TMA4120 Matte 4k Høst 2012

Størrelse: px
Begynne med side:

Download "TMA4120 Matte 4k Høst 2012"

Transkript

1 TMA Matte k Høst Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Løsningsforslag til oppgaver fra Kreyzig utgave :..a Skal vise at u(x, t = v(x + ct + ω(x ct løser tt u = c xx u. ( Deriverer og får u tt = c (v (x + ct + ω (x ct u xx = v (x + ct + ω (x ct. Setter man dette inn i ( så er det lett å se at h.s.=v.s. og dermed løser u(x, t (...5 u(x, y = a ln(x + y + b u xx = a (x + y x x (x + y = a y x (x + y Tilsvarende u yy = a x y (x + y og det er klart at u xx + u yy = For x + y = er u(x, y = a ln + b = b = For x + y = er u(x, y = a ln + = Altså a = ln b = 3. september Side av 6

2 .. Vi skal løse den partielle dierensialligningen u xy = u x. Vi innfører p = u x. Da kan ligningen skrives p y = p, og den kan løses som en separabel dierensialligning for p = p(x, y der y er fri variabel og x er parameter: p y = p, p p y =, ln p(x, y = y + C (x, p(x, y = e y+c(x = C(xe y. Vi kunne også løst p y p = som en l ineær første ordens dierensialligning. Nå har vi u x = p = C(xey og integrasjon mhp. x gir u(x, y = f(xe y + g(y der f(x = her er f(x og g(y vilkårlige funksjoner. C(x dx ;.3.7 Vi skal nne u(x, t for en streng av lengde L = med c = når initiell hastighet er null og initielt utslag med liten k (si,. er kx( x. Løsningen er gitt ved ligning ( i Kreyszig avsnitt.3 (Merk at selv om oppgaven løses ved referering til ligning i boka, er metoden for å komme frem til ligningen, separasjon av variable, viktig å kunne, så pass på at du behersker den metoden. Siden initiell hastighet er null, så er B n =. Integralet for B n løser vi ved hjelp av Rottmanns formelsamling/delvis integrasjon. B n = kx( x sin nπx dx [ x = k n sin nπx cos nπx x π nπ n π sin nπx n π x n 3 π 3 ( = k nπ cos nπ n π n 3 π 3 cos nπ + n 3 π { 3 for n like = k n 3 ( cos nπ = π3 8k n 3 π 3 for n odde ] cos nπx så u(x, t = B n cos(nπt sin(nπx n= = 8k π 3 ( cos πt sin πx + cos 3πt sin 3πx + cos 5πt sin 5πx Vi skal nne u(x, t for en streng med lengde L = og c = med initialbetingelsene 3. september Side av 6

3 u t (x, = u(x, =, x x /, x 3 x, x 3 3, x. Ved bruk av separasjon av variable, beskrevet i avsnitt.3 i Kreyszig, så får man at B n =, og, ved hjelp av delvis integrasjon, B n = [ = (x sin(nπxdx + 3 ( 3 x sin(nπxdx nπ cos(nπx ( x + n π sin(nπx [ + nπ cos(nπx (x 3 n π sin(nπx = n π ( sin(n π sin(nπ for n odde og for n like. Dette gir B n = ( n π ± sin(n π, n odde. Og dermed blir løsningen ] ] 3 u(x, t = π (( cos(πt sin(πx 9 ( + cos(3πt sin(3πx + 5 ( + cos(5πt sin(5πx Vi skal nne utsvinget på en streng med lengde L = π og c = gitt initialbetingelser: u(x, = u t (x, = { x, x π/ π x, π/ x π En streng oppfyller den éndimensjonale bølgeligningen: u tt = c u xx. } f(x. Randvilkårene er at strengen er festet i begge ender, det vil si u(, t = u(π, t = t Vi følger den vanlige smørbrødlisten for løsing av partielle di.ligninger og antar separabel løsning, dvs. u(x, t = F (xg(t 3. september Side 3 av 6

4 De deriverte blir u tt = F G t t u xx = F xx G Innsatt i bølgeligningen med c = gir oss G tt G = F xx F = k, der k er en konstant. Argumentet for dette er som vanlig at om en funksjon kun av x er identisk med en funksjon kun av t, må begge funksjonene være en (og samme konstant k. Vi får to dekoblede ligninger: G tt kg = F xx kf = Vi ser først på ligningen for F. La oss anta at k = p med p R (det er ikke uten grunn at vi prøver denne muligheten først; litt fysisk intuisjon sier oss kanskje at svingninger på en streng er bølger som beskrives av funksjonene cosinus og sinus. Litt oversikt kan med andre ord spare oss endel regning: F xx = p F med generell løsning f(x = A cos px + B sin px. Konstantene må bestemmes ved rand- og initialbetingelser. Ser først hva vi får ved å kreve at strengen er festet i begge ender. u(, t = t, dvs. F ( =. Eneste ikketrivielle løsning er at A =. Videre krever vi at u(π, t = t, dvs. F (π = : F (π = B sin pπ =. Eneste ikketrivielle løsning får vi dersom p = n og n N. Vi har altså til nå F (x = B sin nx. Videre ser vi på ligningen for G: G tt = n G, med generell løsning: G(t = C cos nt + D sin nt. Initialbetingelsen u(x, =, dvs. G( = gir oss at C =. Vi samler konstanter ved B n D n = E n og skriver opp den generelle løsningen på hele problemet der vi summerer over alle n (som hver og én jo representerer en løsning av ligningen med tre av våre ialt re randvilkår: u(x, t = E n sin nx sin nt, n= altså en fouriersinusrekke i både x og t. Vi må anvende vår siste initialbetingelse for å bestemme konstantene E n. Den tidsderiverte blir u t (x, t = E n n sin nx cos nt, n= 3. september Side av 6

5 som skal oppfylle u t (x, = E n n sin nx n= Fourierkoesientene E n er gitt ved E n = π π = 5π = 5π π f (x sin nxdx = π π/ π x sin nxdx + 5π [ n sin nx x cos nx n π π/ ] π/ = 5π n sin(nπ = 5πn En sin nx = f(x. n= nx (π x sin xdx + 5π [ π n cos nx n sin nx + x n cos nx ] π π/ for n = m m + m + m + 3 Vi har her brukt at f er den odde periodiske forlengelsen av f. Endelig løsning blir omsider (med E n = E n/n: u(x, t = 5π [ ] (m + 3 sin(m + x sin(m + t sin(m + 3x sin(m + 3t (m m= = sin x sin t sin 3x sin 3t + sin 5x sin 5t... 5π 5π33 5π Vi har u tt = c u xx, u(, t = og u x (L, t =. Vi bruker separasjon av variable: u(x, t = F (xg(t, F ( =, F (L =. Ligninger for F og G er som påside 5. F kf = G c kg = Vi begynner med ligningen for F. Betingelsene F ( =, F (L = er kun oppfyllt hvis F n (x = A sin p n x, p n = π(+n, n =,,,... og k n = ( π(+n. Ligningen for G gir G n (t = A n cos cp n t + B n sin cp n t og superposisjon gir løsning u(x, t = sin p n x (A n cos cp n t + B n sin cp n t n= Initialbetingelsen u t (x, = medfører n= B ncp n sin p n x = som gir B n =. Til slutt benytter vi a u(x, = f(x. Dette gir f(x = A n sin p n x = n= sin n= π( + n x, < x < L (* 3. september Side 5 av 6

6 Summen av denne rekken er en odde funksjon (S( x = S(x som har periode L (S(x + L = S(x og oppfyller S( x = = n= ( A n sin π(n + A n sin n= π( + n x = S(x π( + n x For ånne koesientene A n denererer vi f( x = f(x, L < x < og ser at (* gir sinus-rekken til f på < x <. Vi har A n = = ( L L (n + π xdx (n + π xdx + L (n + π xdx Vi bruker at f( x = f(x og bytter variabel y = x i det andre integralet. A n = ( L L = L L (n + π xdx + (n + π xdx L f(y sin (n + π ( ydy 3. september Side 6 av 6

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Løsningsforslag Øving 4 1 a) Bølgeligningen er definert ved u tt c 2 u xx = 0. Sjekk

Detaljer

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N

Løsningsforslag eksamen i TMA4123/25 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag eksamen i TMA3/5 Matematikk M/N Mandag. mai TMA3 Matematikk M; Alt unntatt oppgave 5 (Laplace. TMA5

Detaljer

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag

LØSNINGSFORSLAG EKSAMEN I MATEMATIKK 4N/D (TMA4125 TMA4130 TMA4135) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 EKSAMEN I MATEMATIKK N/D (TMA25 TMA3 TMA35 3. August 27 LØSNINGSFORSLAG Oppgave a Løsning: fouriersinusrekken til

Detaljer

Løysingsforslag for TMA4120, Øving 6

Løysingsforslag for TMA4120, Øving 6 Løysingsforslg for TMA42, Øving 6 October, 26 2..3 Set inn i likning: 2 u t 2 = c2 2 u x 2 2 (cos 4t sin 2x t 2 = c 2 2 (cos 4t sin 2x x 2 6 cos 4t sin 2x = 4c 2 cos 4t sin 2x. u er med ndre ord ei løysing

Detaljer

TMA4135 Matematikk 4D Høst 2014

TMA4135 Matematikk 4D Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA435 Matematikk 4D Høst 04 Eksamen. desember 04 Integralet er en konvolusjon, så vi har Laplace-transformasjon gir yt) y cos)t)

Detaljer

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag

TMA Matematikk 4D Fredag 19. desember 2003 løsningsforslag Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag TMA Matematikk D Fredag 9. desember 23 løsningsforslag a Vi bruker s-forskyvningsregelen Rottmann L{gte at } Gs a med gt t.

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N

Eksamen i TMA4123/TMA4125 Matematikk 4M/4N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Eksamen i TMA423/TMA425 Matematikk 4M/4N øsningsforslag Alexander undervold Mai 22 Oppgave a Den Fouriertransformerte

Detaljer

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N,

LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 16 LØSNINGSFORSLAG EKSAMEN MATEMATIKK 4N, 19.12.2003 Oppgave 1 a) Vis at den Laplacetransformerte av f(t) = 2te t

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing

Eksamensoppgave i TMA4135 Matematikk 4D: Løysing Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D: Løysing Faglig kontakt under eksamen: Morten Andreas Nome Tlf: Eksamensdato: 3 desember 27 Eksamenstid (fra til): 9:3: Hjelpemiddelkode/Tillatte

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN BOKMÅL UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. V.008. Løsningsforslag til eksamen i emnet MAT131 - Differensialligninger I 8. mai 008 kl. 0900-1400 Vi har ligningen der α er

Detaljer

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013

TMA4123/TMA4125 Matematikk 4M/4N Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41/TMA415 Matematikk 4M/4N Vår 1 Løsningsforslag Øving 1 Skriv om følgende trigonometriske funksjoner til fourierrekker ved

Detaljer

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved

x(x 1)(x 2) p(x) = 3,0 1( 1 1)( 1 2) Newtons interpolasjonsformel: Tabellen over dividerte differenser er gitt ved NTNU Institutt for matematiske fag TMA35 Matematikk D eksamen 20. desember 200 Løsningsforslag Oppgaven kan, for eksempel, løses ved hjelp av Lagrange-interpolasjon eller Newtons interpolasjonsformel.

Detaljer

Eksamen TMA desember 2009

Eksamen TMA desember 2009 Eksamen TMA41 14. desember 009 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag 1 a) Grafen. - 0 4 6 b) Dersom vi antar at f(x) = 1 (f(x + 0) + f(x 0)), har vi f(x) = Setter

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN LØSNINGSFORSLAG UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. H.007. Eksamen i emnet MAT131 - Differensialligninger I 8. september 007 kl. 0900-100 Tillatte hjelpemidler: Ingen (heller

Detaljer

TMA4110 Matematikk 3 Høst 2010

TMA4110 Matematikk 3 Høst 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4110 Matematikk 3 Høst 010 Løsningsforslag Øving 4 Fra Kreyszig (9. utgave) avsnitt.7 3 Vi skal løse ligningen (1) y 16y

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 11. september 2006 2 Den høyrederiverte og venstrederiverte Definisjon Den høyrederiverte til en funksjon f(x) i punktet x er

Detaljer

Løsningsforslag til utvalgte oppgaver i kapittel 10

Løsningsforslag til utvalgte oppgaver i kapittel 10 Løsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 får du trening i å løse ulike typer differensialligninger, og her får du bruk for integrasjonsteknikkene du lærte i forrige kapittel. Men

Detaljer

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s.

s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. s 2 (s 2 + 1) 1 s 2 e s. s 2 (s 2 + 1) = 1 s 2 1 s s 2 e s. NTNU Institutt for matematiske fag TMA435 Matematikk 4D eksamen 8 august Løsningsforslag a) Andre forskyvningsteorem side 35 i læreboken) gir at der ut) er Heaviside-funksjonen f t) = L {F s)} = ut ) g

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Løsningsførslag i Matematikk 4D, 4N, 4M

Løsningsførslag i Matematikk 4D, 4N, 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Løsningsførslag i Matematikk 4D, 4N, 4M Oppgave (Kun før 4D Vi har f(x, y x + y x y, for x y. Dette gir For (x, y

Detaljer

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x =

d) Vi skal nne alle lsningene til dierensialligningen y 0 + y x = arctan x x pa intervallet (0; ). Den integrerende faktoren blir R x e dx = e ln x = Lsningsforslag til utvalgte oppgaver i kapittel 0 I kapittel 0 far du trening i a lse ulike typer dierensialligninger, og her far du bruk for integrasjonsteknikkene du lrte i forrige kapittel. Men vel

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4 Matematikk Høst 4 Løsningsforslag Øving 5.7.4 Vi observerer at både y = cos πx 4 og y = x er like funksjoner. Det vil si

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 016 Separable og førsteordens lineære differensialligninger En differensialligning er separabel

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl Løysingsforslag: Eksamen i emnet M117 - Matematiske metodar Onsdag 7. september 2001, kl. 09-15 Løysingsforslag: 1a Her er r 2 løysing av det karakteristiske polynomet med multiplisitet 2 pga. t-faktor. Det karakteristiske

Detaljer

Løsningsforslag Eksamen M100 Høsten 1998

Løsningsforslag Eksamen M100 Høsten 1998 Løsningsforslag Eksamen M00 Høsten 998 Oppgave { x y = f(x) = + x + a hvis x ln( + x ) x hvis < x lim f(x) = f( ) = + a = a x lim f(x) = ln( + x ( ) ) ( ) = ln + For at f(x) skal være kont. i x = må lim

Detaljer

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s.

TMA4123M regnet oppgavene 2 7, mens TMA4125N regnet oppgavene 1 6. s 2 Y + Y = (s 2 + 1)Y = 1 s 2 (1 e s ) e s = 1 s s2 s 2 e s. NTNU Institutt for matematiske fag TMA43/5 Matematikk 4M/N, 8 august, Løsningsforslag TMA43M regnet oppgavene 7, mens TMA45N regnet oppgavene 6 a) Andre forskyvningsteorem side 35 i læreboken) gir at der

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010

LØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln

Detaljer

Eksamen i TMA4123/TMA4125 Matematikk 4M/N

Eksamen i TMA4123/TMA4125 Matematikk 4M/N Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Anne Kværnø: mobil 92663824 Eksamen i TMA423/TMA425 Matematikk 4M/N Bokmål Mandag 2.

Detaljer

TMA4100 Matematikk1 Høst 2009

TMA4100 Matematikk1 Høst 2009 TMA400 Matematikk Høst 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 2 8926 Vi serieutvikler eksponentialfunksjonen e u om u 0 og får e u + u +

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2

NTNU Institutt for matematiske fag. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 8. Oppgave 1. Oppgave 2 NTNU Institutt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 8 Oppgave b. Vi har at f() > og f(π/) π /6

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 n x 1 n x 2 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Differensjalligninger av førsteorden

Differensjalligninger av førsteorden Differensjalligninger av førsteorden Department of Mathematical Sciences, NTNU, Norway November 2, 2014 Forelesning (29.10.2014): kap 7.9 og 18.3 Førsteordens ordinæredifferensjalligninger Initialverdiproblem

Detaljer

TMA4125 Matematikk 4N

TMA4125 Matematikk 4N Norges tekisk-aturviteskapelige uiversitet Istitutt for matematiske fag TMA425 Matematikk 4N Løsigsforslag - Øvig 9 Fra Kreyszig, avsitt.5 3 Vi skal fie temperature u(x, t) i e stav (L = π, c = ) som er

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 0. desember 205 Eksamenstid

Detaljer

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124

x 2 = x 1 f(x 1) (x 0 ) 3 = 2 x 2 n n x 1 n 0 0, , , , , , , , , , , 7124 NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 011 Løsningsforslag - Øving 4 Avsnitt 47 3 La f(x) = x 4 +x 3 med f (x) = 4x 3 +1 Med x 0 = 1 får ein med Newtons metode at Med x 0 = 1 får

Detaljer

TMA4120 Matematikk 4K Høst 2015

TMA4120 Matematikk 4K Høst 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA41 Matematikk 4K Høst 15 Chapter 6.7 Systemer av ODE. Vi bruker L t} 1 s, L e at f(t } F (s a 6.7:9 Løs IVP. y 1 y 1 + y,

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA4135 Matematikk 4D Faglig kontakt under eksamen: Gunnar Taraldsen Tlf: 46432506 Eksamensdato: 3. desember 2016 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag:

Eksamen i emnet M117 - Matematiske metodar Mandag 29. mai 2000, kl Løysingsforslag: Eksamen i emnet M7 - Matematiske metodar Mandag 29. mai 2, kl. 9-5 Løysingsforslag: a Singulære punkt svarer til nullpunkta for x 2, dvs. x = og x =. Rekkeutvikler om x = : yx = a n x n y x = na n x n

Detaljer

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I

Løsningsforslag: Eksamen i MAT111 - Grunnkurs i Matematikk I Universitetet i Bergen Matematisk institutt Bergen, 8. desember 006. Bokmål Løsningsforslag: Eksamen i MAT - Grunnkurs i Matematikk I Mandag desember 8, 006, kl. 09-4. Oppgave Gitt funksjonen f(x) = ln(

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Eksamensoppgåve i TMA4135 Matematikk 4D

Eksamensoppgåve i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgåve i TMA435 Matematikk 4D Fagleg kontakt under eksamen: Gard Spreemann Tlf: 73 55 02 38 Eksamensdato: 5. august 204 Eksamenstid (frå til): 09.00 3.00 Helpemiddelkode/Tillatne

Detaljer

Forelesning Matematikk 4N

Forelesning Matematikk 4N Forelesning Matematikk 4N Hans Jakob Rivertz Institutt for matematiske fag 18. september 2006 2 Komplekse fourier rekker (10.5) Målet med denne leksjonen er vise hvordan man skrive fourier rekkene på kompleks

Detaljer

Eksamensoppgave i TMA4135 Matematikk 4D

Eksamensoppgave i TMA4135 Matematikk 4D Institutt for matematiske fag Eksamensoppgave i TMA435 Matematikk 4D Faglig kontakt under eksamen: Helge Holden a, Gard Spreemann b Tlf: a 92038625, b 93838503 Eksamensdato: 2. desember 204 Eksamenstid

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

9 + 4 (kan bli endringer)

9 + 4 (kan bli endringer) Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 4 Innleveringsfrist Onsdag 29. april 25 Antall oppgaver: 9 + 4 (kan bli endringer) Finn de ubestemte integralene a) 2x 3 4/x dx b) c) 2 5

Detaljer

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003

Løsningsforslag til eksamen i TFY4170 Fysikk 2 Tirsdag 9. desember 2003 NTNU Side 1av7 Institutt for fysikk Fakultet for naturvitenskap og teknologi Dette løsningsforslaget er på 7 sider. Løsningsforslag til eksamen i TFY4170 Fysikk Tirsdag 9. desember 003 Oppgave 1. a) Amplituden

Detaljer

Oppsummering matematikkdel ECON 2200

Oppsummering matematikkdel ECON 2200 Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke 7. mai 2008 1 Innledning En rask oppsummering av hele kurset vil ikke kunne dekke alt vi har gjennomgått. Men alt er pensum, selv om det ikke blir

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Løsningsforslag til øving 8

Løsningsforslag til øving 8 FY1001/TFY4145/TFY4109. Institutt for fysikk, NTNU. Høsten 015. Løsningsforslag til øving 8 Oppgave 1 a) [ x y = Asinkx ωt) = Asin π λ t )] T 1) med A = 1.0 cm, T = π/ω = 10 ms og λ = π/k = 10 cm. Figur:

Detaljer

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise

Vår TMA4105 Matematikk 2. Løsningsforslag Øving 6. 5 Exercise Exercise TMA405 Matematikk 2 Vår 205 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Eksamen i TMA4122 Matematikk 4M

Eksamen i TMA4122 Matematikk 4M Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Yura Lyubarskii: mobil 9647362 Anne Kværnø: mobil 92663824 Eksamen i TMA422 Matematikk

Detaljer

Løsning til øving 8 for FY1004, høsten 2007

Løsning til øving 8 for FY1004, høsten 2007 øsning til øving 8 for FY4, høsten 7 Vi tar for oss en partikkel med masse m i en endimensjonal boks med lengde For < x < gjelder den stasjonære Schrödingerligningen h m d ψ Eψ, ( dx der E er energien

Detaljer

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG

EKSAMEN I TMA4120 MATEMATIKK 4K, LØSNINGSFORSLAG EKSAMEN I TMA4 MATEMATIKK 4K, 3..5. LØSNINGSFORSLAG Oppgave. y + y + t y(τ)e t τ dτ = u(t ) t >, y() = Anta at den Laplacetransformerte Y (s) av y(t) eksisterer. Siden integralet er konvolusjonen av y(t)

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA415 Matematikk 2 Anbefalte oppgaver - Løsningsforslag Uke 7 15.1.3: Siden vektorfeltet er gitt ved F(x, y) = yi + xj må feltlinjene tilfredstille differensiallikningen eller y = x y, ( ) 1 2 y2 = x.

Detaljer

MA1102 Grunnkurs i analyse II Vår 2014

MA1102 Grunnkurs i analyse II Vår 2014 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA Grunnkurs i analyse II Vår 4 Løsningsforslag Øving 9 7.3.b Med f() = tan +, så er f () = cos () på intervallet ( π/, π/).

Detaljer

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00

Institutt for Samfunnsøkonomi. Utlevering: Kl. 09:00 Innlevering: Kl. 14:00 SENSORVEILEDNING MET 11803 Matematikk Institutt for Samfunnsøkonomi Utlevering: 17.12.2014 Kl. 09:00 Innlevering: 17.12.2014 Kl. 14:00 For mer informasjon om formalia, se eksamensoppgaven. Oppgave 1 Finn

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 3 apittel 8.2: Likevektspunkter og deres stabilitet La oss si

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del A: Laplacetransformasjon, Fourieranalyse og PDL Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 34 TMA4 Matematikk 4K H-3 Oppgave A-3 Bruk tabell til å vise at funksjonen xe ax (a>) har Fouriertransformert: Side

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i MAT-INF 11 Modellering og beregninger. Eksamensdag: Fredag 7. desember 27. Tid for eksamen: 9: 12:. Oppgavesettet er på 8 sider.

Detaljer

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1)

Kap 5 Laplace transformasjon. La f(t) være definert for t 0. Laplace transformasjonen er. F (s) = f(t)e st dt (1) Kap 5 aplace transformasjon a f(t) være definert for t 0. aplace transformasjonen er F (s) = 0 f(t)e st dt (1) for alle s C der dette er veldefinert. Tilstrekkelig betingelse: f(t) stykkevis kontinuerlig

Detaljer

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw.

f (x) = a 0 + a n cosn π 2 x. xdx. En gangs delvisintegrasjon viser at 1 + w 2 eixw dw, 4 (1 + w 2 ) 2 eixw dw. NTNU Institutt for matematiske fag Eksamen i TMA Matematikk M høsten 008 Løsningsforslag a Cosinusrekka til f blir av formen - 0 6 f (x a 0 + n0 a n cosn π x Vi har a 0 0, og a n R 0 f (xcosnπ xdx En gangs

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

TMA4105 Matematikk2 Vår 2008

TMA4105 Matematikk2 Vår 2008 TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 5, 2014 KAB (Økonomisk Institutt) Oppsummering May 5, 2014 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430

MAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430 MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

y(x) = C 1 e 3x + C 2 xe 3x.

y(x) = C 1 e 3x + C 2 xe 3x. NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks

Detaljer

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101)

LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA1101/MA6101) Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSFORSLAG EKSAMEN I GRUNNKURS I ANALYSE I (MA0/MA60) Fredag 2. desember 202 Tid: 09:00 3:00 Hjelpemidler: Kode

Detaljer

y = x y, y 2 x 2 = c,

y = x y, y 2 x 2 = c, TMA415 Matematikk Vår 17 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 Alle oppgavenummer referer til 8. utgave av Adams & Essex alculus: A omplete

Detaljer

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt).

NTNU. TMA4100 Matematikk 1 høsten Løsningsforslag - Øving 5. Avsnitt Vi vil finne dx ( cos t dt). NTNU Instittt for matematiske fag TMA4 Matematikk høsten Løsningsforslag - Øving 5 Avsnitt 5.4 ( + cos x)dx = dx + cos xdx = π + [sin x] π = π + (sin π sin) = π. 44 Vi vil finne d x dx ( cos t dt). Merk

Detaljer

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t)

y (t) = cos t x (π) = 0 y (π) = 1. w (t) = w x (t)x (t) + w y (t)y (t) NTNU Institutt for matematiske fag TMA4105 Matematikk, øving 7, vår 013 Løsningsforslag Notasjon og merknader En vektor boken skriver som ai + bj + ck, vil vi ofte skrive som (a, b, c), og tilsvarende

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Løsningsforslag for eksamen i Matematikk 3 - TMA4115

Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt

Detaljer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer

IR Matematikk 1. Eksamen 8. desember 2016 Eksamenstid 4 timer Eksamen 8. desember 16 Eksamenstid 4 timer IR151 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del uten bruk av hjelpemidler. Du kan bare bruke

Detaljer

Løsningsforslag til Eksamen i MAT111

Løsningsforslag til Eksamen i MAT111 Universitetet i Bergen Matematisk institutt Bergen, 9. desember 25. Bokmål Løsningsforslag til Eksamen i MAT Mandag 9. desember 25, kl. 9-. Dette er kun et løsningsforslag. Oppgave a) Betrakt de to komplekse

Detaljer

EKSAMEN I TMA4180 OPTIMERINGSTEORI

EKSAMEN I TMA4180 OPTIMERINGSTEORI Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 4 Faglig kontakt under eksamen: Marte Pernille Hatlo 7359698 / 97537854 EKSAMEN I TMA48 OPTIMERINGSTEORI Fredag 2. juni

Detaljer

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x

Høgskolen i Oslo og Akershus. 1 (x 2 + 1) 1/2 + x 1 2 (x2 + 1) 1/2 (x 2 + 1) = x 2x 2 x = = 3 ln x sin x Løysingsforslag til eksamen i matematikk, mai 4 Oppgåve a) i) ii) f(x) x x + x(x + ) / ( f (x) x (x + ) / + x (x + ) /) g(x) ln x sin x x (x + ) / + x (x + ) / (x + ) x + + x x x + x + + x x + x + x +

Detaljer

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2

dx = 1 1 )dx = 3 y= x . Tangentplanet til hyperboloiden i (2, 1, 3) er derfor gitt ved x 2, y 1, z 3 = 0 x 2 + 2(y 1) 2 (z 3) = 0 x + 2y 2z 3 = 2 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA415 Matematikk vår 9 øsningsforslag til eksamen 15. august 9 1 Treghetsmoment med hensyn på x-aksen er gitt ved x [ ] y I

Detaljer

Kapittel Flere teknikker

Kapittel Flere teknikker Innhold: Kapittel 6.7 - Flere teknikker H-P Ulven 22.04.09 Innledning Ligninger med potenser av y. ( Lærebok 6.7) Reduksjon av orden med variabelskiftet u y. (Lærebok 6.7) Innføring av u y 2 og u 2yy.

Detaljer

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N

Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Institutt for matematiske fag Eksamensoppgave i TMA4123/TMA4125 Matematikk 4M/4N Faglig kontakt under eksamen: Dag Wessel-Berg Tlf: 924 48 828 Eksamensdato: 1. juni 216 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1

FYS2140 Kvantefysikk, Løsningsforslag for Oblig 1 FYS4 Kvantefysikk, Løsningsforslag for Oblig. januar 8 Her er løsningsforslag for Oblig som dreide seg om å friske opp en del grunnleggende matematikk. I tillegg finner dere til slutt et løsningsforslag

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

EKSAMEN i MATEMATIKK 30

EKSAMEN i MATEMATIKK 30 Eksamen i Matematikk 3 3. mai Høgskolen i Gjøvik Avdeling for teknologi EKSAMEN i MATEMATIKK 3 Onsdag 3. mai kl. 9 4 agnummer: V39A aglærer: Hans Petter Hornæs Tillatte hjelpemidler: Godkjent kalkulator

Detaljer

To-dimensjonale kontinuerlige fordelinger

To-dimensjonale kontinuerlige fordelinger To-dimensjonale kontinuerlige fordelinger Noen resultater for diskrete fordelinger Vi har tidligere definert punktsannsynligheten p(x, y) for en todimensjonal variabel (X, Y ) som p(x, y) = P ({X = x}

Detaljer

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n

Løsningsforslag. Avgjør om følgende rekker konvergerer. Finn summen til de rekkene som konvergerer. a) 2 2n /3 n Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering Innleveringsfrist Tirsdag. februar 203 kl. 0:30 Antall oppgaver: 9 Løsningsforslag Avgjør om følgende rekker konvergerer. Finn summen

Detaljer