Fasit. Grunnbok. Kapittel 5. Bokmål

Størrelse: px
Begynne med side:

Download "Fasit. Grunnbok. Kapittel 5. Bokmål"

Transkript

1 Fsit Grunnok 8 Kpittel 5 Bokmål

2 Kpittel Figurtll: 8, 13, 18, 23, etsjer 5.2 Figurtll: 1, 7, 10, 13, 16, 19 3 c Figurtllet er 3 gnger figurnummeret pluss 1. d Figurtllet er 5 gnger figurnummeret pluss f2 = 9 f3 = 13 f4 = 17 Det neste figurtllet er 4 mer enn det forrige. c f16 = f5 = 17, f6 = 21 f5 = 50, f6 = 60 c f5 = 25, f6 = 36 d f5 = 92, f6 = 90 e f5 = 22, f6 = 27 f f5 = 45, f6 = 55 g f5 = 11, f6 = 16 h f5 = 977, f6 = 971 i f5 = 81, f6 = 121 j f5 = 15, f6 = 21 k f5 = 1250, f6 = 6250 l f5 = 1 9, f6 = X X X X X X X X X Figur 4 Figur 5 f1 = 4, f2 = 7, f3 = 10, f4 = 13, f5 = 16 c fn = 3n f20 = = 81 fn = 4n + 1. f80 = 321 c fn = 4n + 1 4n + 1 = 121 n = fn = 4n 3 fn = n2 c fn = (n 2) d fn = 102 2n e fn = 2 5 n 1 f fn = 9 n f4 = 15 Alterntiv 1: Figurtllet er 3 gnger figurnummeret pluss figurnummeret minus 1. Alterntiv 2: Figurtllet er forrige figurtll pluss 4. c f10 = 39 d 210 e Alterntiv 1: fn = 3 + (n 1) Alterntiv 2: fn = 4 + fn 1 eller fn = (n 1) f 1) f10 = (10 1) = 39 2) f10 = (10 1) = = 39 g 24 h 6 figurer 5.9 Figurtllet er det doelte v figurnummeret. fn = 2n f5 = Neste figur er 2 mer enn forrige figur. --- c 30 d fn = fn f6 = 12, f7 = 14 e 9 figurer med 10 rikker til overs f3 = 12 fn = 4n c f25 =

3 5.13 K6 = 26 K16 = K = 66 c Figurtllet er 4 pluss forrige figurtll. Figurtllet er 4 gnger figurnummeret pluss 2. d Kn = 4n + 2 (Kn = Kn 1 + 4) e K7 = 30 K8 = 34 f Kn = 4n + 2 g Figur nr ruter til overs Store perler = 30 Små perler = 24 Til smmen 54 Store perler = 20 Små perler = 48 Til smmen 68 c Store perler = 60 k Små perler = 24 Til smmen = 60 k Tidspunkt Alderen til Kåre Nå k Om 1 år k + 1 Om 2 år k + 2 Om 5 år k + 5 Om 10 år k + 10 For 2 år siden k 2 For 3 år siden k 3 For 10 år siden k 10 For 20 år siden k år Alderen til Zet for 3 år siden. Alderen til Tink om 4 år. c Alderen til Zet og Tink til smmen. d Alderen til Tink om 5 år. e Hvor mye eldre Zet er enn Tink. f Alderen til Zet for 4 år siden. g 2 år mindre enn lderen til Zet og Tink til smmen. h Gjennomsnittet v lderen til Zet og Tink d 5.18 m 8 n 2 c 2k c 4r d 2h e + c f 3k kr k + 2 3m n c Otto hr 20 kr. Bertine hr 16 kr. 2k 4

4 x + 26y 15x y 5.24 Antll rneilletter og voksenilletter til smmen. Hvor mnge flere rneilletter enn voksenilletter det er solgt. c Forholdet mellom voksenilletter og rneilletter = hvor stor røkdel voksenillettene utgjør v rneillettene. d Hvor mnge prosent v de solgte illettene som er voksenilletter k = 3 8 c 9 e 20 1 d 22 f 5 k = c 60 e 3 18 d 5 f B 5.28 Blå: 7 Gul: 20 Grønn: 18 Blå: 5 Gul: 13 Grønn: 13 c Blå: 5 Gul: -5 Grønn: 15 d Blå: 0 Gul: 9 Grønn: 1 e Blå: -6 Gul: -21 Grønn: 15 f Blå: -3 Gul: -6 Grønn: n 12 n : 5 = n 5 c 5n d ) 18 ) 6 c) c 3 d 1 e = 0, h = 4, k = 2, l = 6, m = -4, = 8, c = -10, s = -7, i = -8.5, j = -4.5, n = -2, u = 1.5, v = Hvor mye penger det er i Annes og Bstins lommeøker til smmen. Hvor mye mer penger det er i Annes lommeok enn i Bstins. c + = 40 = p c 7 e 6u 5s d 23 f 9v

5 k 7m c n d Alice: 3k + 2p Børre: 2k + 4p Cecilie: 6k + 5p 11k + 11 p c Alice: 65 kr Børre: 70 kr Cecilie: 140 kr d k 2 c 2h + 4 d 11 3 e 5 + f -3k g 4p 4 h s + 19 i r 4s j m + 3n c 8s + 5 d 13 2i 6j e u + v f k x 3y + 4z 6 c 230m 57n 12 d 2x 5y + 14z 18 e p 8q 7 c 6x + 3y 0,5 7 d 2 s 1 2 t e x + 2y x y 3 = x 2 + 5y m m + 8 3m + 6 2m + 5 2m + 3 m m 3 m k k + 8 3k k + 1 2k + 7 k k 2k k

6 p p + 13 p + 2 p + 5 7p + 8 p 3 5 2p 3p 4p c 11 e 30 5 d 7 f d 60k g d e 5m h 2 c 20 f 5n i 6xz x3y3 1 1 c p d xy2 z e 2x y2 f 3x2 18 g x2 h 4x ( + ) A (9 ) 5 = = 45 5 B (12 ) 4 = = 48 4 C 3 4 = 4 4 ( - 3) = = = 364 c 35 4 = 140 d 12 (60 3) = 684 e = 504 f = 833 g = 336 h = 1224 i = 1176 j = 2350 k = 380 l = 930

7 5.53 n 30 + n 8 = 30n + 8n = 38n k = k c (12 7) = 5 d = e 2 c 2 5 = 2c 10 f 6 (4 + m) = m g ( + 3) = + 3 h ( ) = 2 i = j 2k 3 + (-1) 3 = 6k 3 k 2 (2p + 3) = 4p + 6 l 2 ( 2) = c 9x 54 d 7m e 2y + 4xy f 21s + 35t x 2 c d (4 + 7) s 11s c 38,5 km x + 8y = 8 (x + y) (x + y) c x 8y d 180 kr (42 ) c 25 d 925 kr 5.59 Eleven til venstre hr rett x x (x + 4) = 2x x x + 3 2x = c 1. n 2. n (n + 5) = 3n n = 3n n = 3n = n n + 8 n = 8 d ---

8 eller eller c d 1. n 2. n n n n + 10 eller 2n n + 5 eller n + 6 Stemmer fordi rn er 6 år det året de egynner i 1. klsse x = 3 g x = 1 x = 4 h x = 2 c x = 1 i x = 3 d x = 6 j x = 2 eller x = 0 e x = 6 k x = 12 f x = 3 l x = 1 eller x = x + 3 = 15 x 10 = 7 c x + x + 1 = x x 2 = 7 x = x x = x + 6 x + (x + 1) + (x + 2) = x + 15 c 3 2 (x + 4) = 9x x d 2 = x 3 1 e 3 (x + 10) = 2x f x2 + 9 = 6x 5.68 Fem gnger tllet er 35. To mindre enn tllet er 12. c Fire gnger tllet er 16. d Én mer enn det doelte v tllet er 9. e En tredel v tllet er 5. f Fem mindre enn det doelte v tllet er To mer enn hlvprten v tllet er forskjellen mellom 5 og tllet. Tllet er mindre enn 5. Det doelte v én mindre enn tllet er tre mer enn tllet. c Fem mindre enn tre gnger tllet er én mindre enn det doelte v tllet. d Fire mer enn tllet er det tredoelte v tllet. e Én mindre enn det doelte v tllet er én mer enn tllet. f Hlvprten v tllet er tre mindre enn tllet. g Fem mindre enn det tredoelte v tllet er én mindre enn det doelte v tllet. h Tllet gnget med to mer enn tllet er 15. i En femdel v tre mer enn tllet er 4. j Hlvprten v tllet er fem mindre enn tllet. k Seks mer enn tllet er tllet gnget med seg selv. l Én mer enn tllet er én mindre enn det tredoelte v tllet.

9 5.70 = = = = = c = = d = = e = = = = f = = = g = = = h = = = i = = = j = = = k = = = 5.71 y = 2 y = x = 15 x = 52 c x = 5 d x = 2 e x = 50 f x = 2 g x = 32 8 = 4 h x = 2 i x = x = 21,6 x = 6,7 c x = 33,2 d x = 0,5 e x = 3,3 f x = x = 6 x = 3 c x = 4 d x = 15 e x = 3 f x = 12 g x = 3 h x = 4 i x = x = 5 2 l = = x = 8 3 c x = 2 d x = 1

10 5.76 x = 8 x = 2 c m = 5 2 d m = 12 e n = 20 f 4 = n 5.77 x = 40 x = 100 c x = 30 d x = x = 2 x = 1 2 c x = 1 d x = 15 e x = 4 f x = x = 5 x = 8 c x = 1 6 d x = 17 e x = 3 f x = 9 g x = 4 h x = x = 7 x = 4 c y = 16 d y = 5 e r = 3 f x = 2 g x = 2 h x = x = 4 x = 6 c x = Eleven til høyre Broren er 10 år. Cecilie: 31 Berit: = 33 Astrid: = 35 c Espen: (10 2) år = 8 år Pål: 10 år Per: 2 10 år = 20 år d Ksper: 30 år Jesper: (30 4) år = 26 år Jontn: år = 17 år 5.84 Det er 36 tyggis i hver eske. Linjestykket er 90,2 cm Tllet er 5. Tllet er 11. c Det minste tllet er 21. d Det minste tllet er 13. e Tllet er Klistremerket koster 20 kr. Nils plukker 2 6 kg = 12 kg. c Rytteren veier 65 kg. d Det minste tllet er 22. e Det minste tllet er 16. f Et eple koster 7 kr Bredden er 61 m. i x = 1 2 j x = 12

11 x = 3x + 2 5x + 5 = 4x + 2 4x + 3 = 5 + 2x 4x + 6 = 2x x + 3 = 4x + 5 x + 6 = 8x x + 5 = 4x x = 4x L4 = 10 L5 = 12 c L6 = 14 d Neste figur hr 2 ruter mer enn figuren forn. e L21 = L = 44 f Ln = Ln g L100 = = 202 h Ln = 2n + 2 f6 = 35 i n = c --- d Figurtllene vokser med 5 for hver gng. e f5 = 30 f f6 = 35 g Figur nr. 3 h fn = 5 (n + 1) f6 = 35 l Klddeoken hr 24 ruter i redden. D kn jeg lge figur nr. 22. Jeg trenger = 47 ruter i høyden k k + 1 k + 2 k + 10 k 2 k 3 k 10 2k k c 2c k 5 4m c 2 (n + 4) 5.94 A h, B f, C e, D j, E l, F, G, H d, I k, J i, K c, L g 5.95 t t + 6 t = x = 5 x = 7 c x = 3 d x = x + 13 = 28 x = = 15 Bredden er 15 m. 2x = 40 x = 20 Bredden er 20 m. c 3x = 150 x = 50 Hrens frt er 50 km/t. x d 10 2 = 8 10 x 20 = 80 x = 100 Mulig levelder til en skilpdde er 100 år.

12 5.99 x = 7 y = 50 c z = 25 d x = 5 e y = 2 f z = 12 g x = 48 h x = gnger et tll er 55. x = 11 En tredel v tllet er 20. x = 60 c Hlvprten v et tll pluss det doelte v et tll er 10. x = 4 d En tredel v tllet er 6. x = 18 e Hlvprten v det tredoelte v tllet er 15. x = 10 f Tllet gnget med seg selv er 9. x = Kristin selger 9 lodd på lørdg. Det tr 5 måneder. c Det tr 17 år.

Fasit. Oppgavebok. Kapittel 5. Bokmål

Fasit. Oppgavebok. Kapittel 5. Bokmål Fsit Oppgvebok 8 Kpittel 5 Bokmål KAPITTEL 5 5.1 8, 10, 1 b Antll pinner i en figur er figurnummeret gnget med. 5. 14, 17, 0 b gnger figurnummeret pluss. c 14, 17, 0, 5. Figur 1 4 5 Antll pinner 5 8 11

Detaljer

Fasit. Oppgavebok. Kapittel 2. Bokmål

Fasit. Oppgavebok. Kapittel 2. Bokmål Fsit Oppgveok Kpittel 2 Bokmål Kpittel 2 Treknteregning 2.1 75 c 50 e 50 70 d 80 f 53 2.2 B og D er rettvinklet A og C er likeeint 2.3 8,9 m 2.4 J Nei c J 2.5 10,4 cm 6,4 cm c 8,9 cm 2.6 ---- 2.7 115 m

Detaljer

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 =

Regn i hodet. a) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = Regn i hodet. a) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 10 Divisjon 2 1 Regn i hodet. ) 15 : 3 = b) 24 : 6 = c) 36 : 4 = d) 48 : 8 = 2 Regn i hodet. ) 21 : 3 = b) 28 : 7 = c) 49 : 7 = d) 64 : 8 = 3 ) 39 : 3 = b) 56 : 4 = c) 96 : 8 = d) 98 : 7 = 4 Gi svret med

Detaljer

... JULEPRØVE 9. trinn...

... JULEPRØVE 9. trinn... .... JULEPRØVE 9. trinn.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fsit Grunnok Kpittel 4 Bokmål Kpittel 4 Kvdrtiske funksjoner ndregrdsfunksjoner 4.1 Stigningstll Skjæring -kse Skjæring y-kse 4 ( 2, 0) (0, 8) 1 (1, 0) (0, 1) 1 (9, 0) (0, 3) 3 4.5 y = + = 0, y =, y =

Detaljer

Temahefte nr. 1. Hvordan du regner med hele tall

Temahefte nr. 1. Hvordan du regner med hele tall 1 ARBEIDSHEFTE I MATEMATIKK SNART MATTE EKSAMEN Hvordn du effektivt kn forberede deg til eksmen Temhefte nr. 1 Hvordn du regner med hele tll Av Mtthis Lorentzen mttegrisenforlg.com Opplysning: De nturlige

Detaljer

Fasit. Oppgavebok. Kapittel 3. Bokmål

Fasit. Oppgavebok. Kapittel 3. Bokmål Fsit Oppgveok Kpittel Bokmål KAPITTEL Brøk. og d og. c og c og e og f 0 og 0.. c d c e. d f 0. = c d e f. > c < e < > d > f < g h. kg. c 00 e d f. teskjeer.,,, 0,. = og = =.. c d 0. c c d.0 c d e f 0.

Detaljer

Kapittel 4 Tall og algebra Mer øving

Kapittel 4 Tall og algebra Mer øving Kpittel 4 Tll og lger Mer øving Oppgve 1 d Oppgve 2 Se på uttrykket A = g h. Hv forteller de ulike okstvene? Se på uttrykket A = 2π. Hv står de ulike symolene for? Forklr hv vi mener med en vriel og en

Detaljer

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper

6 Brøk. Matematisk innhold Brøk i praktiske situasjoner Brøk som del av en mengde. Utstyr Eventuelt ulike konkreter, som brikker og knapper Brøk I dette kpitlet lærer elevene om røk som del v en helhet, der helheten kn være en mengde, en lengde eller en figur, og de skl lære om røk som del v en mengde. De skl lære å finne delen når det hele

Detaljer

Terminprøve Matematikk for 1P 1NA høsten 2014

Terminprøve Matematikk for 1P 1NA høsten 2014 Terminprøve Mtemtikk for 1P 1NA høsten 2014 DEL 1 Vrer 1,5 time Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler. Forsøk på lle oppgvene selv om du er usikker

Detaljer

ALTERNATIV GRUNNBOK BOKMÅL

ALTERNATIV GRUNNBOK BOKMÅL Anne Rsch-Hlvorsen Oddvr Asen Illustrtør: Bjørn Eidsvik 7B NY UTGAVE ALTERNATIV GRUNNBOK BOKMÅL CAPPELEN DAMM AS, 2011 Mterilet i denne publiksjonen er omfttet v åndsverklovens bestemmelser. Uten særskilt

Detaljer

5: Algebra. Oppgaver Innhold Dato

5: Algebra. Oppgaver Innhold Dato 5: Alger Pln resten v året: - Kpittel 6: Ferur - Kpittel 7: Ferur/mrs - Kpittel 8: Mrs - Repetisjon: April/mi - Eventuell offentlig eksmen: Mi - Økter, prøver, prosjekter: Mi - juni For mnge er egrepet

Detaljer

Fasit. Grunnbok. Kapittel 1. Bokmål

Fasit. Grunnbok. Kapittel 1. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Prosent. = 0,5 = 50 % 2 b 0,333 = 33,3 % 3 c = 0,25 = 25 % 4 d = 0,2 = 20 % 5 e = 0,25 = 2,5 % 8.2 4 b 20 c 20 d 4 = 25 % e 20 = 5 % f 20 = 5 %.3 2 5 b 37,5% 3 c

Detaljer

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra

Basisoppgaver til Tall i arbeid P kap. 1 Tall og algebra Bsisoppgver til Tll i reid P kp. 1 Tll og lger 1.1 Regning med hele tll 1. Brøk 1.3 Store og små tll 1.4 Bokstvuttrykk 1.5 Likninger 1.6 Formler 1.7 Hverdgsmtemtikk 1.8 Proporsjonlitet Bsisoppgver 1.1

Detaljer

Fasit. Grunnbok. Kapittel 2. Bokmål

Fasit. Grunnbok. Kapittel 2. Bokmål Fsit 9 Grunnbok Kpittel Bokmål Kpittel Lineære funksjoner rette linjer. ƒ(x) = 4x + 5 ƒ() = 3 ƒ(4) = ƒ(6) = 9.6 ƒ(x) = -x b ƒ(x) = x b ƒ(x) = (x + ) 3 ƒ() = ƒ(4) = 8 ƒ(6) = 4 ƒ(x) = x 4 ƒ() = - ƒ(4) =

Detaljer

Eksempeloppgaver 2014 Løsninger

Eksempeloppgaver 2014 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 19 millirder 9 10 = 19 10 = 1,9 10 0,089 10 = 8,9 10 10 = 8,9 10 Oppgve 6 6 8 Prosentvis

Detaljer

Terminprøve Matematikk Påbygging høsten 2014

Terminprøve Matematikk Påbygging høsten 2014 Terminprøve høsten 2014 Terminprøve Mtemtikk Påygging høsten 2014 DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Regn ut 3 3 3 4 1 3 3 2

Detaljer

... JULEPRØVE

... JULEPRØVE Ashehoug JULEPRØVE 2014 9. trinn.... JULEPRØVE 2014.... Nvn: Gruppe: DELPRØVE 1 uten hjelpemidler ( 37 poeng) På denne delprøven kn du re ruke skrivesker, psser og linjl. Alle oppgvene i del 1 skl føres

Detaljer

FASIT, tips og kommentarer

FASIT, tips og kommentarer FASIT, tips og kommentrer JULEKALENDER 8.- 10- trinn Nivå 1 og Nivå 2. Tips til orgnisering: Kn jobbes med i gruppe, to og to eller individuelt. Spre rbeidet med klenderen i mttetimene i desember, eller

Detaljer

Flere utfordringer til kapittel 1

Flere utfordringer til kapittel 1 Flere utfordringer til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Forklr forskjellen på rsjonle og irrsjonle tll. Hv kjennetegner dem? Hvordn kn vi se t et tll er rsjonlt eller irrsjonlt? Skriv

Detaljer

Løsningsforslag for 2P våren 2015

Løsningsforslag for 2P våren 2015 Del 1 Oppgave 1 Sortert i stigende rekkefølge blir det: 4 5 6? 10 12 Medianen, som er 7, skal ligge midt mellom de to midterste tallene 6 og det ukjente tallet, som derfor må være 8. Oppgave 2 Opprinnelig

Detaljer

Fasit. Oppgavebok. Kapittel 4. Bokmål

Fasit. Oppgavebok. Kapittel 4. Bokmål Fsit 9 Oppgvebok Kpittel 4 Bokmål Kpittel 4 Geometri og beregninger Arel og omkrets 4.1 54 m b 106 m 4.2 162 m2 b 484 m2 4.3 26,0 cm2 b 22,5 cm2 c 20,0 cm2 d De tre rektnglene hr lik omkrets, 21 cm 4.4

Detaljer

Tall i arbeid Påbygging terminprøve våren 2014

Tall i arbeid Påbygging terminprøve våren 2014 Terminprøve våren 014 Tll i rei Påygging terminprøve våren 014 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 1 Skriv tllet Skriv tllet 6 3,15

Detaljer

YF kapittel 8 Rom Løsninger til oppgavene i læreboka

YF kapittel 8 Rom Løsninger til oppgavene i læreboka YF kpittel 8 Rom Løsninger til oppgvene i læreok Oppgve 809 Vi skl gå ett hkk mot venstre, og deler derfor med 10. 40 dl = (40 :10) L = 4 L Vi skl gå to hkk mot venstre, og deler derfor med 10 10 = 100.

Detaljer

9 Potenser. Logaritmer

9 Potenser. Logaritmer 9 Potenser. Logritmer Foret utregingene nedenfor: 5 5 c 6 7 d e 5 f g h i Regn ut og gjør svrene så enkle som mulige: c y y d e f g h i j y y + y + y + + y Prisen på en motorsg vr kr 56 i 99. Vi regner

Detaljer

Fasit. Oppgavebok. Kapittel 6. Bokmål

Fasit. Oppgavebok. Kapittel 6. Bokmål Fsit Oppgveok Kpittel 6 Bokmål Kpittel 6 Oppgver uten ruk v hjelpemidler 6.1 965 d 178 848 76 e 47 c 10,6 f 45 6. 1, km d 40 d 100 cm e 1 000 000 mg c 155 min f 0 dm 6. 5 4 5 c 8 e 1 8 d 11 10 f 6 6.4

Detaljer

Tenk deg at du skal lage figurer av blå og hvite ruter som vist ovenfor.

Tenk deg at du skal lage figurer av blå og hvite ruter som vist ovenfor. Tall og figurer Eksamensoppgaver Våren 016 OPPGAVE 4 (MED HJELPEMIDLER) Figur 1 Figur Figur 3 Tenk deg at du skal lage figurer av blå og hvite ruter som vist ovenfor. a) Skriv av tabellen nedenfor, og

Detaljer

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside

Fag: Matematikk 1T-Y for elever og privatister. Antall sider i oppgaven: 8 inklusiv forside og opplysningsside Loklt gitt eksmen 2012 Eksmen Fg: Mtemtikk 1T-Y for elever og privtister Fgkode: MAT1006 Eksmensdto: 25. mi Antll sider i oppgven: 8 inklusiv forside og opplysningsside Eksmenstid: Hjelpemidler under eksmen:

Detaljer

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b)

1 Algebra. 1 Skriv disse uttrykkene så enkelt som mulig: a) 2(a + 3) (3 + 3a) b) 2(1 a) + a(2 + a) c) 1 + 2(1 3a) + 5a d) 4a 3ab 2(a 5b) + 3(ab 2b) Alger Skriv disse uttrykkene så enkelt som mulig c 5 d 5 Multipliser ut og gjør svrene så enkle som mulige c c c c d e f g h 5 i Regn ut 5 Regn ut og vis frmgngsmåten 5 c Regn ut og vis frmgngsmåten 5

Detaljer

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET

STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Mer øving til kpittel 4 STATISTIKK, KOMBINATORIKK OG SANNSYNLIGHET Oppgve 1 Under ser du resulttet v ntll kinoesøk for en klsse de siste to måneder: 1, 3, 5, 4, 2, 7, 1, 1, 4, 5, 3, 3, 4, 0, 1, 3, 6, 5,

Detaljer

Kapittel 15 ANDREGRADSLIGNINGER. Arealet av det ytre kvadratet skal være dobbelt så stort som arealet av bassenget. x =?

Kapittel 15 ANDREGRADSLIGNINGER. Arealet av det ytre kvadratet skal være dobbelt så stort som arealet av bassenget. x =? Arelet v det ytre vdrtet sl være doelt så stort som relet v ssenget.? ( 4) ( 4) > 0 Hvis > 4, så ( 4) 4 4 4,44,44 4 9,66 Løsningen n rues dersom > 0. 9,66 n rues. 9,66 93,3 m 86,60 m ( 4) ( ) 8 6 8 6 8

Detaljer

Oppgaver i matematikk, 9-åringer

Oppgaver i matematikk, 9-åringer Oppgver i mtemtikk, 9-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. For 4. klsse enyttes nå etegnelsen mønstre for et som i 1995 le omtlt som lger. Oppgvene er innelt i isse emnene: Tll Geometri

Detaljer

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6 Tall og algera Del Løsningsforslag til del av oppgavesettet Tall og algera i Sirkel oppgaveok 10B, kapittel 6 Oppgave.1 a En pakke skinke holder til åtte horn. Sju pakker holder til 56 horn, og åtte pakker

Detaljer

Kapittel 3. Potensregning

Kapittel 3. Potensregning Kpittel. Potensregning I potensregning skriver vi tll som potenser og forenkler uttrykk som inneholder potenser. Dette kpitlet hndler blnt nnet om: Betydningen v potenser som hr negtiv eksponent eller

Detaljer

... ÅRSPRØVE 2014...

... ÅRSPRØVE 2014... Delprøve 1 Ashehoug ÅRSPRØVE 014 9. trinn.... ÅRSPRØVE 014... Nvn: Gruppe: DELPRØVE 1 uten hjelpemiler (39 poeng) Alle oppgvene i el 1 skl føres rett på rket. I noen oppgver er et en regnerute. Her skl

Detaljer

2 Tallregning og algebra

2 Tallregning og algebra Tllregning og lger KATEGORI. Regnerekkefølge Oppgve.0 Regn uten digitlt hjelpemiddel. + ( + ) ( ) Oppgve. Regn uten digitlt hjelpemiddel. Oppgve. Regn ut med og uten digitlt hjelpemiddel. + (7 + ) ( 9)

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012

Fag: Matematikk 1T-Y for yrkesfag for elever og privatisterr. Eksamensdato: 16. januar 2012 Loklt gittt eksmen Eksmen Fg: Mtemtikk 1T-Y for yrkesfg for elever og privtisterr Fgkode: MAT1006 Eksmensdto: 16. jnur 2012 Antll sider i oppgven: 7 inklusiv forside og opplysningsside Del 1: oppgve 1-5

Detaljer

Mer øving til kapittel 3

Mer øving til kapittel 3 Mer øving til kpittel 3 KAPITTEL 3 FUNKSJONER Oppgve 1 Tegn et koordintsystem og merk v punktene (1, 5) d (3, 2) ( 2, 3) e ( 3, 5) (4, 0) f (0, 4) Oppgve 2 Hvilke koordintpr hr de ulike punktene i koordintsystemet?

Detaljer

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g.

a 5 (2 + 8) d 5 (2 + 8) 4 g b 3 5 (2 + 8) e h 3 ( ) j Begrunn hvorfor du ikke får samme svar på oppgave b og g. Mtemtikk for ungomstrinnet KAPITTEL 4 TALL OG ALGEBRA MER ØVING Oppgve 1 Oppgve 2 Se på uttrykket A = g h. Hv forteller e ulike okstvene? Se på uttrykket O = 2π. Hv står e ulike symolene for? Forklr hv

Detaljer

Brøkregning og likninger med teskje

Brøkregning og likninger med teskje Brøkregning og likninger med teskje Dette heftet gir en uformell trinn for trinn gjennomgng v grunnleggende regler for brøkregning og likninger. Dette er sto som vi i FYS 000 egentlig forventer t dere

Detaljer

Tall i arbeid Påbygging terminprøve våren 2013

Tall i arbeid Påbygging terminprøve våren 2013 Tll i rei Påygging terminprøve våren 2013 DEL 1 Uten hjelpemiler Hjelpemiler: vnlige skrivesker, psser, linjl me entimetermål og vinkelmåler Oppgve 1 Skriv tllene på stnrform. 1 0,000 00015 2 19,6 millirer

Detaljer

R1 kapittel 7 Sannsynlighet

R1 kapittel 7 Sannsynlighet Løsninger til oppgvene i ok R kpittel 7 Snnsynlighet Løsninger til oppgvene i ok Oppgve 7. Hvis A hr inntruffet, ltså t den første kul er lå, så er det tre røde og én lå kule igjen i esken når vi skl trekke

Detaljer

Basisoppgaver til 2P kap. 1 Tall og algebra

Basisoppgaver til 2P kap. 1 Tall og algebra Bsisoppgver til P kp. Tll og lger. Potenser. Nye potenser. Store og små tll. Stnrform. Tllsystemer. Femtllsystemet. Totllsystemet.7 Prosentregning me vekstfktor.8 Renteregning Ashehoug www.lokus.no Ashehoug

Detaljer

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R

1 Tall og variabler. Oppgave Regn ut uten lommeregner. Oppgave Sett inn symbolet eller i de tomme rutene. a) 9 N b) π Q c) 3 R Tll og vribler. TALL OG TALLREGNING Oppgve.0 Sett inn smbolet eller i de tomme rutene. ) N π Q R Oppgve. Sett inn smbolet eller i de tomme rutene. { } { π } ), 0,,,,,,, Oppgve. Skriv disse mengdene på

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 10 % v 60 er 0,1 60 = 6. Prisen øker d med 6 kr. Vren vil derfor koste 60 kr + 6 kr = 70

Detaljer

Løsninger til oppgaver i boka

Løsninger til oppgaver i boka Løsninger til oppgver i ok Kpittel 1 Alger Løsninger til oppgver i ok 1.9 d På ildet ser vi t den lengste siden i tkåpningen er omtrent så lng som den korteste. Om vi kller den korteste siden for x, hr

Detaljer

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve.

Oppgave 1 Diagrammet nedenfor viser hvordan karakteren var fordelt på en norskprøve. Mtemtikk for ungomstrinnet KAPITTEL 5 STATISTIKK OG SANNSYNLIGHET MER ØVING Oppgve 1 Digrmmet neenfor viser hvorn krkteren vr forelt på en norskprøve. 5 4 3 2 1 0 1 2 3 4 5 6 Hvor mnge fikk krkteren 4?

Detaljer

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

S1 kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka S1 kpittel 8 Eksmenstrening Løsninger til oppgvene i læreok E1 995 995 5 + 5 (995 5) (995 + 5) + 5 990 1000 + 5 990 000 + 5 990 05 E E (61+ 9) 51 49) (51+ 49) 61 9 (61 9) 51 49 ( 100 100 11 1997 00 199

Detaljer

Mer øving til kapittel 1

Mer øving til kapittel 1 Mer øving til kpittel 1 KAPITTEL 1 TALL OG TALLREGNING Oppgve 1 Finn svret ve hoeregning. Velg to v oppgvene og forklr hvilken strtegi u hr rukt. 27 + 38 e 160 70 i 130 4 35 + 75 f 19 5 j 6 7,5 58 + 42

Detaljer

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka

Kapittel 4 Kombinatorikk og sannsynlighet. Løsninger til oppgaver i boka. Løsninger til oppgaver i boka Kpittel 4 Kombintorikk og snnsynlighet Løsninger til oppgver i bok 4.4 Oppgve 4.2 løst ved multipliksjonsprinsippet: multipliksjon v de ulike vlgmulighetene v forretter, hovedretter og desserter gir uttrykket

Detaljer

+ = Legge sammen. Hverdagsmatte Del 1 side 14

+ = Legge sammen. Hverdagsmatte Del 1 side 14 Hverdagsmatte Del 1 side 14 Legge sammen Når vi skal legge sammen tall, bruker vi pluss mellom tallene. Pluss skriver vi +. Pluss viser at noe blir større. Vi leser fra venstre mot høyre. + = 3 epler pluss

Detaljer

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr

Oppgave 2 Betydningen til hvert enkelt siffer er bestemt av sifferets plassering eller posisjon. Tallet 4321 betyr KAPITTEL 1 TALL OG TALLREGNING FLERE UTFORDRINGER Oppgve 1 Du hr sifrene A 1 3 5 7 9 og B 2 4 6 8 Ve å ruke tre v sifrene i enten A eller B skl u lge ett tll så nærme 500 som mulig. Du kn re ruke ett siffer

Detaljer

Navn: Klasse: Ekstrahefte 2. Brøk

Navn: Klasse: Ekstrahefte 2. Brøk Nvn: Klsse: Ekstrhefte Brøk Brøk Oppg. ) Finn største felles fktor (sff) for teller og nevner ved å fktorisere. Bruk dette til å forkorte røken. 0 6 ) Finn minste felles multiplum (mfm) for nevnerne ved

Detaljer

Algebra Vi på vindusrekka

Algebra Vi på vindusrekka Algebra Vi på vindusrekka Utsagn... 2 Åpne utsagn... 3 Den ukjente... 4 Likhetstegnet... 5 Likninger... 6 Løs likninger... 7 Matematiske uttrykk... 8 Formel... 9 Tilordning... 10 Funksjon... 11 Koordinatsystem...

Detaljer

Nytt skoleår, nye bøker, nye muligheter!

Nytt skoleår, nye bøker, nye muligheter! Nytt skoleår, nye øker, nye muligheter! Utstyret dere trenger, er som i fjor: Læreok lånes v skolen vinkelmåler, --9 og - -9-treknter, psser, lynt, viskelær, penn, A-rk til innføring og A klddeok. Og en

Detaljer

Sammendrag kapittel 1 - Aritmetikk og algebra

Sammendrag kapittel 1 - Aritmetikk og algebra Smmendrg kpittel 1 - Aritmetikk og lgebr Regneregler for brøker Utvide brøk: Gng med smme tll i teller og nevner. b = k b k Forkorte brøk: del med smme tll i teller og nevner. b = : k b : k Summere brøker:

Detaljer

1 Tallregning og algebra

1 Tallregning og algebra Tllregning og lger ØV MER. REGNEREKKEFØLGE Oppgve.0 6 d) ( : 6) Oppgve. ( ) ( ) ()() ( ) ( ) ( ) () (6 ) () d) ( ) 7() ( ) Oppgve. 6 ( ) d) Oppgve. Med ett ddisjonstegn, ett sutrksjonstegn, ett multipliksjonstegn

Detaljer

Juleprøve trinn Del 1 Navn:

Juleprøve trinn Del 1 Navn: Juleprøve 2014 10. Del 1 Nvn: Informsjon for del 1 1 Prøvetid 5 timer totlt. Del1 og Del 2 skl deles ut smtidig. Del 1 skl du levere innen 2 timer. Hjelpemidler i del 1 Andre opplysninger Del 2 skl du

Detaljer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer

1 Geometri KATEGORI 1. 1.1 Vinkelsummen i mangekanter. 1.2 Vinkler i formlike figurer Oppgver 1 Geometri KTGORI 1 1.1 Vinkelsummen i mngeknter Oppgve 1.110 ) I en treknt er to v vinklene 65 og 5. Finn den tredje vinkelen. b) I en firknt er tre v vinklene 0, 50 og 150. Finn den fjerde vinkelen.

Detaljer

Eksamen høsten 2015 Løsninger

Eksamen høsten 2015 Løsninger DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med centimetermål og vinkelmåler Oppgve 1 30 Vekstfktoren er 1 1 0,30 0, 70. 100 N GV N V G 80 800 V 400 0,70 7 Vren kostet 400 kr

Detaljer

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon

Matematikk Øvingsoppgaver i numerikk leksjon 9 Numerisk integrasjon Mtemtikk 1000 Øvingsoppgver i numerikk leksjon 9 Numerisk integrsjon Forståelsen v integrlet som et rel ligger til grunn når vi skl beregne integrler numerisk. Litt mer presist: Når f(x) 0 for lle x i

Detaljer

NY/UTSATT NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10

NY/UTSATT NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 1 7 OG GLU 5 10 NY/UTSATT NASJONAL DELEKSAMEN I MATEMATIKK FOR GRUNNSKOLELÆRER - UTDANNINGENE GLU 7 OG GLU 5 0 BOKMÅL Dato: 05.2.7 Eksamenstid: 9 3 Hjelpemidler: Ingen Oppgavesettet består av 4 oppgaver. Alle deloppgavene,

Detaljer

YF kapittel 1 Tall Løsninger til oppgavene i læreboka

YF kapittel 1 Tall Løsninger til oppgavene i læreboka YF kpittel 1 Tll Løsninger til oppgvene i læreok Oppgve 10,, 0, 1,, 5,,, 0 Oppgve 10 Tllet 5 står til høyre for tllet på tllinj. Altså er 5>. Tllet 5 står til venstre for tllet 1 på tllinj. Altså er 5

Detaljer

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka

S1 kapittel 4 Logaritmer Løsninger til oppgavene i boka Løsninger til oppgvene i ok S kpittel 4 Logritmer Løsninger til oppgvene i ok 4. Vi leser v fr tllet 4 på y-ksen og ser t vi får den tilhørende verdien,6 på -ksen. lg 4,6 Vi leser v fr tllet,5 på y-ksen

Detaljer

DELPRØVE 2 (35 poeng)

DELPRØVE 2 (35 poeng) DELPRØVE 2 (35 poeng) På denne delprøven er lle hjelpemidler tilltt. Alle oppgvene i del 2 skl føres på eget rk. Før svrene oversiktlig, slik t det går tydelig frm hvordn du hr løst oppgvene. Bruk penn.

Detaljer

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først.

PARENTESER Matematikerne har funnet på at i regneuttrykk kan vi bruke parenteser for å markere hvilken regneoperasjon som skal gjøres først. Smmedrg kpittel SAMMENDRAG Dette er et smmedrg v det du hr rbeidet med om lgebr i Nummer 8, Nummer 9 og Nummer 10. Hvis du treger mer treig utover oppgvee i Nummer 10, fier du ekstr oppgver på elevettstedet.

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Kengurukonkurransen 2019

Kengurukonkurransen 2019 2019 «Et sprang inn i matematikken» Ecolier (4. 5. trinn) Løsninger og registreringsskjema Dette heftet inneholder: Fasit og korte løsningsforslag Registreringsskjema Fasit med korte kommentarer Mange

Detaljer

Mer øving til kapittel 2

Mer øving til kapittel 2 Mer øving til kpittel 2 KAPITTEL 2 GEOMETRI OG MÅLING Oppgve 1 Oppgve 2 Oppgve 3 Anne hr vært på ferie til sine esteforeldre fr 28. juni til 9. ugust. Hvor mnge dger hr hun vært på ferie? Fr hun kom hjem

Detaljer

Oppgaver i matematikk, 13-åringer

Oppgaver i matematikk, 13-åringer Oppgver i mtemtikk, 13-åringer Her er gjengitt e frigitte oppgvene fr TIMSS 2003. Oppgvene er innelt i isse emnene: Tll Geometri Alger Dtrepresentsjon og snnsynlighet Målinger Proporsjonlitet Emnetilhørighet

Detaljer

2P kapittel 5 Eksamenstrening

2P kapittel 5 Eksamenstrening P kpittel 5 Eksmenstrening Løsninger til oppgvene i ok Uten hjelpemidler E1 3 4 0 3+ 4+ 0 7 = = = = 5 5 5 ( ) ( ) c d 7 5 3 3 3 3 6 4 3 6 4 3 3x x = 3 x x = 3 x x = 3 x = 3 x = 7x 1, 10 5,0 10 = 1, 5,0

Detaljer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer

2-komplements representasjon. Binær addisjon. 2-komplements representasjon (forts.) Dagens temaer 2 Dgens temer Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture Kort repetisjon 2-komplements form Binær ddisjon/sutrksjon Aritmetisk-logisk enhet (ALU) Sekvensiell logikk RS-ltch 2-komplements

Detaljer

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2

Del 2. Alle oppgaver føres inn på eget ark. Vis tydelig hvordan du har kommet frem til svaret. Oppgave 2 Del 2 Alle oppgver føres inn på eget rk. Vis tydelig hvordn du hr kommet frem til svret. Oppgve 1 Figuren viser sidefltene til et prisme. Grunnflten og toppflten mngler. ) Hvilken form må grunn- og toppflten

Detaljer

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014

Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Hjemmearbeid matematikk eksamensklassen Ark 31 Leveres mandag 7. april 2014 Oppgave 1. Vanlig pris for en reise med buss mellom to byer er 80 kr. På bussen er det 14 voksne, 6 barn og 9 studenter. Hvor

Detaljer

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka

1T kapittel 3 Funksjoner Løsninger til oppgavene i læreboka 1T kpittel 3 Funksjoner Løsninger til oppgvene i læreok Oppgve 3.1 Origo er skjæringspunktet mellom førsteksen og ndreksen. Koordintene til origo er ltså (0, 0). Førstekoordinten til punktet A er 15, og

Detaljer

Kapittel 2 Mer om tall og tallregning Mer øving

Kapittel 2 Mer om tall og tallregning Mer øving Kpittel Mer om tll og tllregning Mer øving Oppgve Plsser isse tllene på ei tllinje:,, 9,, Skriv røkene i stigene rekkefølge. Skriv lle tllene som esimltll Oppgve Skriv en røk og fortell hv som er teller,

Detaljer

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka

YF kapittel 10 Eksamenstrening Løsninger til oppgavene i læreboka YF kpittel 10 Eksmenstrening Løsninger til oppgvene i læreok Uten hjelpemidler Oppgve E1 5 + 5 + 6 11 5 + 4 (5 + ) 5 + 4 7 10 6 + 8 d + ( + 1) 5 + 4 5 + 16 5 + 10 5 4 + 4 4 + 8 1 + + + + + + + + 49 49

Detaljer

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003.

Løsningsforslag til avsluttende eksamen i HUMIT1750 høsten 2003. Løsningsforslg til vsluttende eksmen i HUMIT1750 høsten 2003. Teksten under hr litt litt prtsom fordi jeg hr villet forklre hvordn jeg gikk frm. Fr en studentesvrelse le det ikke forventet nnet enn sluttresulttene.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Hjelpemidler: vnlige skrivesker, psser, linjl med entimetermål og vinkelmåler Oppgve 1 Vrisjonsredden er differnsen mellom største og minste verdi. Største verdi vr 20 poeng. Minste

Detaljer

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut.

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut. Matematikktentamen - eksamensklassen Onsdag 11. desember 2013 Løsningsforslag Oppgave 1. Regn ut. a) 11 2 4 + 1 = 11 8 + 1 = 4 b) 10 : (-2) + 4 + 8 : 4 = -5 + 4 + 2 = 1 c) -5 (10 4 2) = -5 (10 8) = -5

Detaljer

3.7 Pythagoras på mange måter

3.7 Pythagoras på mange måter Oppgve 3.18 Vis t det er mulig å multiplisere og dividere linjestykker som vist i figur 3.. Bruk formlikhet. 3.7 Pythgors på mnge måter Grekeren Pythgors le født på Smos 569 og døde. år 500 f. Kr. Setningen

Detaljer

Spørsmålshefte. Spørsmålshefte

Spørsmålshefte. Spørsmålshefte Pangea Matematikk konkurranse Spørsmålshefte Spørsmålshefte 2017 6. Klasse Arrangør Pangea matematikk konkurranse på sosiale medier Følg oss på sosiale medier. Vi vil informere deg på Twitter, Facebook

Detaljer

2P, Statistikk Quiz. Test, 2 Statistikk

2P, Statistikk Quiz. Test, 2 Statistikk Test, 2 Statistikk Innhold 1.1 Statistisk undersøkelse... 2 2.2 Presentasjon av tallmateriale... 2 2.3 Sentralmål... 8 2.4 Spredningsmål... 11 2.5 Gruppert datamateriale... 14 Grete Larsen 1 1.1 Statistisk

Detaljer

MATEMATIKKPRØVE 11. FEBRUAR.

MATEMATIKKPRØVE 11. FEBRUAR. MATEMATIKKPRØVE 11. FEBRUAR. Nvn: Klsse: DELPRØVE 1 uten lommeregner og p (41 poeng) Alle oppgvene i del 1 skl føres rett på rket. I noen oppgver er det en regnerute. Her skl du føre oppgven oversiktlig

Detaljer

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før

! Dekoder: En av 2 n output linjer er høy, avhengig av verdien på n inputlinjer. ! Positive tall: Som før Dgens temer Enkoder! Dgens temer hentes fr kpittel 3 i Computer Orgnistion nd Architecture! Dekoder: En v 2 n output linjer er høy, vhengig v verdien på n inputlinjer! Enkoder/demultiplekser (vslutte fr

Detaljer

VEILEDNING HALVÅRSPRØVE. Bjørnar Alseth Gunnar Nordberg Henrik Kirkegaard Mona Røsseland INNHOLD. Innledning/ gjennomføring side 2 3

VEILEDNING HALVÅRSPRØVE. Bjørnar Alseth Gunnar Nordberg Henrik Kirkegaard Mona Røsseland INNHOLD. Innledning/ gjennomføring side 2 3 Bjørnr Alseth Gunnr Norderg Henrik Kirkegrd Mon Røsselnd 4 HALVÅRSPRØVE VEILEDNING INNHOLD Innledning/ gjennomføring side 2 3 Veiledning oppgve for oppgve side 4 21 Fsit med poengeregning side 22 24 Veiledning

Detaljer

Get filmleie. Brukerveiledning

Get filmleie. Brukerveiledning Get filmleie Brukerveiledning Innhold 4 Funksjoner for fjernkontroll 5 Hv er Get filmleie? 6 Hvilke filmer kn jeg leie? 6 Hv skl til for å få tjenesten? 7 Slik kontrollerer du tjenesten 7 Hv koster det

Detaljer

Her får du i pose og sekk, med nærhet til sentrum og flotte naturområder. Hallermoen Bk 9, 10 og 11 ENEBOLIGER. med attraktiv og solrik beliggenhet

Her får du i pose og sekk, med nærhet til sentrum og flotte naturområder. Hallermoen Bk 9, 10 og 11 ENEBOLIGER. med attraktiv og solrik beliggenhet Her får du i pose og sekk, med nærhet til sentrum og flotte nturområder Hllermoen Bk 9, 10 og 11 ENEBOLIGER med ttrktiv og solrik beliggenhet Bo godt i vkre omgivelser Dette populære boligområdet ligger

Detaljer

99 matematikkspørsma l

99 matematikkspørsma l 99 matematikkspørsma l TALL 1. Hva er et tall? Et tall er symbol for en mengde. Et tall forteller om antallet i en mengde. 5 sauer eller 5 epler eller 5.. 2. Hvilket siffer står på eneplassen i tallet

Detaljer

1P kapittel 2 Algebra

1P kapittel 2 Algebra 1P kapittel Algera Løsninger til oppgavene i oka.1 a a+ a a 5+ 4 9 c 8c 6c c d d d 0d 0. a + + 5+ 4+ 10 c 5 9 4 d 4 7. a 7 5+ + 8 5+ 8+ 7 + + 10 5y+ + y + 5y+ y 4 4y c 8y 8y + 8y 8y 4+ 0y 4.4 7r+ 10h+

Detaljer

A) 9 år B) 18 år C) 27 år D) 36 år E) 54 år

A) 9 år B) 18 år C) 27 år D) 36 år E) 54 år SETT 24 OPPGAVER FRA ABELS HJØRNE I DAGBLADET DAG 1 1. Bjørn og Marie giftet seg for 18 år siden. Da var Bjørn tre ganger så gammel som Marie. I dag er Bjørn dobbelt så gammel som Marie. Hvor stor er aldersforskjellen

Detaljer

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka

1T kapittel 8 Eksamenstrening Løsninger til oppgavene i læreboka T kpittel 8 Eksmenstrening Løsninger til oppgvene i lærebok Uten hjelpemidler E b c E b c Vi gnger vnlige tll med vnlige tll og tierpotenser med tierpotenser. Til slutt omformer vi svret så vi får et tll

Detaljer

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser

Innledning. Kategori Regnerekkefølge. 1.2 Bokstavregning og parenteser Innledning Ktegori. Regnerekkefølge Oppgve.0 Regn uten lommeregner. b) ( ) d) ( ) Oppgve. Regn uten lommeregner. b) d) Oppgve. Regn ut med og uten lommeregner. b) ( ) d) ( 9) Oppgve. Regn ut med lommeregner.

Detaljer

Fasit. Innhold. Tall og algebra Vg1T

Fasit. Innhold. Tall og algebra Vg1T Tall og algebra VgT Fasit Innhold Innhold.... Tallregning... 3 Tall og tallmengder... 3 Regningsarter... 4 Å regne med negative tall... 5 Addisjon og subtraksjon av brøker... 5 Multiplikasjon og divisjon

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Del 1. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (5 poeng) ( ) 2 e x. f x x x. Deriver funksjonene. Løs likningene

Del 1. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (5 poeng) ( ) 2 e x. f x x x. Deriver funksjonene. Løs likningene Del 1 Oppgave 1 (5 poeng) Deriver funksjonene a) b) f ( ) e g( ) ln e 1 c) h( ) 1 Oppgave (4 poeng) Løs likningene a) b) e 7e 8 0 ln( 5 1) ln(3 ) 0 Oppgave 3 (5 poeng) Gitt vektorene a, 3 og b 5, 3 a)

Detaljer

1P kapittel 3 Funksjoner

1P kapittel 3 Funksjoner Løsninger til oppgvene i ok 1P kpittel 3 Funksjoner Løsninger til oppgvene i ok 3.1 Origo hr koordintene (0, 0). Vi finner koordintene til punktene ved å lese v punktets verdi på x-ksen og y-ksen. A =

Detaljer

Eksempeloppgave 2 2009

Eksempeloppgave 2 2009 Eksempeloppgave 2 2009 MAT0010 Matematikk Elever (10. årstrinn) Eksamen våren 2009 Del 1 Bilde: Utdanningsdirektoratet Skole: Elevnummer: Del 1 + ark fra del 2 Bokmål Bokmål Eksamensinformasjon til Del

Detaljer

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten:

Vi sier også at for eksempel 16 er kvadratet av 4. Kvadrattallene kan vi framstille som figurtall av kuler på denne måten: 10 Tall og figurer Tallene 1,, 3, 4,, kaller vi de naturlige tallene De naturlige tallene deler vi ofte i partall og oddetall Partallene er de tallene vi kan dele med Det er tallene, 4, 6, 8, 10, Oddetallene

Detaljer