Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene

Størrelse: px
Begynne med side:

Download "Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene"

Transkript

1 Funksjoner, M1 høst 2007 Fasit til skriftlige oppgavene Avdeling for Lærerutdanning Høgskolen i Vestfold M1 høst oktober 2007 Legger du merke til noen feil, vennligst send beskjed til george.h.hitching@hive.no. 1. Gi definisjonsområdet og verdiområdet til de følgende funksjonene. (a) Definisjonsområdet: De positive heltallene fra 1 til 92 SVARET: Verdiområdet: 92 antall med penger, de ulike lønnene tilsvarende de ulike lønnstrinn (b) f(x) = x. SV.: Definert i alle réelle tall Verdier: Alle ikke-negative réelle tall (c) f(x) = x + 2. SV.: Definert i alle réelle tall større enn eller lik 2. Verdier: Alle ikke-negative réelle tall. (d) f(x) = x + 2. SV.: Definert i alle ikke-negative réelle tall. Verdier: alle réelle tall større enn eller lik 2. (e) f(x) = 3 x+3 SV.: Definert i alle réelle tall untatt 3. Verdier: alle réelle tall untatt 0. (f) f(x) = 12x 3x 5 SV.: Definert i alle réelle tall untatt 5/3. Verdier: alle réelle tall untatt 4. 1

2 2. Danner de følgende reglene funksjoner? Hvis ikke, foreslå en måte å lage en funksjon av den. (a) En student i klassen idrettsaktivitet hun/han driver med SV.: Denne danner ingen funksjon, fordi man kan drive med flere ulike idrettsaktiviteter. En kunne lage en funksjon av det ved å si En student i klassen idrettsaktivitet hun/han bruker mest tid på (Det er mange andre måter og så.) (b) En student i klassen teamet sitt SV.: Denne er godt definert (altså, en funksjon). (c) Et réelt tall x et réelt tall y slik at y 3 = x SV.: Denne er en funksjon fordi hvert réelt tall har akkurat ei réel tredjerot. (d) Et réelt tall x et réelt tall y slik at y 4 = x SV.: Denne er ingen funksjon, fordi ethvert réelt tall annet enn 0 har to réelle fjerderøtter. Vi kan lage en funksjon av det akkurat som vi gjorde med kvadratrøtter: vi velger enten den positive eller den negative réelle fjerderota. 3. Hvor er de følgende funksjonene kontinuerlige? Obs: En funksjon er kontinuerlig i et punkt dersom det er ikke en sprang i grafen i det punktet. For eksempel, f(x) = 1/x er kontinuerlig i hvert x untatt x = 0, fordi grafen har ingen sprang annet enn i x = 0. (a) x 2 + 3x SV.: En polynomfunksjon, så kontinuerlig overalt. (b) 1 x 2 +1 SV.: Kontinuerlig overalt (selv om det har en x i nevneren!) (c) x2 2x+1 x+1 SV.: Kontinuerlig annet enn i x = Lineære funksjoner (a) Arealet A til en sirkel er proporsjonal med kvadraten av sirkelens radius r. Med andre ord, A = k r 2 for et réelt tall k. Hva er proporsjonalitetskonstanten k? 2

3 SV.: Proporsjonalitetskonstanten k er lik π 3, 141. Formelen er A = πr 2. (b) I tillegg til Celsius og Fahrenheit finnes det en annen måte å måle temperatur: Kelvinskalaen. Forholdet er slik: 273 C = 0K og en temperaturstigning på en kelvin er lik en på 1 C. (Merk at man snakker om en kelvin og ikke om en grad Kelvin, og man skriver for eksempel 24K og ikke 24 K.) Vis at temperaturmålingen i kelvin er er en lineær funksjon av den i Celsius. SV.: En måling på x grader Celsius tilsvarer x kelvin er. I symboler har vi at x C = (x + 273)K. Slik har vi skrevet x C som (ax + b)k der a = 1 og b = 273. Derfor er (kelvin er) per definisjon en lineær funksjon av (grader Celsius). En annen måte å gjøre det hadde vært å trekke grafen og legge merke til at det er ei rett linje. Obs: Siden oppgaven er av typen Vis at denne er en lineær funksjon, så er det viktig å trekke en konklusjon, altså, å avslutte ved å si noe som Siden funksjonen kann uttrykkes som ax+b der a og b er faste tall, da er det per definisjon en lineær funksjon. (c) En viss fagforening koster 300kr i månaden, og man betaler og så en innmeldingsavgift på 650kr. Vis at (pengene betalt til fagforeningen) er en lineær funksjon av (tiden man har vært medlem). SV.: Etter én måned har en medlem betalt 650kr + 300kr, etter to måneder etter tre måneder 650kr + 300kr + 300kr = 650kr kr, 650kr + 300kr + 300kr + 300kr = 650kr kr og så videre. Generelt, hvis vi skriver da har man betalt n = antall måneder man har vært medlem 650kr + (n 300kr) etter n måneder. Slik har vi uttrykket (pengene betalt til fagforeningen) som an + b der a = 300 og b = 650, så er det en lineær funksjon. 3

4 (d) Lag en lineær funksjon som tar verdiene i den følgende tabellen: Argument Verdi SV.: Siden funksjonen er lineær, vet vi at den kan uttrykkes på formen ax + b der a og b er faste tall. Disse a og b må vi beregne. Vi husker at a-en er stigningsforholdet til funksjonens graf. Derfor kan vi beregne det ved å ta to punkter (x 1, y 1 ) og (x 2, y 2 ) på grafen og beregne y 2 y 1 x 2 x 1. Vi tar (x 1, y 1 ) = (0, 5) og (x 2, y 2 ) = (1, 12), som gir et noe enklere regnestykk en de fleste slike valg: a = = 7 1 = 7. Nå husker vi og så at f(0) = a 0 + b = b. Derfor er b = 5. For å oppsummere: f(x) = 7x + 5. (e) Menn som trener på gymmen opplyses om maksimum som pulsen skal stige til under trening: det beregnes ved å trekke mans alder fra 220. Vis at maksimumpulsen er en lineær funksjon av alderen. SV.: La oss skrive x for alderen. Da er maksimumpulsen lik 220 x = ( 1) x Slik har vi skrevet maksimumpulsen som ax + b, der a = 1 og b = 220. Derfor er maksimumpulsen en lineær funksjon av alderen. (f) La f(x) = ax + b være en generell lineær funksjon. For nesten alle 1 verdier av a og b, funksjonen har en invers. Regn ut inversen til en generell lineær funksjon f(x) = ax + b, når det er mulig. For hvilken a og b har f ingen invers? SV.: Hvis a 0 da har f en invers, som er gitt av f 1 (x) = x b a. Hvis a er null da er funksjonen konstant: f(x) = b for enhver x. Derfor kan ikke funksjonen ha en invers. 5. Annengradsfunksjoner 1 Nesten alle betyr alle untatt endelig mange. 4

5 (a) En parkeringsplass har formen av et rektangel: det er x meter på den korte siden og x + 2 på den lange. Vis at arealet til parkeringsplasset er en annegradfunksjon av x. SV.: Arealet er lik x(x+2)m 2 = (x 2 +2x)m 2, altså (ax 2 +bx+c)m 2 der a = 1, b = 2 og c = 0. Per definisjon er arealet derfor en annengradfunksjon av x. (b) Breiteig Venheim [BV2], side 103, oppgave 9.20, deler a og b. SV.: (a) En parabel som åpner nedover, skjærer y-aksen i 1, 5 har makspunkt i omtrent t = 2 og maksverdi omtrent y = 21. (b) Løs ligningen f(t) = 0. Den positive løsningen er omtrent 4, 2 sekunder. (c) Lag en annengradfunksjon som tar de følgende verdiene: Argument x Verdi f(x) SV.: Først skal vi lage en annengradfunksjon som forsvinner i x = 1 og x = 1. Dette gjør vi ved å gange sammen (x + 1) og (x 1). Vi får x 2 1. Den funksjonen vi leter etter blir en multipel av dette, ax 2 a. For å finne a-en, bruker vi en annen av de tilgjengelige verdiene. Den letteste å bruke er den i 0, som gir direkt at f(0) = 1 = a, så er a = 1. Funksjonen våre er da f(x) = x 2 1. (d) (Denne er litt mer utfordrende.) La f(x) = x 2 + 4x + 7. Omskriv uttrykket for f(x) i formen (x c) 2 + d der c og d er faste tall. Hvilken forme har grafen, lue eller kopp? Hvor er maksimum- eller minimumpunktet? (Se på Breiteig Venheim [BV2, side ] for hjelp og videre opplysninger.) SV.: For å gjøre dette generelt har vi oppskriften ) ) x 2 + bx + c = (x 2 + bx + b2 + (c b2 4 4 ( = x + 2) b 2 ) + (c b2 4 5

6 For oss er b = 4 og c = 7, så får vi ( f(x) = x 2 + 4x + 7 = x + 4x + 16 ) ( ) = (x + 2) Siden fortegnet til x 2 -leddet er positiv, så er grafen en kopp (eller et smile :-) ). Minimumpunktet er nådd i x = b/2, altså x = 2. Vi har f( 2) = 5 som minimalverdi. 6. Tredjegradfunksjoner: En betong søyle som skal bære en bom består av en kvadratisk søyle som måles x cm x cm 3x cm, sammen med en kule som sitter på toppen, som har diameter xcm. Regn ut volumen av betong i søylen som funksjon av x, sidelengden på bunnen. SV.: Volumen er summen av volumen til ( den kvadratiske søylen, som er 3x 3 cm 3, plus den til kulen, som er 4π x ) cm 3. Tilsammen blir det omtrent 3, 52x 3 cm (a) Regn ut asymptotene til grafene til den rasjonale funksjonen f(x) = x + 5 2x 6. SV.: Først, funksjonen er ikke definert i den x-en der 2x 6 = 0, altså x = 3. Ved å velge x nært nok til 3, så kan vi nå til en så stor eller stor negativ verdi av funksjonen som vi vil, så nærmer grafen seg til den loddrette linja x = 3. Derfor er x = 3 en loddrett asymptote. Siden funksjonen er definert i alle punkter unntatt x = 3, så er denne den eneste loddrett asymptote. Til gjengjeld, la oss se på hva som skjer når x blir veldig stor eller stor negativ. Vi har lim x x + 5 2x 6 = lim x x 2 6 x = 1 2. Tar vi lim-en i den negative retningen, da får vi samme svaret. Derfor er y = 1 en vannrett asymptote. 2 (b) Et team fra HiVe har fått beskjed om en interessant dagsseminar i Oslo. De er omtrent 50 stykker, så har bestemmt seg for å leie en buss med sjåfør for dagen. Prisen er 5000kr, samme hvor mange studenter blir med. Studentene skal spleise kosten. Det kan hende selvfølgelig at ikke alle blir med. Skriv s for antall med studenter som reiser med bussen. 6

7 i. Vis at transportkosten for hver av disse studentene er en rasjonal funksjon av s. ii. Hva skjer med prisen hver enkel student må betale når s er stor, og når s er liten? SV.: (i) Hvis totalkosten er 5000kr og det er spleist jevnt mellom deltagerne, så kan vi finne kosten for hver enkel student ved å dele 5000kr med antallet deltagerne. Hvis det er s deltagere, så betaler de 5000kr hver. Men 5000 er en (konstant) polynom, og s s er en (lineær) polynom i s. Derfor kan kosten for hver deltager uttrykkes som forhold av to polynomer. Per definisjon er det derfor en rasjonal funksjon av s. (ii) Når s er stor, så deltar mange studenter, så kosten for hver enkel av dem blir liten. (Matematisk sett: deler vi en konstant størrelse med noe stort, da får vi noe liten.) Når s er liten, da har vi færre deltagere, slik at de 5000kr må betales av færre stykker, så de må betale mer hver. (Matematisk sett: deler vi en konstant størrelse med noe liten, da får vi noe stort.) 8. Eksponentialfunksjoner. Enten (a) eller (b). (a) En dag får jeg halsebetegnelse når en bakterie vandrer inn. Jeg vet at slike vesener deler seg i to hvert tiende minutt, slik at antall bakterier fordobler seg hver 10 minutt. Hvis den første bakterien slår seg ned kl. 08:00, hvor mange bakterier finnes i halsen min kl. 12:00? (Vi betrakter helt ideale omstendigheter, der ingen bakterier dør og alle deler seg akkurat så ofte som de skal.) SV.: Kl. 8 til kl. 12 er fire timer, som er 24 ganger 10 minutter. Derfor fordobler antall med bakterier 24 ganger. Siden der var én på begynnelsen, så er det til slutt 2 24 = (b) La f(x) = 3 (1, 1487) x. Beregn fordoblingstiden til f(x). Nærmere presist, beregn tallet t slik at f(x + t) = 2f(x). Det holder med å gi det nærmeste heltallet. (Vink: 5 2 1, 1487.) SV.: Vi vil regne ut for hvilken t vi har f(x + t) = 2f(x). Siden 5 2 1, 1487, skal dette være nesten det samme som den t-en som 7

8 er slik at ( ) 5 x ( ) 5 t ( ) 5 x = 2 3 2, altså ( 5 2 ) t = 2. Men ( 5 2 ) 5 = 2, så er t = 5. Referanser [BV1] T. Breiteig, R. Venheim: Matematikk for Lærere 1, 4. utgave, Universitetsforlaget, Oslo, [BV2] T. Breiteig, R. Venheim: Matematikk for Lærere 2, 4. utgave, Universitetsforlaget, Oslo, Avdeling for Lærerutdanning Høgskolen i Vestfold Grenaderveien Tønsberg Anne-Marit.L.Brun@hive.no, George.H.Hitching@hive.no 8

Oppgaver i funksjonslære A2A/A2B, høst 2009

Oppgaver i funksjonslære A2A/A2B, høst 2009 Oppgaver i funksjonslære A2A/A2B, høst 2009 Avdeling for lærerutdanning, Høgskolen i Vestfold 21. august 2009 Blant disse oppgavene er følgende utvalgt for mappen: 1, 3(i) (iii) og (ix) (x), 5(viii) (ix),

Detaljer

Kontinuitet og grenseverdier

Kontinuitet og grenseverdier Kontinuitet og grenseverdier Avdeling for lærerutdanning, Høgskolen i Vestfold 5. januar 2009 1 Innledning Kontinuitetsbegrepet For å motivere og innlede til kontinuitetsbegrep skal vi først undersøke

Detaljer

Funksjoner, M1 høst 2007

Funksjoner, M1 høst 2007 Funksjoner, M1 høst 2007 Avdeling for lærerutdanning, Høgskolen i Vestfold 10. september 2007 Innhold 1 Innføring 1 1.1 Entydighet............................. 3 1.2 Hvordan funksjoner presenteres.................

Detaljer

Test, 5 Funksjoner (1P)

Test, 5 Funksjoner (1P) Test, 5 Funksjoner (1P) 5.1 Funksjonsbegrepet 1) f ( x) = 16x + 0 f (0) = 0 16 0 ) f ( x) = 4x 6 f ( ) = 14 6 3) f er en funksjon av x dersom hver verdi av x gir nøyaktig en verdi av f. Riktig Galt 4)

Detaljer

Oppfriskningskurs i matematikk Dag 2

Oppfriskningskurs i matematikk Dag 2 Oppfriskningskurs i matematikk Dag 2 Petter Nyland Institutt for matematiske fag Tirsdag 7. august 2018 Beskjeder Rombytte: EL5 i dag og i morgen. F1 igjen på torsdag. Skal fikse fasit (til tallsvar) på

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold

Geometriske avbildninger og symmetri. A2A/A2B Høgskolen i Vestfold Geometriske avbildninger og symmetri A2A/A2B Høgskolen i Vestfold 6. november 2009 Innhold 1. Symmetri 2. Avbildninger 3. Isometrier 4. Egenskaper ved avbildninger 5. Symmetrigrupper Kilde for forelesningen:

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

Oppgaver. Innhold. Funksjoner Vg1P

Oppgaver. Innhold. Funksjoner Vg1P Oppgaver Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 6 Modul 3. Mer om lineær vekst... 10 Modul 4. Andregradsfunksjoner... 13 Modul 5. Andre funksjoner... 16 Polynomfunksjoner...

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori med oppgaver. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning. Dag 2: 09.00-11.45

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

Løsningsforslag til eksamen i MAT 1100 H07

Løsningsforslag til eksamen i MAT 1100 H07 Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver

Detaljer

1P eksamen våren 2017 løsningsforslag

1P eksamen våren 2017 løsningsforslag 1P eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Du har 15 L saft. Du skal helle saften over i

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN Bokmål UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Løsningsforslag til Eksamen i emnet MAT - Grunnkurs i matematikk I Torsdag 22. mai 28, kl. 9-4. Dette er kun et løsningsforslag.

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

Flere anvendelser av derivasjon

Flere anvendelser av derivasjon Flere anvendelser av derivasjon Department of Mathematical Sciences, NTNU, Norway September 30, 2014 Forelesning 17.09.2014 Fikspunkt-iterasjon Newtons metode Metoder for å finne nullpunkter av funksjoner:

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Funksjoner oppgaver. Innhold. Funksjoner R1

Funksjoner oppgaver. Innhold. Funksjoner R1 Funksjoner oppgaver Innhold 3.1 Funksjoner... 3. Kontinuitet, grenseverdier og asymptoter til funksjoner... 3 Grenseverdier... 3 Rasjonale funksjoner og asymptoter... 6 Kontinuitet... 8 Funksjoner med

Detaljer

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014

Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 Høgskolen i Telemark Fakultet for estetiske fag, folkekultur og lærerutdanning BOKMÅL 23. mai 2014 ORDINÆR EKSAMEN I MATEMATIKK 2 Modul 1 15 studiepoeng Tid: 5 timer Oppgavesettet er på 7 sider (inkludert

Detaljer

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6

Oppgave 1. Del A. (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. som desimaltall. 3x 6 Oppgave 1 (i) Skriv de to desimaltallene 0, 7 og 3, 12 som vanlig brøk og forkort hvis mulig. (ii) Skriv 314 100 og 4 5 (iii) Forkort brøkene som desimaltall. 12 15 og 3x 6 9x. (iv) Sorter disse seks tallene

Detaljer

EKSAMEN. Tall og algebra, funksjoner 2

EKSAMEN. Tall og algebra, funksjoner 2 EKSAMEN Emnekode: LSV3MAT12 Emne: Tall og algebra, funksjoner 2 Dato: 06/12/2012 Eksamenstid: kl. 09.00 til kl. 15.00 Hjelpemidler: Kalkulator Faglærer: Petter Løkkeberg Eksamensoppgaven: Oppgavesettet

Detaljer

Fasit. Funksjoner Vg1T. Innhold

Fasit. Funksjoner Vg1T. Innhold Fasit Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjoner... 15 Andregradsfunksjoner... 15 Polynomfunksjoner... 18 Rasjonale funksjoner... 19 Potensfunksjoner og eksponentialfunksjoner...

Detaljer

UNIVERSITETET I OSLO. Løsningsforslag

UNIVERSITETET I OSLO. Løsningsforslag UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 8 sider. Vedlegg: Tillatte

Detaljer

Her er C en funksjon av F

Her er C en funksjon av F Kapittel 9 FUNKSJONER C F 50 58 40 40 0 0 4 0 4 0 0 50 0 68 0 86 40 04 50 9 F C + 5 Her er F en funksjon av C Dette er like ra C 5 9 F 60 9 Her er C en funksjon av F Kapittel 9 FUNKSJONER Det norske oljeeventyret

Detaljer

Deleksamen i MAT111 - Grunnkurs i Matematikk I

Deleksamen i MAT111 - Grunnkurs i Matematikk I Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 1 Stine M. Berge 05.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 05.07.19 1 / 23 Introduksjon Informasjon: https://wiki.math.ntnu.no/oppfrisk/2019/start

Detaljer

Oppfriskningskurs Sommer 2019

Oppfriskningskurs Sommer 2019 Oppfriskningskurs Sommer 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Oppgave 9 fra Øving 2 a) Er funksjonen f(x) = en-til-en? Hvorfor/hvorfor ikke? { 1 x hvis 0 x

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Deleksamen i: MAT00 Kalkulus Eksamensdag: Fredag 4. oktober 20 Tid for eksamen: 5.00 7.00 Oppgavesettet er på 5 sider. Vedlegg: Tillatte

Detaljer

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning

Øving 2. Oppgave 1: Diverse algebra med føring. Oppgave 2: Ligningssystem som tekstoppgave. Oppgave 3: Grafgjenkjenning Øving 2 Oppgave 1: Diverse algebra med føring Finn x som løser ligningene: a) x 2 + 9 = 25 b) x 2 = 2x + 8 c) 2x 2 + 12x = 32 d) x 1 = 1/x e) 2x 4 = x + 2 f) Gå gjennom føringen av oppgave a) og e) med

Detaljer

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger:

Forelesning 10 MA0003, Tirsdag 18/ Asymptoter og skissering av grafer Bittinger: Forelesning 0 MA000, Tirsdag 8/9-0 Asymptoter og skissering av grafer Bittinger:.-. Asymptoter Definisjon. La f være en funksjon. Vi sier at linjen l() = a + b er en skrå asymptote for f dersom minst ett

Detaljer

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det.

a) Blir produktet av to vilkårlige oddetall et partall eller et oddetall? Bevis det. Prøve i R1 04.1.15 Del 1 Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Husk å begrunne alle svar. Det skal gå klart frem av besvarelsen hvordan du har tenkt. Oppgave

Detaljer

TMA4105 Matematikk 2 Vår 2014

TMA4105 Matematikk 2 Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4105 Matematikk 2 Vår 2014 Løsningsforslag Øving 7 10.4.7 Vi skal finne likningen til et plan gitt to punkter P = (1, 1,

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

Løsninger. Innhold. Funksjoner Vg1P

Løsninger. Innhold. Funksjoner Vg1P Løsninger Innhold Innhold... 1 Modul 1. Funksjonsbegrepet... Modul. Lineære funksjoner... 9 Modul 3. Mer om lineær vekst... 16 Modul 4. Andregradsfunksjoner... 5 Modul 5. Andre funksjoner... 30 Polynomfunksjoner...

Detaljer

R1 eksamen høsten 2015 løsning

R1 eksamen høsten 2015 løsning R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f

Detaljer

Fagdag CAS-trening

Fagdag CAS-trening Fagdag 03.12.2015 - CAS-trening Innhold: Viktige kommandoer på side 1. Eksempler på bruk av CAS side 1-4. Arbeidsoppgaver på side 5 og utover. Viktige kommandoer: Se oversiktene side 444 og side 446 i

Detaljer

Eksamen MAT1015 Matematikk 2P Va ren 2015

Eksamen MAT1015 Matematikk 2P Va ren 2015 Eksamen MAT1015 Matematikk P Va ren 015 Oppgave 1 ( poeng) Dag Temperatur Mandag 4 C Tirsdag 10 C Onsdag 1 C Torsdag 5 C Fredag 6 C Lørdag Tabellen ovenfor viser hvordan temperaturen har variert i løpet

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Kalkulus. Eksamensdag: Fredag 9. desember 2. Tid for eksamen: 9.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Oppfriskningskurs i matematikk Dag 3

Oppfriskningskurs i matematikk Dag 3 Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale

Detaljer

Kapittel 7. Funksjoner

Kapittel 7. Funksjoner Kapittel 7. Funksjoner Mål for kapittel 7: Kompetansemål Mål for opplæringen er at eleven skal kunne redegjøre for begrepet lineær vekst, vise gangen i slik vekst og bruke dette i praktiske eksempler,

Detaljer

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1

Løsningsforslag til prøveeksamen i MAT1100, H-14 DEL 1 Løsningsforslag til prøveeksamen i MT, H- DEL. ( poeng Hva er den partiellderiverte f y sin(xy cos(xy y sin(xy x sin(xy cos(xy xy sin(xy cos(xy y sin(xy + xy sin(xy når f(x, y = y cos(xy? Riktig svar:

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

TMA4100: Repetisjon før midtsemesterprøven

TMA4100: Repetisjon før midtsemesterprøven TMA4100: Repetisjon før midtsemesterprøven 10.10.09 Lars Sydnes sydnes@math.ntnu.no Institutt for matematiske fag October 1, 2009 L.S. (NTNU) TMA4100: Oversikt October 1, 2009 1 / 20 Kapittel 1: Funksjoner.

Detaljer

4 Funksjoner. Innhold

4 Funksjoner. Innhold 4 Funksjoner Innhold Kompetansemål - Funksjoner, Vg1T... 3 4.1 Funksjonsbegrepet... 4 Funksjoner representert ved formler... 5 Definisjonsmengde... 6 Funksjoner representert ved grafer og verditabeller...

Detaljer

Eksamen matematikk S1 løsning

Eksamen matematikk S1 løsning Eksamen matematikk S1 løsning Oppgave 1 (3 poeng) Løs likningene a) 6 4 0 6 6 44 6 36 3 4 6 4 1 b) lg lg lg4 lg lg4 lg 10 10 lg4 4 8 0 4 4 8 6 4 må være større enn null fordi den opprinnelige likningen

Detaljer

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29

Kapittel 2. Algebra. Kapittel 2. Algebra Side 29 Kapittel. Algebra Algebra kalles populært for bokstavregning. Det er ikke mye algebra i Matematikk P-Y. Det viktigste er å kunne løse enkle likninger og regne med formler. Kapittel. Algebra Side 9 1. Forenkling

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus

Detaljer

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3

x 2 2 x 1 =±x 2 1=x 2 x 2 = y 3 x= y 3 Obligatorisk om funksjonar og deriverte Oppgåve f 3 f = ±, =R Funksjonen f er ein parabel med botnpunkt på (,y) = (0,3) og definisjonsmengda er difor heile tallinja. Sidan f = f er funksjonen symmeterisk

Detaljer

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene Tall i arbeid Påbygging kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Origo er skjæringspunktet mellom x-aksen og y-aksen. Koordinatene til origo er altså. (0, 0) b Førstekoordinaten til

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene.

Løsningsforslag. Prøve i Matematikk 1000 BYFE DAFE 1000 Dato: 29. mai 2017 Hjelpemiddel: Kalkulator og formelark. Oppgave 1 Gitt matrisene. Prøve i Matematikk BYFE DAFE Dato: 29. mai 27 Hjelpemiddel: Kalkulator og formelark Løsningsforslag Oppgave Gitt matrisene A = 2 2 B = [ 2 3 4 ] og C = Regn ut, om mulig, summene A + B, A + B T og A +

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler Oppgave 1 15 L 150 dl Til sammen 150 dl med dl i hvert glass gir: 150 glass 75 glass Oppgave Vi

Detaljer

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09

Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgaveark Uke 37 (07/09-11/09) MAT111 - H09 Oppgave 1 Du ar fått deg en jobb i et firma og skal kjøre til en konferanse med overnatting. Du drar jemmefra på mandag kl 07:15 og ankommer 11:07. Du overnatter

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Kompetansemål - Funksjoner, Vg1P Modul 1: Funksjonsbegrepet Modul 2: Lineære funksjoner Modul 3: Mer om lineær vekst...

Kompetansemål - Funksjoner, Vg1P Modul 1: Funksjonsbegrepet Modul 2: Lineære funksjoner Modul 3: Mer om lineær vekst... Funksjoner Innhold Kompetansemål - Funksjoner, Vg1P... 1 Modul 1: Funksjonsbegrepet... Modul : Lineære funksjoner... 6 Modul 3: Mer om lineær vekst... 1 Modul 4. Andregradsfunksjoner... 0 Modul 5: Andre

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

1. Hvis Knut er dobbelt så gammel som Per, Per er dobbelt så gammel som Henrik, og Henrik er 9 år yngre enn Knut, hvor gammel er da Per?

1. Hvis Knut er dobbelt så gammel som Per, Per er dobbelt så gammel som Henrik, og Henrik er 9 år yngre enn Knut, hvor gammel er da Per? SETT 1 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Hvis Knut er dobbelt så gammel som Per, Per er dobbelt så gammel som Henrik, og Henrik er 9 år yngre enn Knut, hvor gammel er da Per? 3. 2. En bro

Detaljer

Hans Petter Hornæs,

Hans Petter Hornæs, Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik:

Eksempel. La A = {a, b, c, d} og B = {1, 2, 3} La f være gitt ved: f(a) = 1, f(b) = 3, f(c) = 2, f(d) = 1. Dette kan illustreres slik: Funksjoner La A og B være to mengder. En funksjon f fra A til B betegnes med f: A -> B og er en tilordning (regel) som til ethvert element a A tilordner ett og bare ett element b B. Elementet b kalles

Detaljer

Problem 1. Problem 2. Problem 3. Problem 4

Problem 1. Problem 2. Problem 3. Problem 4 Oppsummeringsproblemer som utgangspunkt til ekstraforelesninger i uke 48 i emnet MAT111, høsten 2008 Problem 1 Bruk den formelle definisjonen av grenseverdi til å vise at x 4 1 x 1 x + 1 = 4. Problem 2

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f

Sammensetningen h = f g er en funksjon fra A til C, h: A -> C og er definert ved h(a) = f(g(a)) Viktig: f g g f Sammensetningen av to funksjoner. Gitt mengdene A, B og C. La f og g være funksjonene der g: A -> B f: B -> C Da kan vi lage sammensetningen h av f og g. Den betegnes som h = f g (lese som «f ring g»).

Detaljer

ANNENGRADSLIGNINGER OG PARABELEN

ANNENGRADSLIGNINGER OG PARABELEN ANNENGRADSLIGNINGER OG PARABELEN Espen B. Langeland realfagshjornet.wordpress.com espenbl@hotmail.com 9.mars 017 Dagens artikkel omhandler annengradsligninger, og deres grafer parabler. 1 Annengradsligninger

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne

Når du har arbeidet deg gjennom dette kapittelet, er målet at du skal kunne Funksjoner i praksis Innhold Kompetansemål Funksjoner i praksis, Vg2P... 1 Modul 1: Lineære funksjoner... 2 Modul 2: Andregradsfunksjoner... 8 Modul 3 Tredjegradsfunksjoner... 12 Modul 4: Potensfunksjoner...

Detaljer

5 Matematiske modeller

5 Matematiske modeller Løsning til KONTROLLOPPGAVER 5 Matematiske modeller OPPGAVE 1 a) Endringen i lengden på lyset i løpet av de 100 minuttene er 12 cm 27 cm = 15 cm Endringen per minutt blir da 15 cm 0,15cm/ min 100 min Når

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 5

Løsningsforslag til utvalgte oppgaver i kapittel 5 Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Forsiden kommer her. 1

Forsiden kommer her. 1 Forsiden kommer her. 1 Oppgave 1 Familien JULESEN består av mor, far, storebror Julian og to yngre brødre Julius og Josef. De er rimelig nok interessert i matematikk. (a) En dag leser Julian om Den assosiative

Detaljer

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005

Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

2P, Modellering Quiz fasit. Test, 3 Modellering

2P, Modellering Quiz fasit. Test, 3 Modellering Test, 3 Modellering Innhold 3.1 Lineære modeller og lineær regresjon... 3. Modell for svingetiden til en pendel... 8 3.3 Potensfunksjon som modell... 8 3.4 Eksponentialfunksjon som modell... 18 3.5 Polynomfunksjoner

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Matematikkkurs M0 Oppgaver

Matematikkkurs M0 Oppgaver Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

Eksamen S1, Hausten 2013

Eksamen S1, Hausten 2013 Eksamen S1, Hausten 013 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillatne. Oppgåve 1 ( poeng) Funksjonen f er gjeve ved Bestem f. f x 3x 3x 1, Df

Detaljer

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001)

Løsningsforslag for eksamen i brukerkurs i matematikk A (MA0001) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 8 Løsningsforslag for eksamen i brukerkurs i matematikk A (MA1) Bokmål Tirsdag 1. desember 11 Tid: 9: 1: (4 timer)

Detaljer

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bokmål Løsningsforslag til eksamen i MAT111 - Grunnkurs i Matematikk I Mandag 17. desember 2007, kl. 09-14. Oppgave 1 Gitt f(x) = x + x 2 1, 1 x 1. a) Finn og

Detaljer

Koordinatsystem med levende funksjoner trinn 90 minutter

Koordinatsystem med levende funksjoner trinn 90 minutter Lærerveiledning Passer for: Varighet: Koordinatsystem med levende funksjoner 8. - 10. trinn 90 minutter Koordinatsystem med levende funksjoner er et skoleprogram hvor elevene får fysisk og praktisk erfaring

Detaljer

Matematikk R1 Forslag til besvarelse

Matematikk R1 Forslag til besvarelse Matematikk R1 Forslag til besvarelse NITH 4. mars 014 Oppgave 1 a) Regn ut p x) når px) = x 3 3x + 6x 1. p x) = x 3 ) 3x ) + 6x) 0 = 3x ) 3x) + 6 1 = 6x 6x + 6 b) Regn ut p x) når px) = ax + bx + c. Her

Detaljer

1P eksamen høsten Løsningsforslag

1P eksamen høsten Løsningsforslag 1P eksamen høsten 2017 - Løsningsforslag Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) En vare koster 640 kroner. Butikkeieren

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B

SAMMENDRAG OG FORMLER. Nye Mega 10A og 10B SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet

Detaljer

Eksamen 2P MAT1015 Høsten 2012 Løsning

Eksamen 2P MAT1015 Høsten 2012 Løsning Eksamen 2P MAT1015 Høsten 2012 Oppgave 1 (4 poeng) Alle som går tur til Pollfjell, skriver navnet sitt i boka som ligger i postkassen på toppen av fjellet. Nedenfor ser du hvor mange som har skrevet seg

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

Kapittel 5. Areal, omkrets, volum og overflate

Kapittel 5. Areal, omkrets, volum og overflate Kapittel 5. Areal, omkrets, volum og overflate Mål for kapittel 5: Kompetansemål Mål for opplæringen er at eleven skal kunne løse problem som gjelder lengde, vinkel, areal og volum Læringsmål Etter at

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer