) (a) eller 8 eller 7 (c) 7 eller 8. Regn både på brøkform og desimalform. (a) kg l (c) 0 kg (d) 00 0, l 9. Hvor myet veier tre poser når én pose veier (a) kg kg (c) 0, kg 0. Finn brøkene som skal stå i rutene. (a) 9 = = (c) = (d) 0 =. Multipliser brøkene og forkort svaret hvis mulig. (a) 8 (c) (d) 7 (e) 7 7 (f) Ole og Johannes har vunnet 00kr. Hvor myet skal de ha hver hvis Ole skal få / og Johannes /?. Hvor myet er (a) / av 00kr, /7 av 00kr, (c) / av 00kr og (d) / av 900kr?. Regn ut og skriv svaret så enkelt som mulig. (a) 7 (c) (d). Arvid, Bernt og Christian har kjøpt et telt sammen til 00kr. Arvid betalte / av kosten, Bernt / og Christoffer resten. (a) Hvilken proporsjon betalte Christoffer? Hvor myet penger betalte hver enkel av dem?. På ei systue er det 9m bomull som skal lages bukser av. Til hvert bukser går det med /8m stoff. Hvor mange bukser får arbeiderne av de 9m? 9 7. Regn ut (a) 8 :, 9 : 8, (c) : 7 og (d) 7 :.

3 8. Onkel Inge har lagd 0 liter øl. Han vil fylle den på flasker som tar / liter. Hvor mange flasker får han av de 0 liter? 9. Regn ut (a) : : 8 (c) : 8 (d) : (e) : (f) 7 : (g) : (h) : 0. Tove har spist / av hennes sjokoladedropper, og har igjen. Hvor mange har hun spist?. (a) Regn ut 0, 0,. Hvilket tall er størst av 0.7, 0.7 og 0.9? (c) I en krukke er det fire kronestykker og to femmere, og i en annen er det åtte kronestykker og fem femmere. Hvilken krukke skal jeg trekke en mynt ut fra, for å ha beste sjanse for å få en femmer? (d) En kilo ost koster 79kr. Jeg kjøper 0, 7kg. Hvor myet betaler jeg: 79 : 0, 7, 0, 7 79, 79 0, 7 eller 0, 7 : 79?. Skriv riktig tall i ruta: 0, =, + +,.. Skriv, om mulig, et tall som ligger mellom disse to: (a) 0, og 0, 0, og 0, (c), 89 og, 89 (d), 87 og, 88 (e), og, 0 (f), 8 og, (g) og (i) og, (h) og 0 og 0, 7. Hvilken av disse brøkene er størst: (a). Skriv som desimaltall: eller 8 eller 7,,,,, 7, 8, 9, 0, og.

4 : Det forekommer interessante feilmønstre ved regning med desimaltall. Undersøk hvordan eleven kan ha tenkt, og foreslå hjelpetiltak. Addisjon: Multiplikasjon:, 9, 0, + 0, 0, 7 7. Prosentregning. 0, 8 + 0, 0,, 7 0,, 0, + 0, 9 0, 0, + 0, 8 0,, 8 0, 87,, 7 + 8,,,, , 0 (a) Ei skole har 70 elever, hvorav % reiser inn med buss hver dag. Hvor mange elever tar bussen? av 00 bilister stoppet at politiet en dag i Oslo hadde ikke sikkerthetsbeltet på. Hvor mange prosent er dette? (c) Jeg får 0 0kr i måneden, mot 90 i fjor. Hvilken prosentøkning er dette? (d) Elling og Kjell Bjarne skyter på blink. Elling skyter 0 ganger og treffer, og KB skyter ganger og treffer 8. Hvem er flinkeste til å skyte? (e) Jeg tjener kr i måneden, som er en økning på % på det jeg tjente før. Hva var min forrige lønn? (f) Et par ski hadde kostet 880kr, men ble solgt på salg til 0kr. Hvor mange prosent var avslaget? 8. Lag en tekstoppgave som bruker den følgende likningen: x x 0 00 = Finn ut hvor mange prosent (a) 0kr er av 800kr 7 tonn er av tonn (c) epler er av 08 epler (d) 70kr er av 00kr 0. I en viss by bor ca. 000 mennesker. % bor i i-land og resten i u-land. (a) Hvor mange prosent bor i u-land? Hvor mange mennesker bor i i-land og u-land?

5 Algebra. Regn ut: (a) x + x x m m m + m 9990m (c) y y(8y + 9y + 7y). Regning med parenteser. (a) 7 + ( + 9) ( ) + 97 (c) ( ) + (87 8) ( 7) (d) (x + y) (e) x (y + ) (f) (x (y + )) (g) (x + 7y z) (h) (z (y 9x)) Finn verdiene av (g) og (h) dersom x =, y = og z = 0.. Regn ut: (a) 9 (a + b) 0(y + x y) + 8(8x + 8y + z) y(x + 7z) Finn verdiene dersom x =, y = og z = 9.. Finn verdien av dette uttrykket når a = og b = (a) a b + a(b ) (a + b) b + x [ingen trykkfeil]. Skriv de følgende uttrykkene så enkelt som mulig: (a) a + (a + b c) + (0c 8b + a) 90b (c 0a b) + 7a. Regn ut: (c) (0m n) + (7m + 8n) (8m n) (d) b (b + a + 7c) + ( 8a + b 7c) (a) a c + b a c (d) x 0 + x x 7. Regn ut og trekk sammen: (a) x + x a + b (e) a + + a a + a a (c) a a (f) x + xy (c) a b a b a b

6 8. Regn ut: (a) a a (d) x + 9 x + 9. Regn ut: (a) : 8 0. Regn ut og/eller forkort: (a) x x x ( a ) (e) a + : a + 7a : ab a (c) 7b ( a (c) a + b a ) (c) y y (d) a a + ab (e) a + a b 0a b a a. Forkort de følgende uttrykkene hvis mulig: + (a + ) : a + (a) x7 x a 9 0a (c) x 8 (d) b b (e) xy 78x y a + b (f) 9. Regn ut og forkort: (g) 8a b a (a) x 9 x + x x (c) 8x Faktoriser uttrykkene:. Faktoriser: (h) h 8 h a (d) 7a (i) + a a 7 + a 0a 8a (a) x + 9y x (c) f f (a) ax + bx cx x(a + b) y(a + b) (c) a(x + y) + (y + x) (d) x a + b(a x) (e) x y + x + y + (f) xy x + y 0. Forkort brøkene om mulig: (a) x(a + b) + a + b a + b a b b a (c) a b a + b (d) ac + ad + bc + bd ac ad + bc bd

7 . Oversetting fra én representasjonsform den en annen. (Fyll ut de tømme feltene; de første to er gjort som eksempel.) Symbolsk Verbal uttrykksmåte uttrykksform ( retorisk algebra ) t + Multipliser med to og deretter legg til. eller Ta tre mer en dobbelte et tall. (t ) Trekk fra én og multipliser med fire. eller Ta fire ganger så myet som en mindre enn et tall. Legg til 7 og deretter gang med. (t + ) Legg til 7 og deretter divider med. t + Divider med og deretter trekk fra. t + (t ) Kvadrer et tall og ta tredje potense av resultaten. t + u Legg et tall til det dobbelte av et annet tall. t t t 7. Oversett fra retorisk til symbolsk algebra: (a) Maren syr bukser for en butikk i byen. Som regel lager hun åtte stykker i løpet av en arbeidsdag. Da prisen hun får per stykk endrer seg av og til, kaller hun det for p. Skriv en formel for det hun tjener i en arbeidsdag. Thomas har tjue CDplater og trettifem LPplater. Som medlem av ulike musikkforeninger får han hver måned tre nye CDplater og én LPplate. Skriv en formel for hvor mange plater han har tilsammen etter n måneder. 8. Skriv uttrykk for de skraverte arealene: 7

8 9. Regn ut og gjør svaret så enkelt som mulig: (a) (a + ) a (a + ) + (a+) + a+7 a+ a+ 0. Brøkregning (a) Regn ut y x x+y + + (x y) x+y. Multipliser svaret i oppgave (a) med (x + y)/(xy ) og vis at svaret blir xy. (c) For hvilke verdier av x og y blir negativ? xy positiv, og for hvilke blir det Avdeling for Lærerutdanning Høgskolen i Vestfold Grenaderveien 0 Tønsberg 8

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Hvordan kan du skrive det som desimaltall?

Hvordan kan du skrive det som desimaltall? 7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av

Detaljer

Brøk Vi på vindusrekka

Brøk Vi på vindusrekka Brøk Vi på vindusrekka Brøken... 2 Teller og nevner... 3 Uekte brøk... 5 Blanda tall... 6 Desimalbrøk... 8 Pluss/minus... 9 Multiplikasjon... 11 Likeverdige brøker... 12 Utviding... 13 Forkorting... 14

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november

Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november 1. Algebra 1.1 Innsetting av tallverdier i bokstavuttrykk Eksempel 1: Sett inn a = 2 og regn ut verdien til uttrykket 4a 3 4a 3 = 4

Detaljer

Regning med variabler

Regning med variabler Regning med variabler???? (x y) (x y) Hvordan kan Herman regne ut uttrykket på tavla? Når vi skal regne ut bokstavuttrykk med parenteser, må vi løse opp parentesene først. Hvis det står et tall eller et

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Kompendium til MATH001 - Forkurs i matematikk

Kompendium til MATH001 - Forkurs i matematikk Kompendium til MATH001 - Forkurs i matematikk Høst 017, NMBU Kine Josefine Aurland-Bredesen, e-post: kine.josefine.aurland-bredesen@nmbu.no f (x) = 1 x Kompendiumet gir en rask gjennomgang av grunnleggende

Detaljer

Faktor terminprøve i matematikk for 8. trinn

Faktor terminprøve i matematikk for 8. trinn Faktor terminprøve i matematikk for 8. trinn Høst 2009 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir utdelt samtidig, men del 1

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel. Tallregning Mål for Kapittel, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere

Detaljer

Tall og algebra Vg1P MATEMATIKK

Tall og algebra Vg1P MATEMATIKK Oppgaver Innhold Innhold... 1 Modul 1: Regnerekkefølgen... 2 Modul 2: Overslagsregning og hoderegning... 3 Modul 3: Brøkregning... 9 Modul 4: Koordinatsystemet... 12 Modul 5: Forhold... 14 Modul 6: Proporsjonale

Detaljer

Terminprøve i matematikk for 9. trinn 2015 Bokmål

Terminprøve i matematikk for 9. trinn 2015 Bokmål Terminprøve i matematikk for 9. trinn 2015 Bokmål Navn: Klasse: Prøveinformasjon Prøvetid: Kl 08.15 11.20 Hjelpemidler på Del 1 og 2: På Del 1 kan du bruke vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6 Tall og algera Del Løsningsforslag til del av oppgavesettet Tall og algera i Sirkel oppgaveok 10B, kapittel 6 Oppgave.1 a En pakke skinke holder til åtte horn. Sju pakker holder til 56 horn, og åtte pakker

Detaljer

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 %

A)8 B) 10 C) 14 D) 20 E) Sidekantene i en terning økes med 20%. Hvor mye øker terningens volum? A) 20 % B) 44 % C) 56,2 % D) 60 % E) 72,8 % SETT 29 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Per er i butikken for å kjøpe frukt. En appelsin koster 3 kroner, en banan koster 2 kroner, og et eple koster 1 krone. Per skal kjøpe for nøyaktig

Detaljer

A) 6 B) 8 C) 10 D) 13 E) 16

A) 6 B) 8 C) 10 D) 13 E) 16 SETT 34 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. På en tavle står det skrevet to tall. Det første tallet er 2 større enn det andre, mens det dobbelte av det andre tallet er 2 større enn det første.

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b.

Plassere positive og negative tall på tallinjen KOPIERINGSORIGINAL 2.1. Navn: KAPITTEL 2 Tall og tallforståelse. Oppgave 4a. Oppgave 4b. KOPIERINGSORIGINAL 2.1 KAPITTEL 2 Tall og tallforståelse Plassere positive og negative tall på tallinjen Navn: Oppgave 4a 0 1 Oppgave 4b 40 0 40 Oppgave 4c 20 0 20 Oppgave 5a 6 3 0 1 4 Oppgave 5b 2 1 0

Detaljer

Brøker med samme verdi

Brøker med samme verdi Kapittel 7 Brøk Mål for det du skal lære: regne om mellom blandet tall og uekte brøk forkorte og utvide brøker, finne fellesnevner regne om mellom brøk og desimaltall ordne brøker etter størrelse og plassere

Detaljer

Multiplikasjon og divisjon av brøk

Multiplikasjon og divisjon av brøk Geir Martinussen, Bjørn Smestad Multiplikasjon og divisjon av brøk I denne artikkelen vil vi behandle multiplikasjon og divisjon av brøk, med særlig vekt på hvilke kontekster vi kan bruke og hvordan vi

Detaljer

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall?

90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 90 % av isfjellet ligger under vann. Hvordan kan du skrive det med desimaltall? 3 Hm, hva må jeg betale da? Prosent og desimaltall MÅL I dette kapitlet skal du lære om prosentbegrepet brøk og prosent prosentvis

Detaljer

Vet du hva vi kan bruke et regneark på pc-en til?

Vet du hva vi kan bruke et regneark på pc-en til? Vet du hva vi kan bruke et regneark på pc-en til? 14 Vi starter med blanke regneark! Regneark MÅL I dette kapitlet skal du lære om hva et regneark er budsjett og regnskap hvordan du kan gjøre enkle utregninger

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgaver i matematikk, 13-åringer Her er gjengitt de frigitte oppgavene fra TIMSS 95. Oppgavene fra TIMSS 2003 ventes frigitt i løpet av sommeren 2004 og vil bli lagt ut kort tid etter dette. Oppgavene

Detaljer

Oppfriskningskurs dag 1

Oppfriskningskurs dag 1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24

Detaljer

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017

MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 UKE MATEMATIKK HALVÅRSPLAN 7. TRINN HØSTEN 2017 TEMA KAPITTEL 1 «TALL» 33 Arbeidsrutiner Tall 34 Titallsystemet / Desimaltall/Tekstoppgaver 35 Addisjon og subtraksjon / BLÅ: LÆRINGSSTØTTENDE PRØVE 36 Negative

Detaljer

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1.

KAPITTELPRØVE 1. KAPITTEL 1 God start. Hvor stor del av figuren er a) grå b) hvit. Hva er størst av. a) og 2 10. b) og. c) og 3 1. KAPITTELPRØVE 1 KAPITTEL 1 God start 1 Hvor stor del av figuren er a) grå b) hvit 2 Hva er størst av 1 6 a) og 2 10 1 5 b) og 2 10 2 4 c) og 3 10 3 1 d) og 4 3 3 a) Hvordan deler vi inn området mellom

Detaljer

Algebra for alle. Gunnar Nordberg

Algebra for alle. Gunnar Nordberg Algebra for alle Gunnar Nordberg 1 Om dette verkstedet Fra konkreter til tall Fra tall til variabler(bokstaver) Kan algebraen bli meningsfull Å undervise i algebraisk forståelse Ideer til gode oppgaver

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 10.05.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

Prosentregning på en annen måte i 1P

Prosentregning på en annen måte i 1P Prosentregning på en annen måte i 1P Læreplanmål: Elevene skal kunne regne med prosent. Tid: 4-6 undervisningstimer Elevforutsetninger: Opplegget er først og fremst beregnet på elever som har problemer

Detaljer

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det?

3. Løs oppgavene ved hjelp av likning a. Summen av tre tall som følger etter hverandre er 51. Hvilke tre tall er det? Likninger av første grad med en ukjent 1. Løs følgende likninger x 3 + 4x a. + = 16 2x 7 2 x 1 x + 3 b. + 2 = 0 x x 2 1 1 1 c. (2x + 3) (3 4x) = (4x 7) 3 2 6 d. 2 x + 3( 2 x) = 3 2. Lag en likning som

Detaljer

Høgskoleni østfold EKSAMEN

Høgskoleni østfold EKSAMEN Høgskoleni østfold EKSAMEN Emnekode: LBMAT10311 Emne: Måling, tall og algebra og funksjoner Dato: Eksamenstid: kl 09.00 til kl 15.00 4. desember 2014 Hjelpemidler: Kalkulator uten grafisk vindu Faglærer:

Detaljer

Algebra II. -Utgave B- (ToPLUSS for matematikkundervisningen) Eksempelsider! F. Rothe. 2006 by Frank Rothe, Salzburg, www.calculemus.

Algebra II. -Utgave B- (ToPLUSS for matematikkundervisningen) Eksempelsider! F. Rothe. 2006 by Frank Rothe, Salzburg, www.calculemus. 006 by Frank Rothe, Salzburg, www.calculemus.at Algebra II -Utgave B- (ToPLUSS for matematikkundervisningen) F. Rothe 006 by Frank Rothe, Salzburg, www.calculemus.at 3 Innholdsfortegnelse Forord...4 Oppgaver...5

Detaljer

FAKTOR terminprøve i matematikk for 8. trinn

FAKTOR terminprøve i matematikk for 8. trinn FAKTOR terminprøve i matematikk for 8. trinn Høsten 2007 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU51005 og 4MX15-10E1 A Emnenavn: Matematikk 1 (5-10), emne 1 Studiepoeng: 15 Eksamensdato: 12. desember 2014 Varighet/Timer:

Detaljer

Lokal læreplan i Matematikk Trinn 8

Lokal læreplan i Matematikk Trinn 8 Lokal læreplan i Matematikk Trinn 8 1 Trinn 8 Hovedtema 1 og 2 Tall og algebra Kompetansemål Mål for opplæringa er at eleven skal kunne: samanlikne og rekne om heile tal, desimaltal, brøkar, prosent, promille

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet

CAS GeoGebra. Innhold. Matematikk for ungdomstrinnet CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...

Detaljer

1Tall og algebra. Mål K 1. Ingressen

1Tall og algebra. Mål K 1. Ingressen Tetra 9. Innled. + ap. -6 6.0.06 5:00 Side 9 Tall og algebra Mål Når du er ferdig med grunnkurset, skal du kunne multiplisere og dividere med positive tall mindre enn addere og subtrahere negative tall

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene

Detaljer

Uke Emne Kompetansemål Læremål Grunnleggende ferdigheter Metoder Vurdering 34-37

Uke Emne Kompetansemål Læremål Grunnleggende ferdigheter Metoder Vurdering 34-37 Fag: Matematikk Klassetrinn: 1.klasse Skoleåret: 2016/2017 Lærer: Liv Hemnes Mørch Uke Emne Kompetansemål Læremål Grunnleggende ferdigheter Metoder Vurdering 34-37 Kapittel 1 Tallene fra 0-5 til 100 og

Detaljer

Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene

Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst 2007 5. oktober 2007 Legger du merke til noen feil, vennligst send beskjed til george.h.hitching@hive.no.

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra 1 Tallregning og algebra + ØV MER 1.1 REGNEREKKEFØLGE Oppgave 1.1 a) b) 8 c) ( ) + 8 d) ( ) ( ) + Oppgave 1.111 a) b) + c) + d) 7 8 e) + f) Oppgave 1.11 a) ( + ) b) ( 1) c) ( 7) d) ( 9 8) e) ( ) f) (8

Detaljer

Noen formler det er lurt å kunne...

Noen formler det er lurt å kunne... - Noen formler det er lurt å kunne... Standardform Statistikk a = ±k 10 n 1 k < 10 og n er et helt tall Gjennomsnitt og median Lineære funksjoner Eksponentielle funksjoner y = ax + b y = a b x Polynom

Detaljer

... ÅRSPRØVE

... ÅRSPRØVE .... ÅRSPRØVE 2014.... Navn: Gruppe: DELPRØVE 1 uten lommeregner og pc (31,5 poeng) Alle oppgavene i del 1 skal føres rett på arket. I noen oppgaver er det en regnerute. Her skal du føre oppgaven oversiktlig

Detaljer

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir.

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir. 3.0 Variabler Peder har en stor eplehage og selger epler i hele kasser. En dag selger han 3 kasser og den neste 5 kasser. Han vil finne ut hvor mange epler han har solgt til sammen når det er 50 epler

Detaljer

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra:

Læreplan, nivå 1. Innhold / tema. Hovedområde Kompetansemål Elevene skal kunne: Tall og algebra: Kartlegging / vurdering av nivå Begynn året med et kort kurs i tall-lære og matematiske symboler. Deretter kartlegging som plasserer elevene i nivågruppe. De som kan dette, jobber med tekstoppgaver / problemløsning.

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver...

INNHOLD. Emne 4 Matematikken rundt oss... 120. Emne 3 Brøk, prosent og promille... 6. Faktasider...101 Repetisjonsoppgaver...106 Avtaltoppgaver... Black plate (4,) INNHOLD Emne Brøk, prosent og promille... 6 Brøk... 8 Navn på brøker... 8 Likeverdige brøker... Utvide og forkorte brøker... 4 Addisjon og subtraksjon av brøker med like nevnere... 8 Å

Detaljer

oppgaver fra abels hjørne i dagbladet

oppgaver fra abels hjørne i dagbladet oppgaver fra abels hjørne i dagbladet sett 43 dag 1 1. Line-Marie strikker et lilla skjerf. Skjerfet er 80 masker bredt, og det tar 1 sekund å strikke en maske. Det går 3 rader per centimeter, og skjerfet

Detaljer

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY)

Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Tall, forståelse og eksamen Videregående skole (1P, 2P og 2PY) Oslo, 16.-17.10.14 Astrid Bondø 19-Nov-15 Bygda Alvfjord Eksamen har i dag 5000 innbyggere. 2P 2014 Man regner med at innbyggertallet vil

Detaljer

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr?

Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? Vi får 20 kr for hver kasse med epler vi plukker! Hvor mange kasser må vi fylle for å tjene 1800 kr? 4 356 : 10 = Jeg vet om en lur måte å regne på MÅL I dette kapitlet skal du lære om divisjon med 10

Detaljer

Forsiden kommer her. 1

Forsiden kommer her. 1 Forsiden kommer her. 1 Oppgave 1 Familien JULESEN består av mor, far, storebror Julian og to yngre brødre Julius og Josef. De er rimelig nok interessert i matematikk. (a) En dag leser Julian om Den assosiative

Detaljer

A) 21% B) 23% C) 27% D) 30% E) 39%

A) 21% B) 23% C) 27% D) 30% E) 39% OPPGAVER FRA ABELS HJØRNE I DAGBLADET SETT 23 DAG 1 1. En kjøpmann setter opp prisen på en vare med 30%. Etter noen uker finner han ut at prisen ble for høy, og annonserer varen til salgs til opprinnelig

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Løsningsforslag til eksamenen i MAT103, våren 2015

Løsningsforslag til eksamenen i MAT103, våren 2015 Løsningsforslag til eksamenen i MAT103, våren 2015 Oppgave 1 (vekt 10%) a) Et tall a er et partall hvis a er delelig med 2, dvs a 0(mod 2). Et tall a er et oddetall hvis a ikke delelig med 2, dvs a 1(mod

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Tre sett med oppgaver for mattebingo, småskolen Sett 1

Tre sett med oppgaver for mattebingo, småskolen Sett 1 Tre sett med oppgaver for mattebingo, småskolen Sett 1 Spørsmål Svar 1. Hvor mange hjørner har et kvadrat? 4 2. Hvor mange 50-ører får du for 10 kroner? 20 3. Hva er halvparten av 4? 2 4. Hva er det dobbelte

Detaljer

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor

for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor 46 2 Forhold og prosent MÅL for opplæringen er at eleven skal kunne regne med forhold, prosent, prosentpoeng og vekst faktor behandle proporsjonale og omvendt proporsjonale størrelser i praktiske sammenhenger

Detaljer

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold

Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Matematikk eksamensklassen 2013 / 14 Oversikt over temaer / innhold 1 Regning med positive og negative tall 2 Regnerekkefølge og parenteser 3 Potenser 4 Algebra 5 Brøkregning 6 Ligninger 7 Ulikheter

Detaljer

Årsplan i matematikk for 2.årssteg

Årsplan i matematikk for 2.årssteg Årsplan i matematikk for 2.årssteg Læreverk: Abakus Grunnbok 2A, grunnbok 2B, Oppgåvebok 2B. I stadenfor oppgåvebok 2A har vi brukt Tusen millionar oppgåvebok 2. Klassen nyttar nettsida til dette læreverket,

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11

7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 1 7. TRINN MATEMATIKK PERIODEPLAN 3, Uke 2-11 KOMPETANSEMÅL Måling Mål for opplæringa er at eleven skal kunne: gjere overslag over og måle storleikar for lengd, areal, masse, volum, vinkel og tid, og bruke

Detaljer

Matematikk 1P. Hellerud videregående skole

Matematikk 1P. Hellerud videregående skole Matematikk 1P Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 1P. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være ganske

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

A) 9 år B) 18 år C) 27 år D) 36 år E) 54 år

A) 9 år B) 18 år C) 27 år D) 36 år E) 54 år SETT 24 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Bjørn og Marie giftet seg for 18 år siden. Da var Bjørn tre ganger så gammel som Marie. I dag er Bjørn dobbelt så gammel som Marie. Hvor stor er aldersforskjellen

Detaljer

Terminprøve i matematikk for 9. trinn

Terminprøve i matematikk for 9. trinn Terminprøve i matematikk for 9. trinn Våren 2006 bokmål Til noen av oppgavene skal du bruke opplysninger fra informasjonsheftet. Disse oppgavene er merket med dette symbolet: Navn: DELPRØVE 1 Maks. poengsum:

Detaljer

Innføring i OOcalc Side 1. OOcalc

Innføring i OOcalc Side 1. OOcalc Innføring i OOcalc Side 1 OOcalc Hva er et regneark? Et regneark kan sammenlignes med et vanlig ruteark, hvor tall skrives inn og beregninger utføres. På et vanlig ruteark må man selv utføre beregningen.

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 05.12.2017 Karakterer gis i henhold til total poengskår og følgende karakterskala fastsatt av eksamensgruppen: A: 36 40 B: 31 35 C: 23 30 D: 18 22 E: 16 17 F: 0 15

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Øvingshefte. Addisjon og subtraksjon

Øvingshefte. Addisjon og subtraksjon Øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk Mellomtrinn Addisjon og subtraksjon 1 Addisjon og subtraksjon

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

Hellerud videregående skole

Hellerud videregående skole Matematikk 1P Hellerud videregående skole Rektangel Trekant Parallellogram Trapes Noen formler det er lurt å kunne... A = g h A = g h 2 A = g h (a + b) h A = 2 Sirkel A = π r 2 Prisme Sylinder Pytagoras

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU11004 A Emnenavn: Matematikk 1 1-7 Studiepoeng: 1 Eksamensdato: Varighet/Timer: Målform: Kontaktperson/faglærer: (navn og

Detaljer

Multiplikation och division av bråk

Multiplikation och division av bråk Geir Martinussen & Bjørn Smestad Multiplikation och division av bråk Räkneoperationer med bråk kan visualiseras för att ge stöd åt resonemang som annars kan upplevas som abstrakta. I denna artikel visar

Detaljer

Innlevering i FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 19. september 2014 kl. 14:00 Antall oppgaver: 18

Innlevering i FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 19. september 2014 kl. 14:00 Antall oppgaver: 18 Innlevering i FO99A - Matematikk forkurs HIOA Obligatorisk innlevering Innleveringsfrist Fredag 9. september 04 kl. 4:00 Antall oppgaver: 8 Løsningsforslag Skriv som en brøk (eller et heltall) + 3/4 +

Detaljer

Øvingshefte. Brøk og prosent

Øvingshefte. Brøk og prosent Øvingshefte Matematikk Ungdomstrinn/VGS Brøk og prosent Copyright Fagbokforlaget Vigmostad & Bjørke AS Kartleggeren øvingshefte Matematikk U/VGS Tall tallsystemet vårt Brøk og prosent Seksjon Oppgave.

Detaljer

Matematikk 2P-Y. Hellerud videregående skole

Matematikk 2P-Y. Hellerud videregående skole Matematikk 2P-Y Hellerud videregående skole Forord til 1. utgave Denne boka dekker læreplanen i Matematikk 2P-Y. Stoffet og oppgavene er valgt ut med tanke på den type oppgaver som har vist seg å være

Detaljer