Convex hull. Konveks innhylling. La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets skyld bare se på k = 2.
|
|
- Sivert Farstad
- 7 år siden
- Visninger:
Transkript
1 Conv ull La P vær n mn punktr t k-mnsjonalt rom, P R k. (V skal or nkltts skl bar s på k.) Dnsjon En mn Q R k r konvks rsom or all punktr q, Q lnjsmntt q lr Q. Dnsjon Dn konvks nnllnn tl n mn punktr P R k r n mnst konvks mn Q som nnolr punktn P.
2 Jarvs matc
3 Dlr to v -man, lt tl v år, llr punktr mnn. Dlr to v -man, lt tl v år, llr punktr mnn. Fnnr nkl (, llr punktr) nnllnr p p p q q 7 q q 7 q q 7 p 5 q q5 p p p q q 7 q q 7 q q 7
4 p p p q q 7 q q 7 q q 7 p p p q q 7 q q 7 q q 7 p q q 7
5 p (, ) p (, ) p (, ) (, ) (, ) (, ) p (, ) p (, ) p (, ) Vnstrsvn Rtt ram Hørsvn 0 > 0 0 < Dtrmnantns ortn vsr om v jør n vnst- llr ørsvn Brnn av trmnantr or -matrsr c b a A c b a A + ) t( c c b b a a + + r c b a r r A Dn omtrsk tolknnn tl trmnantn tl matrsn A (t(a) llr Dn omtrsk tolknnn tl trmnantn tl matrsn A (t(a), llr bar A ) r volumt tl parallllppt utspnt av rkkvktorn A. (Ellr kolonn-vktorn, t blr t samm).
6 SORTING CONVEX HULL V sortrr non ttr -koornat. Dtt tar t O(n lo n). Hvr an v splsr to nnllnr må v potnslt ltt npunktn på bron() O(n) anr, så vr spls tar t O(n) V jør opplat lo n opplnr, sn v l tn lr vår opprnnl mn av n nor to, så t r lo n splsr. Total kjørt O(n lo n). Gtt n ltall skal v vs at v kan sortr ss m n alortm or konvks nnlln. SomvuskrrΩ(n lo n) nr rns or vor raskt v kan sortr. (Notat.) Når v vsr SORTING CONVEX HULL, btr t at CONVEX HULL r mnst lk vanskl som SORTING, slk at om v kunn løst CONVEX HULL raskr nn O(n lo n), så kunn v løst SORTING raskr nn O(n lo n) umul. Dnn kjørtn (O(n ( lo n) ) r aktsk optmal, t ølr ø av ruksjonn SORTING CONVEX HULL. V må vs voran v jør om n SORTING-nstans (n mn tall som skal sortrs) tl n CONVEX HULL-nstans (punktr v skal nn nnllnn av), o voran v skal tolk nnllnn v a nnr som n sortrn av opprnnl talln. SORTING SORTING CONVEX HULL CONVEX HULL T<t, t,, t n > P{(t )(t, t ),(t, t ),, (t n, t n )} (usortrt ltall) (n punktmn) Å sortr n tall kan altså jørs m Føln rutn som bnttr n CONVEX HULL-alortm som subrutn: Gtt n mn punktr k-mnsjonalt rom, P R k, ønskr v å nn t par av punktr som ar kortst nnbrs avstan. (V skal jn, or nkltts skl, bar s på k.) Dtt kan v opplat jør t O(n ) v å s på all par mn v skal la n Dtt kan v opplat jør t O(n ) v å s på all par, mn v skal la n mr ktv alortm basrt på v-an-conqur. SORTING(T){ < La punktmnn P ut ra T, som bskrvt ovr > O(n) H CONVEX_HULL(P) /* Fnnr nnllnn H */ O(n lo n) < Fnn nrst punkt H (lavst -koornat) > O(n) < Ls av -koornatn tl punktn rtnn mot klokka > O(n) } O(n lo n) (Kunn v løst CONVEX HULL raskr nn O(n lo n), kunn v oså sortrt n tall raskr nn O(n lo n), som v vt r umul.)
7 Dlr to v -man, lt tl v år llr punktr mnn, o nnr kortst avstan. Ikk skkrt kortst t avstan ra n av mnn r kortst n spls mnn. mn{, } mn{, } mn{, } Må nn nærmst par tt bltt t o sammnlkn m o når v splsr. I n slk rkant ( stor), kan t kk l punktr m nnbrs avstan mnr nn ( r jo mnmum). I n slk rkant ( stor), kan t maksmalt l punktr når avstann m mllom r llr mr. mn{, } V sortrr non bå ttr - o -koornat. Dtt tar t O(n lo n). Spls-stt tar t O(n) (or vr no n n sn av skjøtn r t bar t konstant (6) antall nor som må sjkks på n anr sn. Ettrsom non r sortrt på bå - o -koornat r t rt å ol r på vlk nor t r snakk om. V jør opplat lo n opplnr, sn v l tn lr vår opprnnl mn av n nor to, så t r lo n splsr. Total kjørt O(n lo n). For vr no på vnstr s r t altså maksmalt 6 nor på ør s som må sjkks.
Computational Geometry
Computational Geometry Grafisk Databehandling 1. Convex hull konveks innhyling 2. Nærmeste par av punkter Convex hull La P være en mengde punkter i et k-dimensjonalt rom, P R k. (Vi skal for enkelthets
Detaljer(urettede) Grafer. Sterke og 2-sammenhengende komponeneter, DFS. Rettede grafer. Sammenhengende grafer
Strk o -smmnnn komponntr, DFS Grr (urtt o rtt) Dy Først-Søk (DFS) Smmnnn komponntr.. DFS Topolosk sortrn / Løkkr.. DFS Strkt smmnnn komponntr... DFS -smmnnn komponntr... DFS (urtt) Grr En r G=(V,E) står
Detaljerny student06 Published from to responses (10 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_MASTER) a b c d e f
..6 :: QustBk xport - ny stunt6 ny stunt6 Pulish rom..6 to 8..6 rsponss ( uniqu) Currnt iltr (SAMFØK_MASTER) "Hvilkt stuiprorm sturr u v? (Du kn inn inormsjon om hvilkt stuiprorm u hr ått opptk til i tilut
DetaljerEvaluering av NGU-dagen
.. :: QustBk xport - Evlurin v NGU-n Evlurin v NGU-n Pulis rom.. to.. rsponss ( uniqu). Forrn på NGU-n vr li rlvnt 9 9,9 %, %,8 %,8 %, %, % Avr,9,,. Tmn or rupprit vr o, % %, % 8, %, %, %, % Avr, 9,8,
DetaljerLøsningsforslag til øving 11
OPPGVE Kommnar: Høgskoln Gjøk d. for kn. øk. og ldls amakk Løsnngsforslag l øng ll nkn r løs md "Ubsm koffsnrs mod" sl om også knn a bn Lagrangs mod. a ODE:. d nalbnglsr: ( ( Homogn løsnng: ( Ds. løsnngn
DetaljerButikkstekte brød. grove, stort utvalg, 50-100% grovhet. Tilbudet gjelder man-ons. ord.pris 169,00/kg. Lettsaltet torskefilet SPAR 47-49% SPAR 25-32%
Hvragn grov, tort utvalg, 50-100% grovht Tlbut gjlr man-on 29% 39 Tlbut gjlr man-on Vår Butkktkt brø gn nytkt 52% 45-47% 79 or.pr 56,/tk brø r br m mny or.pr 169,00/kg or.pr 27,50/ 28,50/pk Nygrllt kyllng
DetaljerQUADRO. ProfiScale QUADRO Avstandsmåler. www.burg-waechter.de. no Bruksveiledning. ft 2 /ft 3 QUADRO PS 7350
QUADRO PS 7350 QUADRO 0,5 32 m 0,5 32 m m 2 /m 3 t 2 /t 3 prcson +1% ProScal QUADRO Avstandsmålr no Brusvldnng www.burg-wactr.d BURG-WÄCHTER KG Altnor Wg 15 58300 Wttr Grmany Extra + + 9V Innldnng Tn dg
Detaljerny student06 Published from to responses (29 unique) 1. Din alder 2. Kjønn Current filter (SAMFØK_BA) a b c d e f 37,9 %
.. 9:: QustBk xport - ny stunt ny stunt Pulish rom.9. to.9. 9 rsponss (9 uniqu) Currnt iltr (SAMFØK_BA) "Hvilkt stuiprorm sturr u v? (Du kn inn inormsjon om hvilkt stuiprorm u hr ått opptk til i tilut
Detaljermed en mengde korrelasjoner mellom delmengdene. Det er her viktig a fa med
Lsningsantydning til kontinuasjonsksamn i 45060 Systmring Tirsdag 23. august 994 Kl. 0900 { 300 3. august 994 Oppgav, 5% S sidn 346 og 349: Dlsystmstruktur En oppdling av systmt i n mngd dlsystmr, sammn
DetaljerTilkobling. Windows-instruksjoner for en lokalt tilkoblet skriver. Hva er lokal utskrift? Installere programvare ved hjelp av CDen
Si 1 av 6 Tilkobling Winows-instruksjonr or n lokalt tilkoblt skrivr Mrk: Når u installrr n lokalt tilkoblt skrivr og oprativsystmt ikk støtts av CDn Programvar og okumntasjon, må u bruk Vivisr or skrivrinstallasjon.
DetaljerTraversering av grafer
Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 Trvrsring v grr Algoritmr og tstrukturr Øvingsorlsning 8 v Hnrik Grønch Agn Hvoror lær om grr Rprsntsjon v grr BFS DFS Topologisk sortring Øving
DetaljerVåre Vakreste # & Q Q Q A & Q Q Q - & Q Q Q.# arr:panæss 2016 E A A 9 A - - Gla- ned. skjul F Q m. ler. jul. eng- da- jul. ler.
Vå Vks rr:pnæss 06 Kor L JUL Q Q Q ^\ # Q Q Q ht Q Q Q # 6 Q Q Q # Q Q Q # Ju lg u u Q Q Q # # v blnt # LL: u # mj # # # # d fly p r ds Q Q m # # år lønn Ju v g v g # jul # grønt 6 # # u Lønn gå # hvor
Detaljer2. Å R S B E R E T N I N G O G R E G N S K A P F O R A ) Å r s b e r e t n i n g o g r e g n s k a p f o r
I N N K A L L I N G T I L O R D I N Æ R G E N E R A L F O R S A M L I N G 2 0 1 0 O r d i n æ r g e n e r a l f o r s a m l i n g i, a v h o l d e s m a n d a g 3. m ai 2 0 1 0, k l. 1 8 0 0 p å T r e
DetaljerPeriodisk emne-evaluering FYS Relativistisk kvantefetteori
Prioisk mn-vluring FYS4170 - Rltivistisk kvntttori høst 2009 Forlsr: Jn Olv Eg Forlsr r nsvrlig or skjmt 23. novmr 2009 Svr på tt skjmt r nonym, mn orlsr, SUFU og stuimonistrsjonn v Fysisk institutt hr
DetaljerGenerelt format på fil ved innsending av eksamensresultater og emner til Eksamensdatabasen
Gnrlt format på fil vd innsnding av ksamnsrsultatr og mnr til Eksamnsdatabasn Til: Lærstdr som skal rapportr ksamnsrsultatr på fil 1 Bakgrunn Gjnnom Stortingsvdtak r samtlig norsk lærstdr pålagt å rapportr
Detaljermot mobbing 2011 2014 Manifest
g t n s b f b n o a M ot m 014 m 11 2 20 dt mljø o g t rngs r o d f g læ rb st- o a sam pvk nd op t lk rnd p r o Et f nklud Manfst Et forplktnd samarbd for t godt nkludrnd oppvkst- lærngsmljø Forord All
DetaljerEKSAMEN Løsningsforslag
. juni 7 EKSAMEN Løsningsorslag Emnkod: ITD Emnnavn: Matmatikk ørst dlksamn Dato: 6. juni 7 Hjlpmidlr: - To A-ark md valgritt innhold på bgg sidr. - Formlht. - Kalkulator som dls ut samtidig md oppgavn.
DetaljerVEDLEGG FAUSKE KOMMUNE - REGULERINGSBESTEMMELSER I TILKNYTNING TIL REGULERINGSPLAN FOR SJÅHEIA 1 D rgulr områd r på plann v md rgulrnggrn Innnfor dnn bgrnnnglnj kal bbyggln plarng
DetaljerMAYERS LIVSSITUASJONS - SKJEMA (1)
Nvn: MAYERS LIVSSITUASJONS - SKJEMA (1) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i n ktull rurikkn. 1. TA VARE PÅ DEG SELV: f g h i j k l m n o p q r s t u Er u i stn til å: - komm g
DetaljerPLANTEGNINGER FOR PROFESSOR DAHLS GATE 1
PLNTGNINGR OR HLS GT 1 SI 2. PLN KJLLR SI 3. PLN UNRTSJ SI 4. PLN 1. TSJ SI 5. PLN 2. TSJ SI 6. PLN 3. TSJ SI 7. PLN 4. TSJ SI 8. PLN LOTTSJ SI 8. SNITT 1 SI 8. SNITT 2 1K02.1 60S 1K08.1 60S 1K01.1 60S
DetaljerGrunntall 10 Kapittel 2 Algebra Fordypning
Grunntll 0 Kpittl Algr Forypning Kvrtstningn Fsit: I t kvrt r ll sin lik lng. Vi innr rlt v kvrtt v å multiplisr n si m sg slv. Dtt r t smm som å opphøy t tll i nr potns. Å opphøy t tll i nr potns klls
DetaljerKonkurransen starter i august og avsluttes i månedsskiftet mai/juni hvert år.
Lærrvildning: Aksjon boligbrann Konkurrans for all skolklassr på llotrinnt: Saarbidsgruppa for brannvrn i skoln invitrr d dtt all skolklassr på llotrinnt til å bli d på konkurransn "Aksjon boligbrann".
DetaljerGRAFER. Dobbeltsammenheng (biconnectivity) Dagens plan: Dobbeltsammenhengende grafer (Kapittel 9.6.2) Å finne ledd-noder (articulation points)
F oltsmmnn (onntvty) RFR nln: oltsmmnnn rr (Kpttl 9.6.2) Å nn l-nor (rtulton ponts) vsluttn om rå lortmr Humn-kon (Kpttl 10.1.2) Fur 9.60, s 357 MW ynmsk prormmrn Floys lortm or kortst v ll-tl-ll (Kpttl
DetaljerFagevaluering FYS Klassisk mekanikk og elektrodynamikk
Fgvluring FYS3120 - Klssisk mknikk og lktroynmikk vår/høst 2009 Forlsr: Jon Mgn Lins Rgnøvlsr: Pr Øyvin Solli Fysisk Fgutvlg 1. mi 2009 Bsvrlsn r nonym, mn vi gjør oppmrksom på t orlsr hr tilgng til ll
DetaljerSpørreskjema: Hvordan bedre kvaliteten på allemennlegens tilbud til pasienter med spiseforstyrrelse
Appniks til Tori Flttn Hlvorsn, Ol Rikr Hvt, Birgit Johnn Ryså, Tov Skrø, Elin Olug Rosvol. Psintrfringr m llmnnlgrs oppfølging v lvorlig spisforstyrrls. Tisskr Nor Lgforn 2014; 134: 2047-51. Dtt ppnikst
DetaljerMatematikk for IT, høsten 2018
Mtmtkk for IT, høst 8 Oblg Løsgsforslg 7. sptmbr 8.7. ) for >. 7 b) for >. 7 c) for >. 7 d) ) for >. 8 8 8 8 8 7 8 7 8 .7. ) for >. 7 8 b) for >. 7 ) 7 ) 7) ) 7 ) 7) c) for >..7.8 ) ) ) ) ). Bss:. Rkursjosforml:
DetaljerMAYERS LIVSSITUASJONS-SKJEMA (2) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig
Nvn: MAYERS LIVSSITUASJONS-SKJEMA (2) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m
DetaljerOppgaver fra boka: Oppgave 12.1 (utg. 9) Y n 1 x 1n x 2n. og y =
MOT30 Statistisk mtodr, høstn 20 Løsningr til rgnøving nr. 8 (s. ) Oppgavr fra boka: Oppgav 2. (utg. 9) Modll: Y = µ Y x,x 2 + ε = β 0 + β x + β 2 x 2 + ε, dvs md n obsrvasjonr får vi n ligningr Y = β
DetaljerFAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN JUNI A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013
FAGKONFERANSE KONTROL L OG TILSYN GARDERMOEN 5.- 6. JUNI 201 3 A RSMØTE I FORU M FO R KONTROLL OG TILSYN 5. JUN I 2013 09. 0 0 1 0. 0 0 R E G I S TR E R I NG N o e å b i t e i 10. 0 0 1 0. 15 Å p n i ng
DetaljerØvinger uke 42 løsninger
Øvingr u løsningr Oppgav Når n potnsr r gomtris finnr u summn og onvrgnsområt irt fra forml. Når ra i r gomtris lønnr t sg å ta utgangspunt i n nærliggn gomtris r og tn lvis rivasjon llr intgrasjon av
DetaljerNext Generation Plattformen Quick guide
Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,
DetaljerMAYERS LIVSSITUASJONS-SKJEMA (3) Er du i stand til å: På egenhånd Vanskelig Svært vanskelig
Nvn: MAYERS LIVSSITUASJONS-SKJEMA (3) Dto: Vnnligst svr på spørsmåln som r rlvnt for g, v å stt t i ktull rurikk. 1. TA VARE PÅ DEG SELV Er u i stn til å: På gnhån Vnsklig Svært vnsklig f g h i j k l m
DetaljerVernerunde sjekkliste og oppfølging
Si 1 av 6 Vrnrun sjlist g ppfølging Ml virgån sl Gjnt av: AMU Dat: Vrnmrå:Ml vg sl Dltar : Hvvrnmbu Arn Brvi, vatmstr Olav Mrstøl, Pr Arnt Harns ATV Elvråslr Juli Riis g Fungrn HMS-ansvarlig: Kirsti M
DetaljerFagevaluering FYS Kvantefeltteori
Fvlurin FYS4170 - Kvntlttori høst 05 Forlsr: Jn Olv E Fysisk Futvl 22. novmr 2005 Bsvrlsn r nonym, mn vi jør oppmrksom på t orlsr hr tiln til ll skjmn. Evlurinn lir orttt v Fysisk Futvl, som slv vlr hvilk
DetaljerChristiania Spigerverk AS, Postboks 4397 Nydalen, 0402 Oslo BYGNINGSBESLAG
Christiania Spigrvrk AS, Postboks 4397 Nydaln, 0402 Oslo BYGNINGSBESLAG www.spigrvrkt.no www.gunnbofastning.com Bygningsbslag fra Christiania Spigrvrk AS Dimnsjonringsundrlag Bygningsbslag r produsrt av
DetaljerPEDAL. Trykksaker. Nr. 4/2011. Organ for NORSK T-FORD KLUBB NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO
PEDAL Nr. 4/2011 Organ for NORSK T-FORD KLUBB Trykksakr A NORSK T-FORD KLUBB BOKS 91 LILLEAKER, N-0216 OSLO FORMANNENS ORD: Årts løpsssong r på hll. Vi har omtalt non vtranbilarrangmntr i Pdal Ford n,
DetaljerBalanserte søketrær. AVL-trær. AVL-trær. AVL-trær høyde AVL AVL. AVL-trær (Adelson-Velskii og Landis, 1962) Splay-trær (Sleator og Tarjan, 1985)
alanserte søketrær VL-trær Et bnært tre er et VL-tre hvs ølgende holder: VL-trær delson-velsk og Lands, 96 play-trær leator og Tarjan, 98. orskjellen høyde mellom det høyre og det venstre deltreet er maksmalt,
DetaljerGenerell info vedr. avfallshåndtering ved skipsanløp til Alta Havn
Gnrll info vdr. avfallshåndtring vd skipsanløp til Alta Havn Vdlgg 0 Forskrift om lvring og mottak av avfall og lastrstr fra skip trådt i kraft 12.10.03. Formålt r å vrn dt ytr miljø vd å sikr tablring
DetaljerTidstypiske bygninger og bygningsdetaljer i Norge
DEN SIST DTALjn DEKOR REKKVERK & Stolpr, DEKOR, Imprgnrt Tistypisk ygningr og ygningstaljr i Norg M Olavsrosa og portaln til Storgarn Bjørnsta på Maihaugn ønskr vi vlkommn til Söra sin Dkorkatalog. 1800
DetaljerEKSAMEN Løsningsforslag
. desember 6 EKSAMEN Løsnngsorslag Emnekode: ITD Emnenavn: Matematkk ørste deleksamen Dato:. desember 6 Hjelpemdler: - To A-ark med valgrtt nnold på begge sder. - Formelete. - Kalkulator som deles ut samtdg
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
. jun 0 EKSAMEN Ny og utsatt Løsnngsorslag Emnekode: ITD50 Dato:. jun 0 Emne: Matematkk, deleksamen Eksamenstd: 09.00.00 Hjelpemdler: To A-ark med valgrtt nnhold på begge sder. Formelhete. Kalkulator er
DetaljerDans Dans Dans. Danseprosjektet i. Midsund kommune. Våren 2007. Dans i skolene Dans i klubbene Dans i fritida Dans i hverdagen
Dans Dans Dans Dansprosjktt i Midsund kommun Vårn 2007 Dans i skoln Dans i klubbn Dans i fritida Dans i hvrdagn Dans for barn Dans for ungdom Dans for voksn Dans dg glad Dans dg i form Jan Risbakkn Jan
DetaljerNext Generation Plattformen Quick guide
Nxt Gnrtion Plttformn Quik gui Dnn kortftt guin hr litt stt smmn for å hjlp g å rskt li kjnt m mngfolig funskjonn og vrktøy som r tilgjnglig på Nxt Gnrtion Plttformn. Finn frm til prouktr å hnl og mrksnyhtr,
DetaljerStivt legemers dynamikk
Stvt legemes namkk 07.04.014 spnntu 6.-7. apl YS-MEK 1110 07.04.014 1 tanslasjon otasjon tanslasjon otasjon possjon (t) (t) vnkel hastghet v( t) t ( t) t vnkelhastghet akseleasjon a( t) v t t t t ( t)
DetaljerTILBAKEBLIKK JORDBÆR SEPTEMBER ICDP: Tema 2: Juster deg til barnet og følg dets initiativ.
Liakrokn barnhag TILBAKEBLIKK JORDBÆR SEPTEMBER 2018 ICDP: Tma 2: Justr dg til barnt og følg dts initiativ Når du r sammn md barnt, r dt viktig at du r oppmrksom på hva barnt ønskr, hva dt gjør og hva
DetaljerJeg har en venn. Ó j œ. # œ œ. œ œ. Ó J. œ œ. œ œ œ œ. œ œ. œ œ. œ œ œ. œ œ. œ œ œ. œ œ. œ œ. Norsk trad. arr Mattias Ristholm. Soprano.
eg vn Norsk trd rr Mts Rstholm oprno 4 3 Ó # eg vn gett stt lv, for eg skll få le ve Det ss 4 3 Ó eg vn gett stt lv, for eg skll få le ve Det 6 fn nes n l t n tv Det nyt t å stre ve For d eg le v så Ó
DetaljerARSPLAN. Stavsberg barnehage
ARSPLAN Stavsbrg barnhag 2015 2016 ! a urr H Vi blir 20 år i dtt barnhagårt! Stavsbrg barnhag Vi r n hldagsbarnhag, som bl byggt høstn/vintrn 1995! Barnhagn åpnt 28.12.95. Fra august 2015 r dt 51 barn(andlr)
DetaljerMatematisk modellering av hjernen
Matmatsk modllrng av hjrnn Gaut T. Envoll Fyskk, Insttutt for matmatsk ralfag og tknolog Unvrsttt for mljø- og bovtnskap, 143 Ås 1. Introduksjon Et vktg utvklngstrkk dagns naturvtnskap r dn økt bruk av
DetaljerKRAVFIL TIL KREDITORFORENINGEN [Spesialrapport]
KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R124 KRAVFIL TIL KREDITORFORENINGEN [Spsialrapport] Bskrivls sist rvidrt: År: 2008. Månd: 10. Dag: 01. KRAVFIL
DetaljerKRAVFIL TIL KREDINOR [Spesialrapport]
KRAVFIL TIL KREDINOR [Spsialrapport] - Sid 1 / 5 IS Doc. Sit Bildr Rapportr Ordlist R104 KRAVFIL TIL KREDINOR [Spsialrapport] Bskrivls sist rvidrt: År: 2009. Månd: 10. Dag: 05. KRAVFIL TIL KREDINOR [Spsialrapport]
DetaljerEKSAMEN Løsningsforslag
EKSAMEN Løsnngsorslag Emnkod: ITD Dato:. dsmbr Emn: Matmatkk Eksamnstd:.. Hjlpmdlr: To A-ark md valgrtt nnhold på bgg sdr. Formlht. Kalkulator r kk tllatt. Faglærr: Chrstan F Hd Eksamnsoppgavn: Oppgavsttt
DetaljerRetningslinjer for klart og tydelig språk i Statens vegvesen
Rtningslinjr for klart og tydlig språk i Statns vgvsn vgvsn.no EN KLAR TEKST Slik skrivr vi klar og tydlig tkstr: 1. Vi sørgr for at lsrn får dn informasjonn d trngr ikk mr, ikk mindr. 2. Vi startr tkstn
DetaljerLøsningsforslag til eksamen i MAT 1100, 8/12-04 Del 1
Løsningsforslag til ksamn i MAT, 8/- Dl. (3 pong) Intgralt x x dx r lik: x x x + C x x + C x 3 3 x + C x / + C x x x3 3 x + C Riktig svar: a) x x x + C. Bgrunnls: Brukr dlvis intgrasjon md u = x, v = x.
DetaljerEKSAMEN Ny og utsatt Løsningsforslag
9. juni 5 EKSAMEN N og utsatt Løsningsorslag Emnkod: ITD5 Dato: 4. juni 5 Hjlpmidlr: Emn: Matmatikk ørst dlksamn Eksamnstid: 9.. Faglærr: - To A4-ark md valgritt innhold på bgg sidr. - Formlht. Christian
DetaljerSør-Bokn / Byre. Judbaerg. Eidssund Helgøy (Finnøy) Halsnøy
Ryfyl Mng til torg Mony to Thury 502 Mn fr Norl 4 0515 0545 504 Mn fr Norl 2 0535 0605 0610 518 Mn fr Røn 0615 0655 0625 0640 0633 0630 518 Mn fr Røn 0705 0745 0740 0730 0725 0720 502 Mn fr Norl 4 0615
DetaljerTo geometriske algoritmer, kap. 8.6
INF 4130, 18. november 2010 To geometriske algoritmer, kap. 8.6 Computational Geometry Stein Krogdahl Hovedkapittelet t (kap. 8) dreier seg generelt om devide-and-conquer eller splitt og hersk : Splitt
DetaljerSk ie n ko mm une. R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g
R EG UL E R I N GS B ES T E MM E L SER T I L D eta ljr e gu l e ri n g K j ø r b ekk d a l en 12 D 220 / 211 m. fl R e g u l e r i n g s be s te mm e ls e r sist date r t 27.09.17. P l an k a r t sist
DetaljerLANDSOMFATTENDE UNDERSØKELSE 22. JANUAR - 6. FEBRUAR 2015. ============================= ------------------------------------------------- Respons
LANDSOMFATTENDE UNDERSØKELSE 22. JANUAR - 6. Frkvnstabll for spørsmål 1 Hvilkt mdium r dt som dk din intrssr bst? D trykt mdin Etrmdin Nttmdin Andr mdir 18% 29% 49% 1% 3% Hvilkt mdium r dt som dk din intrssr
DetaljerHJEMMEEKSAMEN FYS2160 HØSTEN Kortfattet løsning. Oppgave 1
HJEMMEEKSAMEN FYS16 HØSTEN Kortfttt løsning Oppgv 1 ) b = P b =P T b = P /Nk = T T c =T (isotrm) Adibtligningn P CP = P, = = C c c b b c = 1 P c c = Nc = N Pc = P 1 b) Forndring i indr nrgi: U = Nk( T
DetaljerTillatt utvendig overtrykk/innvendig undertrykk
Tillatt utvndig ovrtrykk/innvndig undrtrykk For t uffrør vil ttningsringns vn til å tål undrtrykk oft vær dinsjonrnd. I t rør so blasts d t jvnt utvndig trykk llr innvndig undrtrykk vil dt oppstå spnningr,
DetaljerP r in s ipp s ø k n a d. R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e
P r in s ipp s ø k n a d R egu l e r i ngsen d r i n g f o r S ands t a d gå r d gn r. 64 b n r. 4 i Å f j o r d ko mm un e O pp d ra g s n r : 2 0 1 50 50 O pp d ra g s n a v n : Sa n d s ta d g å r d
DetaljerKlart vi skal debattere om skum!!
Klart vi skal dbattr om skum Mn basrt på fakta og ikk fantasi. Danil Apland, daglig ldr/vd Nordic Fir & Rscu Srvic, AS Bo Andrsson og Ptr Brgh har fått boltr sg fritt i Swdish Firfightr Magasin ovr hl
DetaljerBrukerundersøkelse - avtalefysioterapi
2 21.02.2018 12.02.2018 Brukrundrsøkls - avtalfysiotrapi Taltt Borshim Halstnsn Avd.ldr fysio- og rgotrapi, Frdrikstad kommun Avtalfysiotraputr i Frdrikstad kommun 18 fysikalsk institutt 39,3 driftsavtalr
DetaljerVed å prøve lykkehjulet 1000 ganger har vi funnet ut at sannsynligheten for at pila stopper på de ulike fargene er slik du ser i tabellen nedenfor.
Mtmtikk for ungomstrinnt KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET FLERE UTFORDRINGER Oppgv 1 Osr h htt tr ulik mtmtikkprøvr. Hn h rgnt riktig 90 % på n først prøvn, 80 % på n nr prøvn og 75 % på n trj prøvn.
DetaljerHverdagen. er bedre med meny. Kjøttdeig av storfe, u/salt og vann (62,25/kg) Husk tøymykner! SPAR 46% ord.pris 46,90/pk
Hvrn r br m mny 46% or.pris 46,/pk Kjøtti v storf, u/st o vnn (62,25/k) jr t u b i T ons n m KUN 13,31 PR STK 39% or.pris 41,10/pk 79 Ppsi Mx 6pk 6, Gi, (41,50/k) 6x1,5 tr, (8,87/) pr pk or.pris 37,/stk
DetaljerGrafer og trær. MAT1030 Diskret matematikk. Eksempel. Eksempel. Forelesning 28: Grafer og trær, eksempler
MAT1030 Diskrt matmatikk Forlsning 28:, ksmplr Dag Normann Matmatisk Institutt, Univrsittt i Oslo 5. mai 2008 I dag skal vi s på n rkk ksmploppgavr, og gjnnomgå løsningn på tavla. All ksmpln r oppgavr
DetaljerENKELT, TRYGT OG LØNNSOMT!
Utli av fritidsindom: ENKELT, TRYGT OG LØNNSOMT! NYTT GRAM O R P S L E D FOR E R E: FOR UTLEI ort r på ssongk s ri p d o g Svært gsstdr n ri rv s å p t Rabat ulightr m s g in n j t n God in g rkdsavdlin
DetaljerKompetansevurdering av MTS utøver
Norwgin Mnhstr Trig Group Komptnsvurring v MTS utøvr Tortisk l Hvrt spørsmål i tt skjm står v t utsgn ttrfulgt v fm yttrligr uttllsr. Hvr v uttllsn kn vær snn llr usnn. Kryss v snn / usnn for hvr uttlls.
DetaljerSalangen IF Turns Desemberlotteri 2015
S IF Tur Dmbrttr 2015 1 Dmbr 2 Dmbr 3 Dmbr 4 Dmbr 1 L r 200,2 L r 200,3 L r 200,- Sp Vr 399,- 5 Dmbr S ær AS 1 Grt 250,2 Grt 250,6 Dmbr Prutr Vr 500,7 Dmbr 8 Dmbr Grt 250,9 Dmbr Bmtrppt Vr 500,10 Dmbr
DetaljerVisma Flyt skole. Foresatte
Visma Flyt sol Forsatt 1 Forsatt Visma Flyt Sol sist ndrt: 30.11.2015 Innhold Vitig informasjon til Innlogging:... 3 all forsatt Ovrsitsbildt... 4 Forløpig i tilgjnglig Samty... for forsatt 5 Info/forsatt...
DetaljerLSNINGSFORSLAG TIL EKSAMEN I FAG TORSDAG 14. AUGUST 1995. Subjektdomenen bestar av mennesker, fysiske entiteter, ideer, mal, aktrer og aktiviteter
c UIVERSITETET I TRODHEIM ORGES TEKISKE HGSKOLE Institutt for datatknikk og tlmatikk sid av 5 Faglig kontakt undr ksamn: avn: Baak Amin Farshchian Tlf.: 9 4427 LSIGSFORSLAG TIL EKSAME I FAG 4560 SYSTEMERIG
DetaljerISE matavfallskverner
ISE matavfallskvrnr ... dn nklst vin til t praktisk og hyginisk kjøkkn l t h y h i l n k l h t h y g i n m i l j ø h y g i n m n k l h t i l j ø n k l h y g i n h t h y g m i l j i n ø k m n k i n l j
DetaljerK j æ r e b e b o e r!
K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i
DetaljerVT 261 www.whirlpool.com
VT 261.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING SJEKK AT SPENNINGEN på typplatn korrspondrr md spnningn dr du bor. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE FOR MIK- ROBØLGEOVNENS luftinntak som r plassrt
DetaljerROM PORT STYRKETRENING F036 APP.ROM HC WC DUSJ F034 EKSIST. F037 EKSIST. EKSIST. EKSIST. EKSIST. ROM F025 EKSIST. EKSIST. EKSIST.
. VRST SPRNRSNTR ON. 8 S 0 R. 008 US 05 VRST 007 005 SPRNRSNTR 2 m2 00 02 03a 03 037 023 024. 025 R. 02 R. 027 OPPVS 028 OPPVS 029 03 ØN 38,2m2 035. OPPVS NTTT SVT V YTTRV. ØN NNRNN Å ÅTS PÅ STT. 9 034
Detaljeråpningstider 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanelbollefrokost skattejakt pallesalg 12. - 16. mars
åpningstidr 9-20 (9-17) COOP MEGA 9-21 (9-19) amfi.no kanlbollfrokost skattjakt psalg 12. - 16. mars amfi orkangr Følg Prisfstn på facbook www.facbook.com/amfiorkangr Kanlbollfrokost Tirsdag 12. mars PROGRAM
DetaljerMer øving til kapittel 1
Mr øving til kpittl 1 KAPITTEL 1 ALGEBRA Oppgv 1 Rgn ut når =, = 5 og = 10 + + + + + d + + Oppgv Rgn ut når t = 5, s = 10 og v = st st + sv (t + v)s d v(s + t ) Oppgv Rgn ut når = 4, = 5, z = og w =. zw
DetaljerDetaljregulering for Greåkerveien 27-29 i Sarpsborg kommune, planid 010522066. Varsel om oppstart av planarbeid.
Brørt myndightr ihht. adrsslist Drs rf Vår rf. 10.11.2014 Dtaljrgulring for Gråkrvin 27-29 i Sarpsborg kommun, planid 010522066. Varsl om oppstart av planarbid. I mdhold av plan- og bygningslovn (pbl)
DetaljerEmnenavn: Eksamenstid: Faglærer: Christian F Heide
EKSAMEN Emnkod: ITD503 Emnnavn: Mmikk andr dlkamn Do: 20. mai 209 Hjlpmidlr: Ekamntid: 09.00 2.00 Faglærr: To A4-ark md valgfritt innhold på bgg idr. Formlhft. Kalkulor om dl ut amtidig md oppgavn. Chritian
DetaljerTILBAKEBLIKK JORDBÆR AUGUST 2018
TILBAKEBLIKK JORDBÆR AUGUST 2018 Liakrokn barnhag ICDP tma 1 Vis positiv føllsr vis at du r glad i barnt. For at små barn skal utvikl n tillitsfull holdning til mnnskr rundt sg, trngr d å opplv stabil
DetaljerFORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert ). 2. ADFERDSRISIKO 2.1 ADFERDSRISIKO -PROBLEMET
FOREESNINGSNOTATER I INFORMASJONSØKONOMI Gr B. Ash, år odatrt.... ADFERDSRISIKO Otal kotraktr dr asytrsk forasjo. Agts sats r kk rfsrbar; ds., kotraktr ka kk btgs å. Agt å gs str tl å lg d sats rsal øskr.
DetaljerMartin Ødegaard. "Ein vanleg arbeidsmann"
Mrtn Ødegrd "En vnleg rbedsnn" ortrett v oeten Olv H. Hge (2011) or 9 steer (SSSAATTBB) og elektrokstkk rghet: 12' 30'' Bestlt v rnenborg oklenseble erornce notes; xnoteheds: whser the text, not s the
DetaljerJT 366 www.whirlpool.com
JT 366.hirlpool.com NO 1 INSTALLASJON FØR TILKOPLING KONTROLLER AT SPENNINGEN på typplatn stmmr md spnningn i strømnttt ditt hjmm. DU MÅ IKKE FJERNE BESKYTTELSESDEKSLENE for mikrobølgovnns luftinntak som
Detaljer16 x = 2 er globalt minimumspunkt og x = 4 er lokalt maksimumspunkt.
Fasit Eksamn MAT Høstn 7 Oppgav Gitt punktn i koordinatsstmt: A (,, ) B (, 3, ) og C (,, ) AB + AC a) Bstm og AB AC Bstm vinkln A i trkantn ABC BC AB AC [,,] + [,, ] [9,, ] 3,, BC ( ) ( ) + + AB AC [,,
DetaljerLøsningsforslag ST2301 Øving 8
Løsnngsforslag ST301 Øvng 8 Kapttel 4 Exercse 1 For tre alleler, fnn et sett med genfrekvenser for to populasjoner, som gr flere heterozygoter enn forventa utfra Hardy-Wenberg-andeler for mnst én av de
DetaljerTALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller likt uansett variasjon i vanskelighetsgrad. Svarene er gitt i << >>.
ECON13: EKSAMEN 14V TALLSVAR. Det anbefales at de 9 deloppgavene merket med A, B, teller lkt uansett varasjon vanskelghetsgrad. Svarene er gtt >. Oppgave 1 Innlednng. Rulett splles på en rekke kasnoer
DetaljerTjen penger til klubbkassen.
DEL UT TIL LAGLEDEREN Tjn pngr til klubbkassn Slg kakr, llr, kjkssjokolad og knkkbrød! Total fortjnst: 35000 kr Vårn 2015 God og lttsolgt! Vi tjnt 32000,- Ls mr! En nkl måt å tjn 1000-vis av kronr Hvrt
DetaljerEksamensoppgave i SØK Statistikk for økonomer
Insttutt for samfunnsøkonom Eksamensoppgave SØK004 - Statstkk for økonomer Faglg kontakt under eksamen: Hldegunn E. Stokke, tlf 7359665 Bjarne Strøm, tlf 7359933 Eksamensdato: 0..04 Eksamenstd (fra-tl):
DetaljerStivt legemers dynamikk. Spinn
Stvt legemes dnamkk Spnn.4.5 FYS-MEK.4.5 Poblemløsnng dentfse sstem og omgvelse defne et koodnatsstem fnn massesente, otasjonsakse og teghetsmoment f N cm G fnn ntalbetngelse: possjon, hastghet, vnkel,
DetaljerFORELESNINGSNOTATER I INFORMASJONSØKONOMI Geir B. Asheim, våren 2001 (oppdatert 2001.03.27). 3. UGUNSTIG UTVALG
OREENINGNOAER I INORMAJONØKONOMI Gir B. Ashim, vårn 2001 (oppdatrt 2001.03.27. 3. UGUNIG UVAG Agntn har privat informasjon om rlvant forhold før kontrakt inngås. Undr symmtrisk informasjon vill kontraktn
DetaljerEtter vår oppfatning er innhentet bevis tilstrekkelig og hensiktsmessig som grunnlag for vår konklusjon.
Til gnralforsamlingn i BKK AS Dloitt AS Lars Hills gat 30 Postboks 6013 Posttrminaln NO-5892 Brgn Norway Tl: +47 55 21 81 00 www.dloitt.no UTTALELSE OM REDEGJØRELSE FOR FUSJONSPLAN Vi har kontrollrt rdgjørlsn
DetaljerBOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fakultet for fysikk, informatikk og matematikk Fredag 14. Desember 2001 Tid:
Sd 1 v 6 Nogs tknsk-ntuvtnskplg unvstt Insttutt fo fyskk Fglg kontkt und ksmn: Nvn: Ol Hund Tlf.: 93411 BOKMÅL EKSAMEN I FAG SIF4065 ATOM- OG MOLEKYLFYSIKK Fkultt fo fyskk, nfomtkk og mtmtkk Fdg 14. Dsm
DetaljerEksamen i emne SIB8005 TRAFIKKREGULERING GRUNNKURS
Sde 1 av 5 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Fakultet for bygg- og mljøteknkk INSTITUTT FOR SAMFERDSELSTEKNIKK Faglg kontakt under eksamen: Navn Arvd Aakre Telefon 73 59 46 64 (drekte) / 73
Detaljersi1, }ll :i tl .nn -{i q il th; !9ft $.\ l l.i t- -l s i l l)l\ _1 L _!.1 '{'- l s -,,
.L q,. -, + s. :.nn = -,, _. ''- ' ' } 3, _ L ' s, - - s :,34 : q )L 9 h;,u 9 r c ( ( q ( : - ' -' D,T -a 4 : n,r 3' -r 3?' - : '?:). L '29_ 'r }5. r's '_, T e: 'a...nn. 2 T ' 3, Z ',, . ; :.,,r.' - *
DetaljerMoD233 - Geir Hasle - Leksjon 10 2
Leksjon 10 Anvendelser nettverksflyt Transportproblemet Htchcock-problemet Tlordnngsproblemet Korteste-ve problemet Nettverksflyt med øvre begrensnnger Maksmum-flyt problemet Teorem: Maksmum-flyt Mnmum-kutt
DetaljerI~o: - 28.02.05. l.a:.r:tall oppgaver: - ,10. -- - i From: O - Skrtve- og tegnesaker. Kalkulator uten tekstminne
Byggskader G høgsklen sl Emne: Emnekde: Faglge veledere: ru:pe{r): jeksaensppgaven f1:n" sder (nkl g rehablterng LV 207 B Hans J Berge bestar av: frsden): 4 Tllatte hjelpemdler: : 280205 la:r:tall ppgaver:,10
DetaljerGPS. GPS (Global positioning system) benytter 24 satellitter som beveger seg rundt jorden i
INFORMASJONSHEFTE Kart gjødslng kalkng bast jordprøv Sellttngng() kjemske kjemske fysske fysske analys analys kombnt kombnt gafske gafske nmasjonssystem nmasjonssystem (GIS) (GIS) grunnmur grunnmur.. H
DetaljerUNIVERSITETET I OSLO ØKONOMISK INSTITUTT
Utsatt eksamen : ECON13 Statstkk 1 UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Eksamensdag: 11.8.16 Sensur kunngjøres senest: 6.8.16 Td for eksamen: kl. 9: 1: Oppgavesettet er på 4 sder Tllatte hjelpemdler:
DetaljerTMA4265 Stokastiske prosesser
orges teknsk-naturvtenskapelge unverstet Insttutt for matematske fag TMA4265 Stokastske prosesser Våren 2004 Løsnngsforslag - Øvng 6 Oppgaver fra læreboka 4.56 X n Antallet hvte baller urna Trekk tlf.
Detaljer