Prov i matematik Matematiska institutionen. Transformmetoder Julia Viro

Størrelse: px
Begynne med side:

Download "Prov i matematik Matematiska institutionen. Transformmetoder Julia Viro"

Transkript

1 Uppsala universitet Prov i matematik Matematiska institutionen Transformmetoder Julia Viro 5--9 Skrivtid: 5. Hjälpmedel: Appendix C. Formulae av A. Vretblads bok Fourier Analysis and Its Application Maxpoäng för varje uppgift ges inom parentes. Betyggränserna: 8, 5, 3 poäng.. Lös differentialekvationen y +y = f(t)+δ(t ) med begynnelsevillkoren y() =, y () =. Kontrollera att lösningen är korrekt genom insättning i ekvationen. (3+)! "!!"#$ %#. Använd Z-transform för att bestämma en rekursionsekvation för talföljden x n = an b n a b, där a och b är rötterna till ekvationen z z =. (6) 3. Beräkna första och andra derivator för distributionen f(x) = x. (4) 4. Utveckla funktionen f(x) = arccos x, x < i Chebyshev-serie. (6) 4x( x) 5. Bestäm Fourierserien för udda -periodiska funktionen som ges av f(x) =, < x <. Vad är seriens summa i en godtycklig punkt x? Motivera! Beräkna summor k= ( ) k+ (k ) 3 och k= (k ) 6. (+++) 6. Lös randvillkorsproblemet: u tt = a u xx, < x <, t > u(, t) = u(, t) =, t > 4x( x) u(x, ) =, < x < u t (x, ) =, < x <. 7. Låt f a (t) = a a + t, a >. Beräkna faltningen f a f a. Generalisera till fler än två faltningsfaktorer. Använd resultatet för att beräkna integralen Svar:. y(t) = (t sin t)h(t) (t sin(t ))H(t ) dx (x x + )(x + 4).. x n+ = x n+ + x n 3. f (x) = + (H(x + ) H(x) + H(x )), f (x) = (δ(x + ) δ(x) + δ(x )) 4. arccos x = 4 X T k+ (x) (k + ) k= 5. f(x) = 3 X sin(k )x 3 (k ) 3, X ( ) k+ (k ) 3 = 3 3, X (k ) 6 = 6 96 k= k= k= 6. u(x, t) = 3 X cos(a(k )t) 3 (k ) 3 sin(k )x k= 7. f a f a = f a +a, f a f an = f a + +a n, integralsvärde är 3 (6) (5++)

2 Uppsala universitet Prov i matematik Matematiska institutionen Transformmetoder Julia Viro 4--3 Skrivtid: 9 4. Hjälpmedel: Appendix C. Formulae av A. Vretblads bok Fourier Analysis and Its Application och formel sin x = cos x Maxpoäng för varje uppgift ges inom parentes. Betyggränserna: 8, 5, 3 poäng.. Ett dynamiskt system beskrivs med differentialekvationen y (t) + y(t) = x(t). Bestäm utsignal y(t) för insignal x(t) = H(t) + δ(t ) under begynnelsevillkoret y() = y () =. Kontrollera att svaret är korrekt genom insättning i ekvationen. Är systemet stabil?. Använd Laplacetransform för att bestämma en distribution f, som uppfyller ekvationen (H(t)t cos t) f(t) = δ(t) 3. Bestäm Fourierserien för periodisk funktion f(x) = x 3 x, x <. I vilka punkter konvergerar serien likformigt? Vad är seriens summa i punkten x = 5? Beräkna summan n 6. n= 4. Visa att funktioner sin x, sin x, sin 3x utgör ett ortonornerat system i L (, ). Bestäm den ortogonala projektionen av funktionen f(x) = x 3 x på det delrum av L (, ), som spänns upp av de tre funktionerna. 5. Lös randvillkorsproblemet: 6. Beräkna integralen u t = u xx + sin x, < x <, t > u(, t) = u(, t) =, t > u(x, ) = 8 sin 4x sin 6x, < x < (cos x ) dx 7. Bestäm en funktion, definierad på hela R, som uppfyller integralekvationen {, om a < x < b f(x y) dy = x [,] (x) + ( x) [,] (x), där [a,b](x) =, annars. Svar:. y(t) = ( cos t)h(t) + sin(t )H(t ). Systemet är instabilt. x 4. f(t) = δ + 3δ + 4H(t) sinh t X ( ) n sin nx 3. Fourierserien är 3 n n= 3, serien konvergerar likformigt för alla x, seriens summa i x = 5/ X är 3/8, n n= 6 = Svaret hämtas direkt från uppgift 3, projektionen är jo summan av de tre första termer i Fourierserien : 3 4 sin x + sin x sin 3x u(x, t) = ( e t ) sin x + 8e 6t sin 4x e 36t sin 6x f(x) = [,] (x).

3

4

5

6

7

8

9

10 Uppsala universitet Prov i matematik Matematiska institutionen Transformmetoder Julia Viro --8. Ett dynamiskt system beskrivs med differentialekvationen y (t)+y(t) = x(t). Bestäm utsignal y(t) för insignal x(t) = [,] (t) under begynnelsevillkoret y() =. Kontrollera att svaret är korrekt genom insättning i ekvationen.. Använd operationskalkyl för att bestämma en lösning (y (t), y (t)) till systemet { H y + δ y = δ(t) δ y + δ y = 3 3. Bestäm Fourierserien för en periodisk signal f(x) : 3 f(x) x Visa att Fourierserien konvergerar likformigt. Beräkna effekten av signalen. 4. Lös randvillkorsproblemet (ryckt sträng): u xx = u tt, < x <, t > u(, t) = u(, t) =, t > u(x, ) = f(x), < x < u t (x, ) =, < x < f(x) x 5. Bestäm det polynom av grad högst 3 som utgör den bästa approximationen till funktionen f(x) = x i rummet L (, ). 6. Beräkna integralen f(x) = x + b. cos ax x + b dx, a >, b >. Tips: studera Fouriertransform av 7. Bestäm en funktion som löser integralekvationen e 4(x y) f(y) dy = e x. Svar:. y(t) = ( e t )H(t) ( e (t ) )H(t ). y (t) = δ(t) e t H(t), y (t) = e t H(t) 3. f(x) = 4 P ( ) k sin (k + )x k= (k + ), effekten är 4. u(x, t) = 4 P ( ) k cos((k + )t) sin (k + )x k= (k + ) x e ab b 7.f(x) = 4 e 4x 3 3

11 4 LÖSNINGAR TILL --8. Ett dynamiskt system beskrivs med differentialekvationen y (t)+y(t) = x(t). Bestäm utsignal y(t) för insignal x(t) = [,] (t) under begynnelsevillkoret y() =. Kontrollera att svaret är korrekt genom insättning i ekvationen. Lösning: Detta är ett begynnelsevärdesproblem: { y, < t < (t) + y(t) =, annars y() = som löses med operationskalkyl (=Laplacetransform). Signalen y(t) ska vara lika med för t <. Låt ỹ(s) vara Laplacetransform till y(t). Då är sỹ(s) y() = sỹ(s) Laplacetransform till y (t). Den karakteristiska funktion [,] (t) [= H(t) H(t )] transformeras till e s e s = s e s. Hela begynnelsevärdesproblemet förvandlas till ekvation s Löser ut ỹ(s): ỹ(s) = e s s(s + ) e s s(s + ) = s(s + ) sỹ(s) + ỹ(s) = e s. s och förbereder den för inverstransform: e s s(s + ) = s ( s + e s s ). s + Från formelsamlingen hämtar man H(t) som en funktion med Laplacetransformen s och e t H(t) som en funktion med Laplacetransformen s +. Tidsfördröjning regel (L5) sager att det är ) : funktionen ( e (t ) )H(t ) som har Laplacetransformen e s ( s s + ( e t )H(t) t t H(t ) ( e (t ) )H(t ) L s s + e s ( L e s s s + Slutligen samlar man ihop allt och får signalen y(t) från ỹ(t): Till sist kontrollerar vi lösningen: y(t) = ( e t )H(t) ( e (t ) )H(t ). y (t) =e t H(t) + ( e t )H (t) e (t ) H(t ) ( e (t ) )H (t ) = e t H(t) + ( e t )δ(t) e (t ) H(t ) ( e (t ) )δ(t ) = e t H(t) e (t ) H(t ). Vi sätter in detta i ekvationen: y (t) + y(t) =e t H(t) e (t ) H(t ) + ( e t )H(t) ( e (t ) )H(t ) = H(t) H(t ) = [,] (t). Stämmer! Alternativ lösning (med impulssvaret): Hjälpekvationen k + k = δ transformeras till s k + k =. Härav k(s) = s + och impulssvaret är k(t) = e t. Lösningen till det ursprungliga ).

12 5 problemet är faltningen av impulssvaret och insignalen: y(t) =k [,] (t) = t e (t τ) { e t (e t ), < t < e t (e ), t > t [,](τ) dτ = e t e τ [,](τ) dτ = = ( e t )H(t) ( e (t ) )H(t ). Svar: y(t) = ( e t )H(t) ( e (t ) )H(t ). Använd operationskalkyl för att bestämma en lösning (y (t), y (t)) till systemet { H y + δ y = δ(t) δ y + δ y = Lösning: Vi subtraherar den andra ekvationen från den första: (H δ) y = δ och transformerar med Laplace: ( ) s ỹ (s) =. (Faltning förvandlas till produkten av transformerna.) Löser ut ỹ (s): ỹ (s) = s s = s och transformerar tillbaka: y (t) = δ(t) e t H(t). Nu tar vi hand om y (t). Vi transformerar den andra ekvationen i systemet: Alltså y (t) = e t H(t). ỹ (s) + sỹ (s) = ỹ (s) = ỹ(s) s = s. Svar: y (t) = δ(t) e t H(t), y (t) = e t H(t) 3. Bestäm Fourierserien för en periodisk signal f(x) : 3 f(x) x Visa att Fourierserien konvergerar likformigt. Beräkna effekten av signalen. Lösning: Uppenbarligen är signalen f(x) en udda funktion. Härav alla koefficienterna a n är lika med noll. Koefficienterna b n är b n = f(x) sin nx dx.

13 6 Integranden f(x) sin nx är en jämn funktion ty f(x) är udda och sin nx är udda. Alltså b n = f(x) sin nx dx = / f(x) sin nx dx + f(x) sin nx dx = / ( [ cos nx x n x sin nx dx + cos n n 4 n sin n = Fourierserien för f(x) är sin nx n / ] / ( x) sin nx dx = [ cos nx + ( x) n n sin n + cos n + n, n = k 4( ), (k + ) n = k +. f(x) 4 k= / nx ( )sin n sin n n ( ) k sin (k + )x (k + ). = Vi uppskattar absolutbeloppet av en term i summan på följande sätt: ( ) k sin (k + )x (k + ) (k + ) och ser att serien att Fourierserien k= (k + ) konvergerar, vilket medför (enligt Weierstrass majorantsats) 4 ( ) k sin (k + )x (k + ) konvergerar likformigt. Alltså k= Effekten av signalen f(x) är Eller: f(x) dx = f(x) = 4 3/ / x3 3 k= ( ) k sin (k + )x (k + ) för alla x. f(x) dx = / ( x)3 3 4 / / 3/ / x dx + = f (x) 3/ / ( 3 ] / ) = ( x) dx = ) = 4. x f(x) dx = [arean under grafen av f (x)] = 4 x dx = ( ) 3 3 =.

14 7 Svar: f(x) = 4 k= ( ) k sin (k + )x (k + ), effekten är 4. Lös randvillkorsproblemet (ryckt sträng): u xx = u tt, < x <, t > u(, t) = u(, t) =, t > u(x, ) = f(x), < x < u t (x, ) =, < x < f(x) x Lösning: Ekvationen och randvillkoren är homogena, alltså söker vi lösningen i formen u(x, t) = X(x)T (t). Härav X T = XT X eller X = T = λ. Randvillkoren u(, t) = u(, t) = T ger X() = X() =. Begynnelsevärddesproblemet för X(x) är { X + λx = X() = bx() = Icke-trivial lösning finns bara för λ n = n, n =,,.... Den är X n (x) = B n sin nx. Differentialekvation för T (t) är T + n T = som har den allmäna lösningen T n (t) = C n cos nt + D n sin nt. Vi samlar alla lösningar i serien u(x, t) = (a n cos nt + b n sin nt) sin nx. n= Koefficienterna a n, b n definieras av begynnelsevillkor u(x, ) = f(t), u t (x, ) =, < x <. f(x) = u(x, ) = a n sin nx. Serien i högra ledet är Fourierserien av en udda periodisk funktion som sammanfaller med f(x) i intervalet (, ): n= f(x) 3 x Fourierserien för denna funktion hämtas från uppgift 4 (eller beräknas på vanligt sätt): f(x) = 4, n = k Så a n = 4( ), (k + ) n = k +. k= Nu ska vi använda det sista villkoret u t (x, ) =. Sätter in t = : u t (x, t) = ( ) k sin (k + )x (k + ). ( na n sin nt + nb n cos nt) sin nx. n= = u t (x, ) = nb n sin nx. n=

15 8 Detta ger att alla koefficienterna b n är lika med noll. Slutligen, u(x, t) = a n cos nt sin nx = 4 ( ) k cos((k + )t) sin (k + )x. (k + ) n= k= Svar: u(x, t) = 4 k= ( ) k cos((k + )t) sin (k + )x (k + ) 5. Bestäm det polynom av grad högst 3 som utgör den bästa approximationen till funktionen f(x) = x i rummet L (, ). Lösning: Betrakta det delrum av L (, ) som spänns upp av (de ortogonala) Legendre polynomen P, P, P, P 3. Den bästa approximationen till funktionen f(x) = x i rummet L (, ) är den ortogonala projektionen av f(x) = x på delrummet. Den ges av formeln proj {P,P,P,P 3}f(x) = Vi hämtar Legendre polynomen från tabellen: n=3 n= < f, P n > < P n, P n > P n. P (x) =, P (x) = x, P (x) = (3x ), P 3 (x) = (5x3 3x) och beräknar koefficienterna i summan: < x, P > = < x, P > = < x, P > = < x, P > = x dx = [ integrerar jämn funktion] = x x dx = [ integrerar udda funktion] = x dx = ( ) x (3x ) dx = [ integrerar jämn funktion] = ( ) x (5x3 3x) dx = [ integrerar udda funktion] =. 3x 3 x dx = 4 Avläser från tabellen < P, P >= och < P, P >= och stoppar in detta i formeln för 5 projektionen: proj {P,P,P,P 3} x = < x, P > < P, P > P + < x, P > < P, P > P = + /4 /5 (3x ) = 5 6 x Svar: 5 6 x + 3 6

16 9 6. Beräkna integralen f(x) = x + b. cos ax x + b dx, a >, b >. Tips: studera Fouriertransform av Lösning: Fouriertransformen av f(x) = ˆf(ω) = Integralen att beräkna är x + b är e iωx x + b dx = ˆf(ω) = ω=a cos ωx i sin ωx cos ωx x + b dx = x + b dx. b e bω = e ab. b ω=a Vid transformberäkning använder vi formler F och F5. Svar: e ab b 7. Bestäm en funktion som löser integralekvationen e 4(x y) f(y) dy = e x. Lösning: Vi tolkar integralen som faltningen av funktionerna g(x) = e 4x och f(x). Således löses ekvationen med Fouriertransform: Nu ska vi titta i tabellen: x x e x e 4x Transformerade ekvationen ser ut så här: ĝ(ω) ˆf(ω) = F[e x ](ω). F8 med A=/4 e ω F e ( ω ) ω ω/ / e ( ω 4 ) 6 ˆf(ω) = e ω Alltså ˆf(ω) = e 3ω 6 och funktionen f(x) framställs med hjälp av formel F8 (med A = 3/6): f(x) = 4 e 4x Svar: f(x) = 4 e 4x 3 3

17

18

19

20

21

22

23

24

25

Vektorvärda funktioner

Vektorvärda funktioner Vektorvärda funktioner En vektorvärd funktion är en funktion som ger en vektor som svar. Exempel på en sådan är en parametriserad kurva som r(t) = (t, t 2 ), 0 t 1, som beskriver kurvan y = x 2 då 0 x

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

TMA4120 Matematikk 4K Høst 2015

TMA4120 Matematikk 4K Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Chapter 6.7 Systemer av ODE. Vi bruker L t} 1 s, L e at f(t } F (s a 6.7:9 Løs IVP. y 1 y 1 + y,

Detaljer

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u

Matematik, LTH Kontinuerliga system vt Formelsamling. q t. + j = k. u t. (Allmännare ρ 2 u. t2 Svängningar i gaser (ljud) t 2 c2 2 u Matematik, LH Kontinuerliga system vt 7 Formelsamling Formelsamligen utgör bara ett stöd för minnet. Beteckningar förklaras sålunda ej. Ej heller anges förutsättningar för formlernas giltighet. Fysikaliska

Detaljer

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 34 TMA4 Matematikk 4K H-3 Oppgave A-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

Eksamensoppgave i TMA4122,TMA4123,TMA4125,TMA4130 Matematikk 4N/M

Eksamensoppgave i TMA4122,TMA4123,TMA4125,TMA4130 Matematikk 4N/M Institutt for matematiske fag Eksamensoppgave i TMA422,TMA423,TMA425,TMA430 Matematikk 4N/M Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 9. august 207 Eksamenstid (fra til):

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Asymptotiska metoder och gruppanalys

Asymptotiska metoder och gruppanalys Asymptotiska metoder och gruppanalys Kursmaterial. Del I Lektor: Yury Shestopalov e-mail: youri.shestopalov@kau.se Tel. 54-7856 Hemsidan: www.ingvet.kau.se\ youri Karlstads Universitet 23 Innehåll Grupper

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

EKSAMENSOPPGAVER MATEMATIKKDELEN AV TMA4135 MATEMATIKK 4D H-03

EKSAMENSOPPGAVER MATEMATIKKDELEN AV TMA4135 MATEMATIKK 4D H-03 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 36 TMA435 Matematikk 4D H-3 Oppgave D-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side

Detaljer

L(t 2 ) = 2 s 3, 2. (1. Skifteteorem) (s 2) 3. s 2. (Konvolusjonsteoremet) s 2. L 1 ( Z. = t, L 1 ( s 2 e 2s) = (t 2)u(t 2). + 1

L(t 2 ) = 2 s 3, 2. (1. Skifteteorem) (s 2) 3. s 2. (Konvolusjonsteoremet) s 2. L 1 ( Z. = t, L 1 ( s 2 e 2s) = (t 2)u(t 2). + 1 NTNU Institutt for matematiske fag Eksamen i TMA5 Matematikk D høsten 008 Løsningsforslag a i Lt s, Lt e t Skifteteorem s ii Z t L sinτsint τdτ 0 s Konvolusjonsteoremet + b i L s t, L s e s t ut ii L s

Detaljer

Lite teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Lite teori... Dagens meny

Lite teori... SME118 - Mätteknik & Signalbehandling SME118. Johan Carlson 2. Lite teori... Dagens meny Lite teori... Påminnner först om faltningsegenskapen hos Fouriertransformen. y(t) = x(t) h(t) F Y (ω) = X(ω)H(ω). (1) På liknande sätt motsvaras en multiplikation i tidsplanet av en faltning i frekvensplanet,

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 18. feb Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 18. feb. 4 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 8 Antall oppgaver: 5 Antall

Detaljer

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Institutt for matematiske fag Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Faglig kontakt under eksamen: Dag Wessel-Berg Tlf: 924 48 828 Eksamensdato: 1. juni 216 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

Fakta om fouriertransformasjonen

Fakta om fouriertransformasjonen Fakta om fouriertransformasjonen TMA413/TMA415, V13 Notasjon Fouriertransformasjonen til funksjonen f er F[f](ω) = ˆf(ω) = 1 Den inverse fouriertransformasjonen er F 1 [g](x) = 1 f(x)e iωx dx g(ω)e iωx

Detaljer

Institutionen för Matematik, KTH

Institutionen för Matematik, KTH Institutionen för Matematik, KTH Lösningsforslag till tentamen, 200-2-7, kl. 8.00-.00. 5B04, Envariabel. Uppgift. Den karakteristiske ligningen r 2 r + 2 0 kan omskrives som (r )(r 2) 0. Den generelle

Detaljer

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 EKSAMEN I MATEMATIKK N/D (TMA25 TMA3 TMA35 3. August 27 LØSNINGSFORSLAG Oppgave a Løsning: fouriersinusrekken til

Detaljer

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid:

EKSAMEN. Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Morten Brekke. Klasser: (div) Dato: 3. des Eksamenstid: . EKSAMEN EMNE: MA61 FAGLÆRER: Svein Olav Nyberg, Morten Brekke Klasser: (div) Dato: 3. des. 3 Eksamenstid: 9 1 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver: 6 Antall

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT111 Prøveeksamen Eksamensdag: 5. juni 21. Tid for eksamen: 1. 13.3. Oppgavesettet er på 9 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

Formelsamling Matematisk statistik för D3, VT02

Formelsamling Matematisk statistik för D3, VT02 Sida 1 Formelsamling Matematisk statistik för D3, VT02 Sannolikhetsmått För två händelser A och B gäller alltid att P (A B) = P (A) + P (B) P (A B) P (A ) = 1 P (A) P (A \ B) = P (A) P (A B) Kombinatorik

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

Eksamensoppgåve i TMA4135 Matematikk 4D

Eksamensoppgåve i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne

Detaljer

Övningar till Matematisk analys IV Erik Svensson

Övningar till Matematisk analys IV Erik Svensson MATEMATISKA INSTITUTIONEN STOCKHOLMS UNIVERSITET Avd. Matematik 1-1-4 Övningar till Matematisk analys IV Erik Svensson L 1. Avgör om fx, y) 1 + x + y )e x y förekommande fall största/minsta värdet. har

Detaljer

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s. NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA112 Grunnkurs i analyse II Vår 219 8.4.1 Vi skal finne lengden til kurven x = 3t 2, y = 2t 3 der t 1. Som boka beskriver på

Detaljer

Løsningsforslag, Ma-2610, 18. februar 2004

Løsningsforslag, Ma-2610, 18. februar 2004 Løsningsforslag, Ma-60, 8. februar 004 For sensor og kandidater.. Lineær uavhengighet Avgjør hvorvidt de følgende funksjonene er lineært uavhengige på den reelle tallinja: f(x) x g(x) 3x h(x) 5x 8x Svaralternativ

Detaljer

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)

Detaljer

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D

Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Institutt for matematiske fag Eksamensoppgave i TMA4130/35 Matematikk 4N/4D Faglig kontakt under eksamen: Anne Kværnø a, Kurusch Ebrahimi-Fard b, Xu Wang c Tlf: a 92 66 38 24, b 96 91 19 85, c 94 43 03

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3.

Vi regner først ut de nødvendige partiellderiverte for å se om vektorfeltet er konservativt. z = 2z, F 2 F 2 z = 2y, F 3. x = 2x, F 3. TMA415 Matematikk Vår 15 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 7 Alle oppgavenummer refererer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

w 2 3w i = 2iw, där i är den imaginära enheten. Uppgift 2=Kontrollskrivning 2 (2p). Varför är matrisen

w 2 3w i = 2iw, där i är den imaginära enheten. Uppgift 2=Kontrollskrivning 2 (2p). Varför är matrisen Tentamensskrivning, kompletteringskurs i matematik, 5B4, den 0 april 00, klockan 9.00-4.00 Inga hjälpmedel är tillåtna. et är två sidor med uppgifter. För betyget 3 räcker det med sammanlagt 6 poäng, för

Detaljer

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s.

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. NTNU Institutt for matematiske fag TMA43/5 Matematikk 4M/N, 8 august, Løsningsforslag TMA43M regnet oppgavene 7, mens TMA45N regnet oppgavene 6 a) Andre forskyvningsteorem side 35 i læreboken) gir at der

Detaljer

Eksamensoppgave i TMA4125 BARE TULL - LF

Eksamensoppgave i TMA4125 BARE TULL - LF Institutt for matematiske fag Eksamensoppgave i TMA425 BARE TULL - LF Faglig kontakt under eksamen: Tlf: Eksamensdato: 8.april-5. juni 29 Eksamenstid (fra til): : - 24: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t

Detaljer

Eksamensoppgave i TMA4125 Matematikk 4N

Eksamensoppgave i TMA4125 Matematikk 4N Institutt for matematiske fag Eksamensoppgave i TMA4125 Matematikk 4N Faglig kontakt under eksamen: Morten Andreas Nome Tlf: 90849783 Eksamensdato: 6. juni 2019 Eksamenstid (fra til): 09:00-13:00 Hjelpemiddelkode/Tillatte

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11

Fasit til utvalgte oppgaver MAT1100, uka 15/11-19/11 Fasit til utvalgte oppgaver MAT uka 5/-9/ Øyvind Ryan oyvindry@ifi.uio.no) November Oppgave 9.. Vi skriver 5x 5 x )x ) A x B x og ser at vi må løse likningene Ax ) Bx ) x )x ) A B 5 A B 5. A B)x A B x

Detaljer

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1)

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1) Kap 5 aplace transformasjon a f(t) være definert for t 0. aplace transformasjonen er F (s) = 0 f(t)e st dt (1) for alle s C der dette er veldefinert. Tilstrekkelig betingelse: f(t) stykkevis kontinuerlig

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Allmän relativitetsteori och Einsteins ekvationer

Allmän relativitetsteori och Einsteins ekvationer April 26, 2013 Speciell relativitetsteori 1905 Låt S och S vara två observatörer som rör sig med hastigheten v i förhållande till varandra längs x-axeln. Låt (t, x) and (t, x ) vara koordinatsystemen som

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

= x lim n n 2 + 2n + 4

= x lim n n 2 + 2n + 4 NTNU Institutt for matematiske fag TMA400 Matematikk høsten 20 Løsningsforslag - Øving Avsnitt 8.7 6 Potensrekken konvergerer opplagt for x = 0, så i drøftingen nedenfor antar vi x 0. Vi vil bruke forholdstesten

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

8 Interpolasjon TMA4125 våren 2019

8 Interpolasjon TMA4125 våren 2019 8 Interpolasjon TMA4 våren 9 Fra M husker du at dersom x i er n + forskjellige punkter på x-aksen med korresponderende y-verdier y i, finnes det et entydig polynom av maksimal grad n som interpolerer punktene

Detaljer

Eksamen i TMA4135 Matematikk 4D

Eksamen i TMA4135 Matematikk 4D Norge teknik naturvitenkapelige univeritet Intitutt for matematike fag Side av 5 Faglig kontakt under ekamen: Harald Krogtad telefon 46 5 87 / 73 59 35 2 Ekamen i TMA435 Matematikk 4D Bokmål Mandag 8.

Detaljer

TMA4120 Matte 4k Høst 2012

TMA4120 Matte 4k Høst 2012 TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct

Detaljer

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1

Løsningsforslag til Mat112 Obligatorisk Oppgave, våren Oppgave 1 Løsningsforslag til Mat2 Obligatorisk Oppgave, våren 206 Oppgave Avgjør om følgende rekker er konvergente: (a) n + n n + n + Løsning: rekken lim : n n + n n + n + Vi bruker grensesammenligningstesten mhp.

Detaljer

Løsningsforslag til prøveeksamen i MAT1050, vår 2019

Løsningsforslag til prøveeksamen i MAT1050, vår 2019 Løsningsforslag til prøveeksamen i MT15, vår 19 Oppgave 1. a) Vi har sinx + y) d R cosx + y) sinx + π) + sin x siden alle fire leddene er. yπ y π dx sinx + y) dy dx cosx + π) + cos x) dx sin π + sin π)

Detaljer

13.1 Fourierrekker-Oppsummering

13.1 Fourierrekker-Oppsummering 3. Fourierrekker-Oppsummering Fourierrekken til en periodisk funksjon f med periode = L er gitt ved F f (x) = a + a n cos(nωx) + b n sin(nωx) der x D (konvergensområdet) a = / / f(x) dx = L b n = f(x)

Detaljer

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen.

Oppgavesettet har 11 punkter, 1ab, 2abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelsen. NTNU Istitutt for matematiske fag SIF53 Matematikk 4N eksame 453 Løsigsforslag Oppgavesettet har pukter, ab, abc, 3, 4, 5ab og 6ab, som teller likt ved bedømmelse a Vi har h(t = t e (t τ f(τ dτ = e t f(t

Detaljer

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere.

Nå er det på tide å se hvordan dette fungerer i praksis. Vi skal beregne et par Laplacetransformer som vi får mye bruk for senere. Laplace-transform: Et nyttig hjelpemiddel Side - Laplace-transformen et nyttig hjelpemiddel Hva er Laplace-transformen? Vi starter med å definere Laplace-transformen: Definisjon : La f t være en funksjon

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Eksamensdato: 19.5.211 Varighet/eksamenstid: Emnekode: 5 timer EDT24T Emnenavn: Signalbehandling 1 Klasse(r): 2EE Studiepoeng: 1 Faglærer(e): Håkon Grønning

Detaljer

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1

EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1 EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk

Detaljer

Vad är maskininlärning? Praktisk information om kursen Exempel. Maskininlärning 2D1431. Örjan Ekeberg. Okt Dec, 2004

Vad är maskininlärning? Praktisk information om kursen Exempel. Maskininlärning 2D1431. Örjan Ekeberg. Okt Dec, 2004 2D1431 Okt Dec, 2004 1 Vad är maskininlärning? Definition av lärande Tillämpningar 2 Kursregistrering Examination Kursinnehåll Laborationer 3 Definition av lärande Tillämpningar 1 Vad är maskininlärning?

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw.

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw. NTNU Institutt for matematiske fag Eksamen i TMA Matematikk M høsten 008 Løsningsforslag a Cosinusrekka til f blir av formen - 0 6 f (x a 0 + n0 a n cosn π x Vi har a 0 0, og a n R 0 f (xcosnπ xdx En gangs

Detaljer

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag

MAT 1001, Høsten 2009 Oblig 2, Løsningsforslag MAT 1001, Høsten 009 Oblig, sforslag a) En harmonisk svingning er gitt som en sum av tre delsvingninger H(x) = cos ( π x) + cos (π (x 1)) + cos (π (x )) Skriv H(x) på formen A cos (ω(x x 0 )). siden H(x)

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 00 Kalkulus. Eksamensdag: Mandag,. desember 006. Tid for eksamen:.30 8.30. Oppgavesettet er på sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

SENSORVEILEDNING. Matematikk 2, 5-10 KFK

SENSORVEILEDNING. Matematikk 2, 5-10 KFK SENSORVEILEDNING Emnekode: Emnenavn: Eksamensform: LSVMAT V Matematikk, 5-0 KFK Skriftlig Dato: //08 Faglærer(e): Russell Hatami Khaled Jemai ) Eventuelt: Eksamensoppgaven med løsningsforslag side til

Detaljer

Repetisjon: Spektrum for en sum av sinusoider

Repetisjon: Spektrum for en sum av sinusoider Forelesning 9. april 4 Pensum i boken: - og -, noe fra -4 ikke nødvendig å lese, -6., -8-3. og -3.5 3- til 3-4 Oversikt Spektrum for et signal, frekvensinnholdet Bruk av Fourier-transform FT for å beregne

Detaljer

HIN, MASTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 6215, Reguleringsteknikk I. Figure 1: Reguleringssytem

HIN, MASTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 6215, Reguleringsteknikk I. Figure 1: Reguleringssytem HIN, MSTERSTUDIER Inklusive lösningsförslag: Eksamen i STE 625, Reguleringsteknikk I Oppgavesettet består av 4 oppgaver på 7 sider Varighet: 3 timer. Dato: Tillatte hjelpemidler: lle kalkulatortyper. lle

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag

Eksamen, høsten 14 i Matematikk 3 Løsningsforslag Oppgave 1. Fra ligningen Eksamen, høsten 14 i Matematikk 3 Løsningsforslag x 2 64 y2 36 1 finner vi a 64 8 og b 36 6. Fokus til senter avstanden er da gitt ved c a 2 + b 2 64 + 36 1 1. Dermed er fokuspunktene

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

MA1102 Grunnkurs i analyse II Vår 2019

MA1102 Grunnkurs i analyse II Vår 2019 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,

Detaljer

Løsningsforslag MAT 120B, høsten 2001

Løsningsforslag MAT 120B, høsten 2001 Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()

Detaljer

Fourier-Transformasjoner

Fourier-Transformasjoner Fourier-Transformasjoner Lars Vidar Magnusson February 21, 2017 Delkapittel 4.1 Background Delkapittel 4.2 Preliminary Concepts Fourier Fourier var en fransk matematiker/fysiker som levde på 1700/1800-tallet.

Detaljer

MAT jan jan feb MAT Våren 2010

MAT jan jan feb MAT Våren 2010 MAT 1012 Våren 2010 Mandag 25. januar 2010 Forelesning Vi fortsetter med å se på det bestemte integralet, bl.a. på hvordan vi kan bruke numeriske beregninger til å bestemme verdien når vi ikke nødvendigvis

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A

være en rasjonal funksjon med grad p < grad q. La oss skrive p(x) (x a)q(x) = A MA 4: Analyse Uke 46, http://homehiano/ aasvaldl/ma4 H Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 73: Først skal vi delbrøkoppspalte (se Eksempel 5 side 558 i boka) 3t

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

2 Fourierrekker TMA4125 våren 2019

2 Fourierrekker TMA4125 våren 2019 Fourierrekker TMA45 våren 9 I M lærte du at mange glatte funksjoner kan skrives som en potensrekke. En mye større klasse av funksjoner kan skrives som rekker av sinus- cosinusfunksjoner. Komplekse funksjoner

Detaljer

Eksamen R2, Våren 2009

Eksamen R2, Våren 2009 Eksamen R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f xlnx 3 uln x u x 3 u 6u g u g u f x g

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag

EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer