Løsningsforslag til øving 11
|
|
|
- Brynjar Fredriksen
- 10 år siden
- Visninger:
Transkript
1 OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn a dn omogn dff.lknngn Karakrssk lknng (K.L.: r r (r (r r r r r ( Parklær løsnng: Sdn f( rør md:. Gr: Innsa ODE: ( Gnrll løsnng: (. Ssll løsnng: (Kan bar rgns s nalbnglsr r kjn llrs l dn gnrll løsnngn ær sar Drr: ( Innsa nalbnglsn: ( ( rk! å alld fnn dn gnrll løsnngn før kan bsmm konsann og ( b ODE: ( (. K.L.: r r (r (r r r Homogn løsnng: ( Løsnng a. al: # Dfnrr dff.lknngn: > od := dff(($ + *dff(( + *( = ; # Løsr dff.lknngn md nalbnglsr: > dsol( {od (= D((=} ( ; Parklær løsnng : Innsa ODE: ( ( Gnrll løsnng: ( ( ( Innsa nalbnglsn: ( Løsnng: ( sd a
2 ODE: sn( KL: r r (r (r r r Par. løsn. : Homogn løsnng: sn Bos os Bsn sn Bos Innsa ODE: ( B sn ( B B os sn B B B sn os Gnrll løsnng: ( sn os d ODE: KL: r r (r (r r r Parklær løsnng rør : B Homogn løsnng: Innsa ODE: ( ( B ( B ( B ( B B B Gnrll løsnng: ( B B NB! Dnn fnksjonn ar kn mamask nrss. Dff. lknngn kan n rlars l n raksk rosss all fall ll rsonsn ær øs ønsk sdn dn oksr or all grnsr. ODE: KL: r r (r r ( dobbl. Homogn løsnng: Parklær løsnng: ( s kommnar ( ( ( ( Innsa ODE: ( ( Kommnar: Sdn f ( a md ll normal a s løsnngn. Ns narlg alg ll ær ( mn dnn fnksjonn ar allrd mn også dnn fnksjonn dkks a Drfor ndr o md. Gnrl må alså mllsr md blr forkjllg. (Lnær angg løsnngr.. m (m=lall nnl og Gnrll løsnng: ( sd a
3 f ODE: K.L.: os sn r r j r j Homogn løsnng: K os K sn Parklær løsnng: Prør os B sn ( Obs! å mllsr md. Jamfør k. os sn Bsn B os ( B os (B sn Bos ( Bsn sn (B os (B os ( Bsn Innsa ODE: ( B os ( B Bsn os sn B B os sn Gnrll løsnng: ( (K os (K sn g ODE: ( ( ( K.L.: r r r (r r (dobbl r. Homogn løsnng: Parklær løsnng: ( rk! Løsnngr å formn og fnns allrd Gr:. Innsa ODE: Gnrll løsnng: ( ( (. Innsa nalbnglsn: ( ( ( Ssll løsnng: ( rk! "Ubsm koffsnrs mod" r sl kk bgrns l.ordns dff.lknngr. odn fngrr å all n ordns ODEr forsa a dss r lnær md konsan koffsnr m a og a f ( r å formn (m=os lall sn( llr os( OPPGVE Krafbalans: m a( d( k ( m d k. I d øblkk slr klossn må asgn ær lk ds. nalbnglsn blr: (. [m] og ( ( [ m s] a Un dmnng d : K.L.: r r j j Gnrll løsnng: ( K os( K sn( K sn( K os(. Innsa nalbnglsn: ( K. ( K Possjon: (. os(. os(. [m] ( V får n sånd sngnng sd a
4 b d d Nm/s : K.L.: r r (r j(r j r j Gnrll løsnng: ( (K os K sn ( (K os K sn ( K sn K os ( K K os ( K K sn ( K Innsa nalbnglsn: K. K. ( K K Possjon: ( (. os. sn [m] Hasg: ( ( sn [m/s] kslrasjon: a( ( sn os ( os sn [m/s ] ( [m] ( [m/s] a( [m/s ] Klossns ossjon som fnksjon a d. [s ] Klossns asg. [s ] Klossns akslrasjon. [s ] OPPGVE ODE: Dffrnsallknngn kan kk løss md "bsm koffsnrs mod" ga. formn å ørldd f(. V må l Lagrangs mod. Bgnnr som før md å fnn dn omogn løsnngn (å anlg må: K.L.: r r ( r r (dobbl I ns omgang anar n gnrll løsnng å samm form mn or konsann og rsas a ( og ( ds. fnksjonr a. Gnrll løsnng: ( ( ( ( ( V sr som kra a ( ( D ldr l (s Hagans sd : Hr: f(. ( f( d W og ( f( d W ( ( ( ( d d d K W ( d d K W Løsnng: K K ( K K sd a
5 OPPGVE F( Egnrdn l koffsnmarsn: ( ( Egnkorr: ( λ ( λ ( λ ( λ ( ( D Forar sbssjonn D gr: F( ( F( D F(. Ds.: V ar onådd n dkolng sdn r lknng nå bar nnoldr én angg arabl. V løsr førs m.. lrna Ubsm koffsnrs mod Dlr o omogn og arklær løsnng slk som oga Homogn: Parklær: Lknng : Sdn løsnngn allrd fnns rør : Innsa: Lknng : Prør: Innsa: Gnrll løsnng m. : B B B B ( Obs! V r kk rkg mål nnå... B lrna UV-modn Lknng :. Sr: d d d d d d d d ( Lknng : og d d ( d d ln d ( d d ln ( og ln d Løsnng m : V ar nå fnn n gnrll løsnng for ( mn ønskr n ssll løsnng for (. Tlbaksbssjon:. sd a
6 OPPG. (fors. Ds: ( ( ( Innsa nalbnglsn: ( ( Gr løsnngn: ( ( OPPGVE a Volmbalans: Tank : nnsrømn ng srømnng dv d q q ( Tank : d d olmndr ng dv d q q qo ( d d "Oms lo" for nln: rkkforsk jlln srømnng* mosand Vnl : ( ρg ( ρg qr ρg ρg qr ( Vnl : ( ρg qor ρg qor ( amosfærrkk. Kombnrr ( og (: d ρg ρg ρg ρg q q q q d R R R Kombnrr ( ( og (: d ρg ρg ρg ρg ρg ρg q q qo q q d R R R R R På marsform: ρg ρg q R R ρg ρg ρg q R R R b d allrdr:.... Bnr samm mod som oga.. ( dm ( dm Egnrdr: (. (..... {..} llr D.. sd a
7 OPPG. (fors. Egnkorr: m/.:.... Ellr: m/.:.... Sbssjon gr F( D F(..a.o.: Gnrll løsnng m : Tlbaksbssjon: a.o: (.. ( Innsa nalbnglsn: ( (.. Løsnng: ( ( Sasjonærrdn fnnr nkl d å la dn gå mo ndlg: sasjonær lm (.dm sasjonær lm (.dm aksmalrdn fnnr nn randnkn ( d ( llr dr or d Tank :.. ldr lk. å a maks d sar ds: ma ( dm Tank : ln... ln. (dm Væskødn som fnksjon a dn.. ln ln.s ( ma (....dm ( (sk sd a
8 OPPGVE a lknng : U R U R R d Innsa lknng : U d R R d d R Lknng : b L Rb L L d d På marsform: R L Rb L R U d d R R U b Innsa d g allrdn: Egnrdr: ( λ λ ( λ Egnkorr: ( k λ k λ λ.k. or : k k ( λ ( λ ( k λ.a.o.: D k λ k k.k Sbsrr slk som og. og ds.: D F( λ λ Homogn løsn. m. : Parklær løsnng rør som gr: Ds: Innsa nalbnglsn: ( ( Gr løsnngn: ( b R b ( ( (ol (ol ol kondnsaorsnnng ( lassnnng b ( (sk sd a
9 OPPG. (fors. Fra ogaksn: ( U R ( L Rb ( (: Innsa (: U R( R U R (. Drrr (: L Rb ( ( og ( nnsa (: R (L Rb (L Rb U R (. Sorrr ( og får: RL ( RRb L (R Rb U Innsa allrdr:.. Løsr dnn å anlg må: Karakrssk lknng: r. r.r r (λ r (λ Homogn løsnng: Parklær løsnng:. Gnrll løsnng: ( Nøakg d samm som b Drr: Innsa nalbnglsn: ( ( : ( ( kan fnn d å s nn lknng ( Kommnar: Så lng ar lnær dffrnsallknngr md konsan koffsnr l d alld ær mlg å gjør om n n ordns ODE l s md n sk..ordns dff.lknngr og omnd (slk som r. Førsnn organg r foroldss nkl mns ssnn for kan bl n slsom rosss. rk også a røn dn karakrssk lknng r dnsk md ssms gnrdr. sd a
2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e
Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.
Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P
EKSAMEN løsningsforslag
. mai EKSAMEN løningforlag Emnkod: ITD5 Emnnavn: Mamaikk andr dlkamn Dao:. mai Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. - Kalklaor om dl amidig md oppgavn. Ekamnid: 9.. Faglærr:
VEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng
EKSAMEN Løsningsforslag
EKSAMEN Løningforlag 8. juni Emnkod: ITD5 Dao: 6. mai Emn: Mamaikk Ekamnid:.. Hjlpmidlr: - To A-ark md valgfri innhold på bgg idr. - Formlhf. Faglærr: Chriian F Hid Kalkulaor r ikk illa. Ekamnoppgavn:
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s a m e i e r m ø t e i L i s a K r i s t o f f e r s e n s P l a s s S E, a v h o l d e s o ns d a g 9. m a r s
Intern korrespondanse
BERGEN KOMMUNE Byrådsavdling for hls og omsorg Inrn korrspondans Saksnr.: 22858-9 Saksbhandlr: GHAL Emnkod: ESARK-44 Til: Fra: Hls og omsorg flls v/ Finn Srand Sksjon for hls og omsorg Dao: 15. mai 2013
FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVEITETET I GDE Gimsa E K M E N O P P G V E : G: M-9 Mamaikk LÆE: P Hnik Hogsa Klass: Dao: 8.8. Eksamnsi a-il: 9.. Eksamnsoppgan bså a ølgn nall si: 5 inkl. osi nall oppga: nall lgg: Tilla hjlpmil :
FAG: MA-209 Matematikk 3 LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVESITETET I ADE imsad E K S A E N S O P P A V E : A: A-9 amaikk LÆE: P Hnik Hogsad Klass: Dao: 8..7 Eksamnsid a-il: 9.. Eksamnsoppgan bså a ølgnd Anall sid: 6 inkl. osid + dlgg Anall oppga: Anall dlgg:
si1, }ll :i tl .nn -{i q il th; !9ft $.\ l l.i t- -l s i l l)l\ _1 L _!.1 '{'- l s -,,
.L q,. -, + s. :.nn = -,, _. ''- ' ' } 3, _ L ' s, - - s :,34 : q )L 9 h;,u 9 r c ( ( q ( : - ' -' D,T -a 4 : n,r 3' -r 3?' - : '?:). L '29_ 'r }5. r's '_, T e: 'a...nn. 2 T ' 3, Z ',, . ; :.,,r.' - *
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i
Våre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.
Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor
K j æ r e b e b o e r!
K j æ r e b e b o e r! D e t t e e r i n n k a l l i n g e n t i l å r e t s g e n er a l f o r s a m l i n g. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s m e l d i n g o g r e g n s k a
VEDLEGG EGENOPPGAVE Slgr/ir:,J air^ 0< K^ l,rn narrr' 5,/rzi{ rr? cnn, BNR l-, fl KoMMNR S*lrr/^ I Posnr: f Å,f0 Ko na^ l Grunnmur, fundamn og sokkl: L I Kjnnr du
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
1 V a l d r e s g t 1 6 S / E I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i V a l d r es g t 1 6 S / E, a v h o l d e s o n s d a g 2 7. a
Rotasjonsbevegelser 13.04.2015
Roasjonsbevegelser 3.04.05 Mveseksamen: resulaer leges u nese uke løsnngsforslag på semesersden koneeksamen bare for sudener med begrunne fravær kke nødvendg å så på mveseksamen for å gå opp l slueksamen
K j æ r e b e b o e r!
1 H o v i n B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s
GAVE GAVE GAVE 3690.- 11990.- 6555.- STIHL
TIMESTILBUD T Ny kk T S E F S G N I ÅPN 3- TILBUD S p på kn k F p jø k F h Tknn v k T f v D ønn å væ T Fkjøp Fk nv åpnnf A k fø k på åpnnn, knnn v f v * Un nn v Tknnn jnnfø c k V V V - 36 STIHL MS 8 6555-
Formelsamling for matematiske metoder 3.
Formlsmli for mmis modr 3 f f Grdi Slrfl f r rdi f Risdrivr drivr il slrfl f i p o i ri r f f f os vor risvor r svor o r vil mllom rdi o risvor rivr v vorfl F m : F R F R vær diffrsirr i r F i d drivr
Matematikk for IT, høsten 2018
Mtmtkk for IT, høst 8 Oblg Løsgsforslg 7. sptmbr 8.7. ) for >. 7 b) for >. 7 c) for >. 7 d) ) for >. 8 8 8 8 8 7 8 7 8 .7. ) for >. 7 8 b) for >. 7 ) 7 ) 7) ) 7 ) 7) c) for >..7.8 ) ) ) ) ). Bss:. Rkursjosforml:
K j æ r e b e b o e r!
1 K e y s e r l ø k k a Ø s t B o r e t t s l a g K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d
P r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e
P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d
I n n k a l l i n g t i l o r d i n æ r g e n e r a l f o r s a m l i n g
1 Z i t t y B o r e t t s l a g I n n k a l l i n g t i l o r d i n æ r g e n e r a l f o r s a m l i n g 2 0 1 1 O r d i n æ r g e n e r a l f o rs am l i n g i Z i t t y B o r e t t s l a g, a v h o
S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
Muntlig eksamensøvelse. På en muntlig eksamen hjelper det ikke å kunne tenke svaret. Det må sies.
FYS3 9 Uk 39 Oppgvr md løsningsforslg 39. Lplc spørsmål om polr LR og LRC... 39. Lplc rnsformson * sin... 39.3 LP-filr Konsrukson og nlys. s ksir md n dl puls... 5 39.6 Fourirrnsformson v rmp puls... 9
I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E
I N N K A L L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i n æ r t s am e i e rm øt e i S am e i e t W al d em a rs H a g e, a v h o l d e s t o rs d a g 1 8. j u n i 2 0 0 9, k l.
FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013
FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l å r e t s g e n e r a l f o r s a m l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n
I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E
I N N K AL L I N G T I L O R D I N Æ R T S A M E I E R M Ø T E 2 0 0 9 O r d i næ r t s am e i e rm ø t e i S am b o b o l i g s a m ei e fi n n e r s t e d t o r s d ag 3 0. 0 4. 2 0 0 9 K l. 1 8. 3 0
Oppgave 1 (25 %) 100 e = 98.02. = 0.9802 R = ln 0.9802. R = 0.020, dvs. spotrenten for 1 år er 2,0 % 100 e = 95.89. e e
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 98, B 1 % 95,89 C 1 3 5 % 17,99 D 1 4 6 % 113,93 a) Vi finnr nullkupongrntn slik: R 1 = 98. R 1 = 95.89 =.98 R = ln.98
Sk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g
R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g K j ø r b ekk d a l en 12 D 220 / 211 m. fl R e g u l e r i n g s be s te mm e ls e r sist date r t 27.09.17. P l an k a r t sist
Butikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32%
Hvragn grov, tort utvalg, 50-100% grovht Tlbut gjlr man-on 29% 39 Tlbut gjlr man-on Vår Butkktkt brø gn nytkt 52% 45-47% 79 or.pr 56,/tk brø r br m mny or.pr 169,00/kg or.pr 27,50/ 28,50/pk Nygrllt kyllng
DELTAKERINFORMASJON FEMUNDLØPET 2015
DELTAKERINFORMASJON FEMUNDLØPET 015 Vdg finnr du vikig inforsjon o din dks. Vnnigs s vdg inforsjon nøy og sjkk også nsidn vår www.fundop.no d dn nys øypbskrivsn, vrinærinforsjon og rgr. Vi ønskr dg n god
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2009 O r d i n æ r t s am e i e rm øt e i, a v h o l d e s t o r s d a g 2 6. 0 3. 20 0 9, k l. 1 8 : 0 0 p å L y s e j o r d e t s k o l e, V æ k e r ø v e i e n 1
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
Langnes barnehage 2a rsavdelinga. Ma nedsbrev & plan for april 2016.
Langns barnhag 2a rsavdlinga. Ma ndsbrv & plan for april 206. Barngruppa i måndn som har gått. Vi har hatt n jmpfin månd md my godt vær ndlig har vi bgynt å s t hint av vår, no som har gjort dt mulig for
Kinematikk i to og tre dimensjoner 29.01.2014
Knemkk o og re dmensoner 29.1.214 FYS-MEK 111 29.1.214 1 hp://pngo.up.de/ ccess numer:7182 En len l der en sørre lsel som hr død er. Mssen l lselen er sørre enn mssen l len. Hlke følgende usgn er korrek?
TMA4265 Stokastiske prosesser
Norges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA65 Stokastske prosesser Våren Løsnngsforslag - Øvng Oppgaver fra læreboka.6 P er dobbelt stokastsk P j j La en slk kjede være rredusbel,
Bevegelse i én dimensjon (2)
Beegelse én dmensjon 6..5 Gruppeundersnng begynner denne uken. Oppgaer fnner du på semesersden: hp://www.uo.no/suder/emner/mana/fys/fys-mek/5/maerale/maerale5.hml FYS-MEK 6..5 Beegelseslgnnger V sarer
Traversering av grafer
Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 v Hnrik Grønch Agn Hvoror lær om grr Rprsntsjon v grr BFS DFS Topologisk sortring Øving
BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, informatikk og matematikk Fredag 14. Desember 2001 Tid:
Sd 1 v 6 Nogs tknsk-ntuvtnskplg unvstt Insttutt fo fyskk Fglg kontkt und ksmn: Nvn: Ol Hund Tlf.: 93411 BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fkultt fo fyskk, nfomtkk og mtmtkk Fdg 14. Dsm
110 e = 106.75. = 0.9705 R = ln 0.9705. R = 0.03, dvs. spotrenten for 1 år er 3 % = 0.9324 R = 0.035 dvs. spotrenten for 2 år er 3.
Oppgav 1 (5 %) Vi har følgnd: Pålydnd Gjnværnd løptid (år) Kupong Kurs 1 1 1 16,75 1 1 11,7 1 8 111,1 1 4 6 15,8 a) Vi finnr nullkupongrntn slik: R 11 = 16.75 R. 1 + 11 = 11.7 =.975 R = ln.975 R =. R =.,
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
1 S a m e i e t S o l h a u g e n I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i S am e i e t S o l h a u g e n, a v h o l d e s o n s d a
Tillatt utvendig overtrykk/innvendig undertrykk
Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i L y s e T e r r a s s e B s, a v h o l d e s o n s d a g 1 6. 0 3. 20 1 1, k l. 1 8 : 0 0 p
HJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1
HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l år e t s g e n e r a l f o rs am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i n
Grunntall 10 Kapittel 2 Algebra Fordypning
Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls
Oppgave 1 (25 %) 100 e = 97.53. = 0.9753 R = ln 0.9753. R = 0.025, dvs. spotrenten for 1 år er 2,5 % e e. 100 e = 94.74
Oppgav 1 (5 %) Vi har følgnd: Obligasjon Pålydnd Tid til forfall Kupong Kurs A 1 1 % 97,53 B 1 % 94,74 C 1 3 3 % 1,19 D 1 4 4 % 13,3 a) Vi finnr nullkupongrntn slik: R 1 = 97.53 R 1 = 94.74 =.9753 R =
FORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG
OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn
Løsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1
Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.
I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e
1 Ø s t r e K r a g s k o g e n S a m e i e I n n k a l l i n g t i l o r d i n æ r t s a m e i e r m ø t e 2 0 1 1 O r d i n æ r t s am e i e rm øt e i Øs t r e K r ag s k o g e n S am ei e, a v h o l
Faktor. Eksamen våren 2005 SØK 1003: Innføring i makroøkonomisk analyse Besvarelse nr 1: -en eksamensavis utgitt av Pareto
Fakor -n ksamnsavis ugi av Paro ksamn vårn 2005 SØK 1003: Innføring i makroøkonomisk analys Bsvarls nr 1: OBS!! D r n ksamnsbvarls, og ikk n fasi. Bsvarlsn r un ndringr d sudnn har lvr inn. Bsvarlsn har
Eksamensoppgave i TMA4240 Statistikk
Insu for maemaske fag Eksamensoppgave TMA44 Saskk Faglg konak under eksamen: John Tyssedal, aakon akka. Tlf.: John Tyssedal: 4645376. Tlf: aakon akka: 97955667. Eksamensdao: 7..4 Eksamensd (fra-l): 9.-3.
FYS2140 Kvantefysikk, Oblig 10. Sindre Rannem Bilden,Gruppe 4
FYS2140 Kvantfysikk, Oblig 10 Sindr Rannm Bildn,Grupp 4 23. april 2015 Obligr i FYS2140 mrks md navn og gruppnummr! Dtt r nok n oblig som drir sg om hydrognatomt og r n dl av n tidligr ksamnsoppgav. Oppgav
Offentlige anskaffelser
NIFS-mø 13. fbruar: Ny skkrhsov Off askaffsr 1. Hvk rvrk ska du bruk? 2. Hvk krav ka du s? Sorrådvr Mar Vsr Df I K T I K T r I K T r o f d s a I K T r o f d s a j h I K T r o f d s a j h I K T o f d s
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 0 9 O r d i n æ r g e n e r a l f o rs am l i n g i N y b y g g A S, a v h o l d es o ns d a g 2 9. a p r i l 2 0 0 9, k l.
Kinematikk i to og tre dimensjoner
Knem o og re dmensoner 4.2.215 Hr du hene boen men e bel? YS-MEK 111 4.2.215 1 Esempel: En msse m = 1 g er fese l en fær med færonsn = 1 N/m og n beege seg på e bord uen frson og lufmosnd. Mssen beeger
VEDLEGG Marikklrappor Bygg - 11112014_11:51 1841 Fausk Kommun Bygningsnr : 11212751 Bygningsdaa Bygningsyp Bygningssaus Enbolig (111) Ta i bruk (TB) - 24111984 Ufullsndig
TDT4195 Bildeteknikk
D495 Bildtknikk Grafikk Vår 9 Forlsning 6 Jo Skjrmo [email protected] Dpartmnt of Comptr And Information Scinc Jo Skjrmo D495 Bildtknikk D495 Forrig gang Gomtrisk transformasjonr dl Basistransformasjonr
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s a m e i e r m ø t e i S / E S o r g e n f r i g a t e n 3 4, a v h o l d e s o ns d a g 1 0. m a rs 2 0 1 0 k l. 1 8. 0 0 i K l u b b r o m m
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n n k a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i
INF3400 Del 5 Statisk digital CMOS
INF400 Del 5 Sask dgal MOS Elmore forsnkelsesmodell modell: modell NANDN: NAND 1 9 Forsnkelsesmodell: N 1 j 1 j 1 NAND Ulegg 7 10 1 Parassk dsforsnkelse: V kaller dffusjonskapasanser for parasske kapasanser
EKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
Røkt svinekam/ sommerkoteletter. fra ferskvaredisken -30% Stranda spekemat fra varmeskapet. ord.pris 19,9023,50/krt
Hdn bd md mny 46-53% Rø snm/ sommol od.ps 74,84,/ f fsdsn jld Tlbd -onsd mnd 55% 7 od.ps 17,/s Nyll yllnlå Gndos Snd spm f msp so l so l % 50-57% GJELDER HELE APRIL 1 od.ps 32,/s GRØNNSAKER OG URTER od.ps
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i S am B o B o l i g s am e i e, a v h o l d es o ns d a g 2 8. 04. 2 0 1 0, k l. 1 8. 3 0 i G r ef s e n m e n i g h e t s s
Løsningsforslag. EKSAMEN Matematikk 20 - Elektro desember f(t) OPPGAVE 1
Løigforlg EKSMEN Mtmti - Eltro dmbr 6 OPPGVE ltrtiv. yttr prgfujor og "tigigtllbtrtig" f ut ) t ) f ut) t ) ft) ) )tigigtll ) 5-5) ) t -5) -5 - f ut ) 5t ) 5) -5) -5 f ut ) 5t ) f t) f f f f ut) t ut )
38 Lørdag. Odd Kalsnes, eiendomsmegler Gir du penger til veldedige organisasjoner? Ja, jeg sponser hvert år en helg for funksjonshemmede
LØRDAG 6. MARS 2010 38 Lørdag FOTO: IVÁN KVERME Odd Kalsns, ndomsmglr Gr du pngr l vlddg organsasjonr? jg sponsr hvr år n hlg for funksjonshmmd på Haraldvangn. D r gjnnom klubbn Roary, mn d ss årn jg spons
EKSAMEN Løsningsforslag
. juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010
INNKALLING TIL ORDINÆRT SAMEIERMØTE 2010 O r d i n æ r t s am e i e rm øt e i U l l e r n s k og e n B o l i gs am e i e, a v h o l d e s t i rs d a g 2 7. a p r i l 2 0 1 0, k l. 1 8 : 3 0 p å B j ø r
Konkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.
Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".
Newtons tredje lov. Kinematikk i to og tre dimensjoner
Newons ede lo Knemkk o og e dmensone 31.1.213 husk: nnleeng oblg #1 Mndg, 4.eb. kl.1 YS-MEK 111 31.1.213 1 Newons ede lo: Enhe knng h lld og lsende en moknng, elle den gensdge påknng o legeme på hende
LØSNINGSFORSLAG EKSAMEN TEP 4120 TERMODYNAMIKK 1 Tirsdag 19. desember 2006 Tid: kl. 09:00-13:00
Sid a 7 NORGES EKNISK-NAURVIENSKAPELIGE UNIVERSIE (NNU) - RONDHEIM INSIU FOR ENERGI OG PROSESSEKNIKK LØSNINGSFORSLAG EKSAMEN EP 40 ERMODYNAMIKK irsdag 9. dsmbr 006 id: kl. 09:00 - :00 OPPGAVE (0%) a) rmodynamikkns.
ORDINÆR GENERALFORSAMLING 2010 AS TØYENPARKEN BOLIGSELSKAP TORSDAG 6. MAI 2010 I CAFE EDVARD MUNCH, MUNCHMUSEET
_ O R D I R N G E Æ N E R A L F O R S A M L I N G 2 0 1 0 A S T Ø Y E N P A R K E N B O L I G S E L S K A P T O R S D A G 6. M A I I C A F E E D V A R D M U N C H, M U N C H M U S E E T _ I n n k a l l
Tillegg nr 1 til Grunnprospekt datert 27. mai 2015 i henhold til EU's Kommisjonsforordning nr 809/2004
Tllegg nr 1 l Grunnprospek daer 27. ma 2015 henhold l EU's Kommsjonsforordnng nr 809/2004 Tlreelegger Oslo, 25. jun 2015 Uarbede samarbed med DNB Markes 1 av 7 Ord med sor forboksav som benyes llegg l
Om pensum fra kap. 10. Hva er segmentering? Hva er segmentering? INF 2310 Digital bildebehandling
Om nsum fra a. IN Dgal bldbhandg Sgmnrng av bldr I-onsull rsg Efford: a..-. mr grundg nn boa.-. r nsum Kal boa nrodusrr mg sor ma, mn dr d svær ovrflads. I IN forlsr v bar om sgmnrng vd rsg, mn ar d grundgr
Oppgave 3. Skisse til løsning Eksamen i Reservoarteknikk 14. desember, a) Se forelesningene. b) Fra Darcys lov,
Skisse til løsning Eksamen i Reservoarteknikk 14 desember 2006 Oppgave 3 a) Se forelesningene b) Fra Darcys lov u = k dp µ dr Darcy-hastigheten u er uttrykt ved u r = q/a hvor tverrsnittsarealet A er gitt
Velkommen INF 3/4130. Velkommen. Algoritmer: Design og effektivitet. Kvalitetssikring ved Ifi. Forelesere: Lærebok: Gruppelærer: Obliger:
Vlkommn Fols: INF 3/43 Dino Kbg, [email protected] Sin Kogdl, [email protected] P Kisinsn [email protected] Algoim: Dsign og ffkivi Læbok: Algoims: Squnil, Plll, nd Disibud, Knn A. Bmn nd Jom L. Pul. Til slgs
ENKELT, TRYGT OG LØNNSOMT!
Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin
EKSAMEN I FAG SIF5040 NUMERISKE METODER Tirsdag 15. mai 2001 Tid: 09:00 14:00
Norges teknsk naturvtenskapelge unverstet Insttutt for matematske fag Sde 1 av 9 Faglg kontakt under eksamen: Enar Rønqust, tlf. 73 59 35 47 EKSAMEN I FAG SIF5040 NUMERISKE METODER Trsdag 15. ma 2001 Td:
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o rs am l i n g i, a v h o l d es o ns d a g 2 8. a p r i l 2 0 1 0, k l. 1 8. 0 0 i 1. e
TILBAKEBLIKK JORDBÆR SEPTEMBER ICDP: Tema 2: Juster deg til barnet og følg dets initiativ.
Liakrokn barnhag TILBAKEBLIKK JORDBÆR SEPTEMBER 2018 ICDP: Tma 2: Justr dg til barnt og følg dts initiativ Når du r sammn md barnt, r dt viktig at du r oppmrksom på hva barnt ønskr, hva dt gjør og hva
Ukens tilbudsavis fra
Ukns budsvs f Hvodn b mn budsvsn? Fo å b budsvsn så kkk du nn v hjønn, du kn kkk på pn nd på mnynjn. S næm på podukn? Du kn zoom nn på podukn vd å kkk på poduk md musn, fo å zoom bk kkk du n gng. Du kn
Ø K S N E V A D P O R T E N E I E N D O M A S
Ø K V D T I D M.. I U T J T I D T J G U I G F K V Æ D Æ I G K. V F B V F V a n d b l å st g l a s s F i l n a v n : -. p l n / U t s k r i f t s d a t o :.. / / / / / / / / / / / / / / / / / / / / / T
Faun rapport 003-2011
Faun rappor 003-2011 Aldrsrgisrring og bsandsvurdring for lg på Ringrik r jaka 2010 Oppdragsgivr: -Ringrik kommun Forfar: Lars Erik Gangsi 1 Forord Rapporn for Ringrik r dn førs jg frdigsillr r jaka 2010.
Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk
www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 3. augut d: 9-4 tall d klu fod: 7 kludt dlgg tall oppga: 6 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt
Oppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =
MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β
K j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i
Avdeling for ingeniørutdanning. Ny og utsatt eksamen i Elektronikk
www.ho.o dlg fo gøutdag Ny og utatt kam Elktokk ato: 9. augut d: 9- tall d klu fod: 6 kludt dlgg tall oppga: 4 llatt hjlpmdl: ådholdt kalkulato om kk kommu tådløt. Mkad: Kaddat må l kotoll at oppgattt
«hudøy er nok verdens beste sted! man får nye venner og minner for livet!» Sitat fra en av gutta på Hudøy. Har du
«hudøy r nok vrdns bst std man får ny vnnr og minnr for livt» 2018 Sitat fra n av gutta på Hudøy Har du h ø r t om.. Dau Kjærligh mannsbukta, S y g i l d En r m m so i fr d Øy, Lag tsstin, Brattfj spissn,
