Oppfriskningskurs dag 1

Størrelse: px
Begynne med side:

Download "Oppfriskningskurs dag 1"

Transkript

1 Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk august 2009

2 Outline 1

3 Outline 1

4 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, Regn ut

5 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, Regn ut

6 Regneregler for brøker La a, b, c, d 0 a b = ac bc Kan brukes begge veier! a b + c b = a + c b

7 Regneregler for brøker La a, b, c, d 0 a b = ac bc Kan brukes begge veier! a b + c b = a + c b

8 Regneregler for brøker La a, b, c, d 0 a b = ac bc Kan brukes begge veier! a b + c b = a + c b

9 Regneregler for brøker La a, b, c, d 0 a b = ac bc Kan brukes begge veier! a b + c b = a + c b

10 Eksempler Skriv om x 2 + x x + 1 Skriv om Skriv om. Regn ut: 1 n 1 n x x x 3 + x 2 + 6x x 3 + 3x

11 Eksempler Skriv om x 2 + x x + 1 Skriv om Skriv om. Regn ut: 1 n 1 n x x x 3 + x 2 + 6x x 3 + 3x

12 Eksempler Skriv om x 2 + x x + 1 Skriv om Skriv om. Regn ut: 1 n 1 n x x x 3 + x 2 + 6x x 3 + 3x

13 Eksempler Skriv om x 2 + x x + 1 Skriv om Skriv om. Regn ut: 1 n 1 n x x x 3 + x 2 + 6x x 3 + 3x

14 Eksempler Skriv om x 2 + x x + 1 Skriv om Skriv om. Regn ut: 1 n 1 n x x x 3 + x 2 + 6x x 3 + 3x

15 Outline 1

16 La a, b være tall, da er: a 2 b 2 = (a + b)(a b) a 2 + b 2 + 2ab = (a + b) 2 Kan brukes begge veier! a 2 + b 2 2ab = (a b) 2

17 La a, b være tall, da er: a 2 b 2 = (a + b)(a b) a 2 + b 2 + 2ab = (a + b) 2 Kan brukes begge veier! a 2 + b 2 2ab = (a b) 2

18 La a, b være tall, da er: a 2 b 2 = (a + b)(a b) a 2 + b 2 + 2ab = (a + b) 2 Kan brukes begge veier! a 2 + b 2 2ab = (a b) 2

19 La a, b være tall, da er: a 2 b 2 = (a + b)(a b) a 2 + b 2 + 2ab = (a + b) 2 Kan brukes begge veier! a 2 + b 2 2ab = (a b) 2

20 La a, b være tall, da er: a 2 b 2 = (a + b)(a b) a 2 + b 2 + 2ab = (a + b) 2 Kan brukes begge veier! a 2 + b 2 2ab = (a b) 2

21 eksempler Skriv om x 1 x er et produkt av to oddetall - hvilke? Vis at a 2 + b 2 2ab uansett verdien av tallene a, b. Bruk følgende figur til å bevise Pythagoras setning.

22 eksempler Skriv om x 1 x er et produkt av to oddetall - hvilke? Vis at a 2 + b 2 2ab uansett verdien av tallene a, b. Bruk følgende figur til å bevise Pythagoras setning.

23 eksempler Skriv om x 1 x er et produkt av to oddetall - hvilke? Vis at a 2 + b 2 2ab uansett verdien av tallene a, b. Bruk følgende figur til å bevise Pythagoras setning.

24 eksempler Skriv om x 1 x er et produkt av to oddetall - hvilke? Vis at a 2 + b 2 2ab uansett verdien av tallene a, b. Bruk følgende figur til å bevise Pythagoras setning.

25 Outline 1

26 Potenser La p, q være rasjonale tall (dvs brøker) og x > 0, da er: x p = 1 x p x p+q = x p x q (x p ) q = x pq

27 Potenser La p, q være rasjonale tall (dvs brøker) og x > 0, da er: x p = 1 x p x p+q = x p x q (x p ) q = x pq

28 Potenser La p, q være rasjonale tall (dvs brøker) og x > 0, da er: x p = 1 x p x p+q = x p x q (x p ) q = x pq

29 Potenser: Eksempler Regn ut: ( 1 3 ) Trekk sammen: (3 3n + 3 3n )(3 3n 3 3n ) Regn ut ( 2 8 ) 2

30 Potenser: Eksempler Regn ut: ( 1 3 ) Trekk sammen: (3 3n + 3 3n )(3 3n 3 3n ) Regn ut ( 2 8 ) 2

31 Potenser: Eksempler Regn ut: ( 1 3 ) Trekk sammen: (3 3n + 3 3n )(3 3n 3 3n ) Regn ut ( 2 8 ) 2

32 Potenser: Eksempler Regn ut: ( 1 3 ) Trekk sammen: (3 3n + 3 3n )(3 3n 3 3n ) Regn ut ( 2 8 ) 2

33 Outline 1

34 Tallet x måler avstanden fra x til 0 på tall-linjen. Tallet x a måler avstanden fra x til tallet a på tall-linjen. Dette er den klart enkleste måte at forstå tallverdi på!

35 Tallet x måler avstanden fra x til 0 på tall-linjen. Tallet x a måler avstanden fra x til tallet a på tall-linjen. Dette er den klart enkleste måte at forstå tallverdi på!

36 Tallet x måler avstanden fra x til 0 på tall-linjen. Tallet x a måler avstanden fra x til tallet a på tall-linjen. Dette er den klart enkleste måte at forstå tallverdi på!

37 Tallet x måler avstanden fra x til 0 på tall-linjen. Tallet x a måler avstanden fra x til tallet a på tall-linjen. Dette er den klart enkleste måte at forstå tallverdi på!

38 eksempler Finn alle x slik at x 1 < x Finn alle x slik at 1 < x 1 < 2

39 eksempler Finn alle x slik at x 1 < x Finn alle x slik at 1 < x 1 < 2

40 eksempler Finn alle x slik at x 1 < x Finn alle x slik at 1 < x 1 < 2

41 Outline 1

42 Ligningsregler En ligninge r et blansert uttrykk. Man kan: Multiplisere begge sider av en ligning med det samme tallet. (ikke 0) Addere det samme tallet til begge sider av en ligning.

43 Ligningsregler En ligninge r et blansert uttrykk. Man kan: Multiplisere begge sider av en ligning med det samme tallet. (ikke 0) Addere det samme tallet til begge sider av en ligning.

44 Ligningsregler En ligninge r et blansert uttrykk. Man kan: Multiplisere begge sider av en ligning med det samme tallet. (ikke 0) Addere det samme tallet til begge sider av en ligning.

45 Noen ligningsfakta Vi kan ha flere ligninger med flere ukjente. En ligning kan ha 0, 1, 2, 3, 4, 5,... eller uendelig mange løsninger. Dersom Ax 2 + Bx + C = 0 er x = B± B 2 4AC 2A

46 Noen ligningsfakta Vi kan ha flere ligninger med flere ukjente. En ligning kan ha 0, 1, 2, 3, 4, 5,... eller uendelig mange løsninger. Dersom Ax 2 + Bx + C = 0 er x = B± B 2 4AC 2A

47 Noen ligningsfakta Vi kan ha flere ligninger med flere ukjente. En ligning kan ha 0, 1, 2, 3, 4, 5,... eller uendelig mange løsninger. Dersom Ax 2 + Bx + C = 0 er x = B± B 2 4AC 2A

48 Noen ligningsfakta Vi kan ha flere ligninger med flere ukjente. En ligning kan ha 0, 1, 2, 3, 4, 5,... eller uendelig mange løsninger. Dersom Ax 2 + Bx + C = 0 er x = B± B 2 4AC 2A

49 Ligningseksempler 2x 1 = 3 xy = 1, x 2y = 1 x 2 + 2x + 1 = 0 x 4 + x 2 1 x = 1

50 Ligningseksempler 2x 1 = 3 xy = 1, x 2y = 1 x 2 + 2x + 1 = 0 x 4 + x 2 1 x = 1

51 Ligningseksempler 2x 1 = 3 xy = 1, x 2y = 1 x 2 + 2x + 1 = 0 x 4 + x 2 1 x = 1

52 Ligningseksempler 2x 1 = 3 xy = 1, x 2y = 1 x 2 + 2x + 1 = 0 x 4 + x 2 1 x = 1

Forberedelseskurs i matematikk

Forberedelseskurs i matematikk Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall

Detaljer

Hva man må kunne i kapittel 2 - Algebra

Hva man må kunne i kapittel 2 - Algebra Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.

Detaljer

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at :

KAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at : KAPITTEL - ALGEBRA. Regnerekkefølger og regneregler Legg først merke til at: 2( ) = 2 ( ) = 6, ab = a b = b a = ba og a a = a 2 Legg spesielt merke til at : a 2 = a a, ( a) 2 = ( a) ( a) = a 2 og ( a)

Detaljer

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.

Forord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011. 1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh

Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt

( ) ( ( ) ) 2.12 Løsningsforslag til oppgaver i avsnitt . til oppgaver i avsnitt... Regn ut (a) i j k, (b) j k i, (c) k ì j, (d) k j -j k -i (e) i i 0, (f) j j 0 Vektorene i, j og k danner et høyre-system, så derfor er i j k, j k i, k ì j, k j -j k -i. i i

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Løsninger til forkursstartoppgaver

Løsninger til forkursstartoppgaver Løsninger til forkursstartoppgaver Prosent: Oppgave 1. Prisforskjell er 20. 20 100 Kylling er da =66 2 prosent dyrere. 30 3 Vi beregner hvor mange prosent 20 er av 30. Kylling er også 20 100 =40 prosent

Detaljer

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut.

Matematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut. Matematikktentamen - eksamensklassen Onsdag 11. desember 2013 Løsningsforslag Oppgave 1. Regn ut. a) 11 2 4 + 1 = 11 8 + 1 = 4 b) 10 : (-2) + 4 + 8 : 4 = -5 + 4 + 2 = 1 c) -5 (10 4 2) = -5 (10 8) = -5

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag

Eksamen i FO929A Matematikk Underveiseksamen Dato 14. desember 2006 Tidspunkt Antall oppgaver 4. Løsningsforslag Eksamen i FO99A Matematikk Underveiseksamen Dato. desember 6 Tidspunkt 9. -. Antall oppgaver Vedlegg Tillatte hjelpemidler Ingen Godkjent kalkulator Godkjent formelsamling Oppgave Vi løser likningene ved

Detaljer

TALL. 1 De naturlige tallene. H. Fausk

TALL. 1 De naturlige tallene. H. Fausk TALL H. Fausk 1 De naturlige tallene De naturlige tallene er 1, 2, 3, 4, 5,... (og så videre). Disse tallene brukes til å telle med, og de kalles også telletallene. Listen med naturlige tall stopper ikke

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 1 Stine M. Berge 05.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 05.07.19 1 / 23 Introduksjon Informasjon: https://wiki.math.ntnu.no/oppfrisk/2019/start

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Oppfriskningskurs i matematikk Dag 3

Oppfriskningskurs i matematikk Dag 3 Oppfriskningskurs i matematikk Dag 3 Petter Nyland Institutt for matematiske fag Onsdag 8. august 2018 Dagen i dag Tema 4 Polynomer: Faktorisering, røtter, polynomdivisjon, kvadratiske ligninger og rasjonale

Detaljer

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Karl K. Brustad 11. august 2013 1 Logikk Logikk er læren om lovene som gjør tenkningen,

Detaljer

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker.

Deriver funksjonene. Gjør greie for hvilke derivasjonsregler du bruker. Heldagsprøve i matematikk, 1. desember 006 Forkurs for Ingeniørutdanningen ved HiO, 006/07 Antall oppgaver: Antall timer: 5 timer fra klokken 0900 til klokken 100. Hjelpemidler: Kalkulator og Formelsamling

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006

Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en

Detaljer

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir.

Men han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir. 3.0 Variabler Peder har en stor eplehage og selger epler i hele kasser. En dag selger han 3 kasser og den neste 5 kasser. Han vil finne ut hvor mange epler han har solgt til sammen når det er 50 epler

Detaljer

Oppfriskningskurs i matematikk 2007

Oppfriskningskurs i matematikk 2007 Oppfriskningskurs i mtemtikk 2007 Mrte Pernille Htlo Institutt for mtemtiske fg, NTNU 6.-11. ugust 2007 Velkommen! 2 Temer Algebr Trigonometri Funksjoner og derivsjon Integrsjon Eksponensil- og logritmefunksjoner

Detaljer

SAMMENDRAG OG FORMLER

SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen

Detaljer

Matematikk for økonomer Del 2

Matematikk for økonomer Del 2 Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at

Detaljer

Algebra. Mål. for opplæringen er at eleven skal kunne

Algebra. Mål. for opplæringen er at eleven skal kunne 8 1 Algebra Mål for opplæringen er at eleven skal kunne regne med potenser, formler, parentesuttrykk og rasjonale og kvadratiske uttrykk med tall og bokstaver omforme en praktisk problemstilling til en

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

Oppfriskningskurs i Matematikk

Oppfriskningskurs i Matematikk Oppfriskningskurs i Matematikk Dag 3 Stine M. Berge 07.08.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 07.08.19 1 / 19 Polynomer Polynomer er de enkleste funksjonene Definert og kontinuerlig

Detaljer

Oppfriskningskurs dag 2

Oppfriskningskurs dag 2 Grafer og Oppfriskningskurs dag 2 Grafer og Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Grafer og Outline 1 Grafer og Outline Grafer og 1 Grafer og Grafer og Vi ser på ligninger av to

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Oppfriskningskurs i matematikk Dag 1

Oppfriskningskurs i matematikk Dag 1 Oppfriskningskurs i matematikk Dag 1 Petter Nyland Institutt for matematiske fag Mandag 6. august 2018 Om meg Bachelor- og mastergrad i matematiske fag (2014, 2016) Doktorgradsstipendiat i matematikk (2016

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver Potenser og tallsystemer KATEGORI. Potenser Oppgave.0 a) b) c) d) Oppgave. a) 0 b) ( ) c) ( ) d) ( ) Oppgave. Skriv uttrykkene som én potens. a) b) 7 c) d). Potensene a 0 og a n Oppgave.0 a) 7

Detaljer

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis

Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Litt om Logikk, Denisjoner og Teoremer. Mengder og Egenskaper ved de Reelle Tall. Bevisføring i Teori og Praksis Karl K. Brustad 14. august 2013 1 Logikk Logikk er læren om lovene som gjør tenkningen,

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

Matematikk R1 Oversikt

Matematikk R1 Oversikt Matematikk R1 Oversikt Lars Sydnes, NITH 20. mai 2014 I. ALGEBRA ANNENGRADSLIGNINGER Annengradsformelen: ax 2 + bx + c = 0 x = b ± b 2 4ac 2a (i) 0 løsninger hvis b 2 4ac < 0 (ii) 1 løsning hvis b 2 4ac

Detaljer

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K

Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K Løsningsforslag Matematikk for ungdomstrinnet Del 1, Modul 1, 4MX130UM1-K ORDINÆR EKSAMEN 11.1.009 Oppgave 1 a) En følge av parallellaksiomet er at samsvarende vinkler ved parallelle linjer er like store.

Detaljer

REGEL 1: Addisjon av identitetselementer

REGEL 1: Addisjon av identitetselementer REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med

Detaljer

Fagdag torsdag

Fagdag torsdag Fagdag torsdag 30.04.2015 Flere treningsoppgaver i CAS: Med løsningsskisser Oppgave 1 Bruk CAS til å bevise at gjennomsnittet av x-verdiene til nullpunktene er lik gjennomsnittet av x-verdiene til vendepunktene

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Randi Løchsen Jan Erik Gulbrandsen Arve Melhus Matematikk for ungdomstrinnet 9B Fasit Engangsbok 9B FASIT TIL KAPITTEL D TALL OG FORHOLD MELLOM TALL D 1 1 7 9 11 1 1 1 1 1 17 1 19 0 D D D 9 7 1 0 1 7 9

Detaljer

Matriser. Kapittel 4. Definisjoner og notasjon

Matriser. Kapittel 4. Definisjoner og notasjon Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper

Detaljer

Determinanter til 2 2 og 3 3 matriser

Determinanter til 2 2 og 3 3 matriser Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =

Detaljer

Matematikk 1 (TMA4100)

Matematikk 1 (TMA4100) Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.

En konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter. Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles

Detaljer

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31,

Tall SKOLEPROSJEKT MAT VÅR 2014 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM. Date: March 31, Tall SKOLEPROSJEKT MAT400 - VÅR 204 AUTHORS: ASTRI STRAND LINDBÆCK CAMILLA HELVIG PIA LINDSTRØM Date: March 3, 204. 2. Innledning Vårt skoleprosjekt omhandler ulike konsepter innenfor det matematiske området

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Noen regneregler som brukes i Keynes-modeller

Noen regneregler som brukes i Keynes-modeller Forelesningsnotat nr 5, august 2009, Steinar Holden Noen regneregler som brukes i Keynes-modeller Først litt repetisjon ) Vi kan sette en felles faktor utenfor en parentes: Y ty = Y(-t) der det siste uttrykket

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Løs likningssystemet 5x y 4 3x 4y 6 Oppgave (1 poeng) Løs likningen x 310 3000 Oppgave 3 ( poeng) Regn ut og skriv svaret på standardform 6 0,5 10 0, 10 310 4

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag

Obligatorisk oppgave i MAT 1100, H-03 Løsningsforslag Oppgave : Obligatorisk oppgave i MAT, H- Løsningsforslag a) Vi skal regne ut dx. Substituerer vi u = x, får vi du = x dx. De xex nye grensene er gitt ved u() = = og u() = = 9. Dermed får vi: 9 [ ] 9 xe

Detaljer

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo

Polare trekanter. Kristian Ranestad. 27. oktober Universitetet i Oslo Universitetet i Oslo 27. oktober 2011 Pol og polare Enhetssirkelen har likningen q(x, y) = x 2 + y 2 1 = 0 For hvert punkt a = (a 1, a 2 ) på sirkelen er tangentlinja til sirkelen definert av likningen

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Matematikkkurs M0 Oppgaver

Matematikkkurs M0 Oppgaver Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Tillegg til kapittel 2 Grunntall 9

Tillegg til kapittel 2 Grunntall 9 18.09.2013 Kvadratsetningene Tillegg til kapittel 2 Grunntall 9 Nytt læringsmål i revidert læreplan 2013 Mål for det du skal lære: kunne bruke kvadratsetningene til å multiplisere to parentesuttrykk Bjørn

Detaljer

Løsningsskisser til arbeidsoppgaver i CAS.

Løsningsskisser til arbeidsoppgaver i CAS. Løsningsskisser til arbeidsoppgaver i CAS. Oppgave 1 En bonde har et 20 meter langt gjerde og skal sperre av et rektangulært område der en av sidene i rektangelet er en fjøsvegg. Finn maksimalt areal som

Detaljer

MA2401 Geometri Vår 2018

MA2401 Geometri Vår 2018 MA2401 Geometri Vår 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 9 5.6 5 La ABC være en trekant, og la m A,m B og m C være midtnormalene på de

Detaljer

TMA4140 Diskret Matematikk Høst 2018

TMA4140 Diskret Matematikk Høst 2018 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4140 Diskret Matematikk Høst 2018 Seksjon 4.1 6 Dersom a c og b d, betyr dette at det eksisterer heltall s og t slik at c

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Kompendium h-2013. MAT100 Matematikk. Formelsamling. Per Kristian Rekdal

Kompendium h-2013. MAT100 Matematikk. Formelsamling. Per Kristian Rekdal Kompendium h-2013 MAT100 Matematikk Formelsamling Per Kristian Rekdal Forord Dette er formelsamlingen i emnet MAT100 Matematikk ved Høgskolen i Molde, 2013. Formelsamlingen er ment å brukes når man løser

Detaljer

K Andre Ordens Differensialligninger

K Andre Ordens Differensialligninger K 6.6 - Andre Ordens Differensialligninger Innhold: H-P Ulven, 03.04.09 Terminologi Utvikling av regel for løsning av y ay by 0 (Tilfelle: y Ce r 1x De r x ) Utvikling av regel for løsning av y ay by 0

Detaljer

Matematikk 01 - Matematikk for data- og grafiske fag.

Matematikk 01 - Matematikk for data- og grafiske fag. Høgskolen i Gjøvik Avdeling for teknologi Versjon per. juni 004 Matematikk 0 - Matematikk for data- og grafiske fag. y x Hans Petter Hornæs hans.hornaes@hig.no Forord Dette kompendiet er skrevet for faget

Detaljer

Innhold Innhold... 1 Kompetansemål Algebra, S Innledning Potenser og kvadratrøtter... 4

Innhold Innhold... 1 Kompetansemål Algebra, S Innledning Potenser og kvadratrøtter... 4 1 Algebra Innhold Innhold... 1 Kompetansemål Algebra, S1... 3 Innledning... 3 1.1 Potenser og kvadratrøtter... 4 Regneregler for potenser... 5 Definisjoner og regnereglene for potenser Oppsummering...

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Regning med variabler

Regning med variabler Regning med variabler???? (x y) (x y) Hvordan kan Herman regne ut uttrykket på tavla? Når vi skal regne ut bokstavuttrykk med parenteser, må vi løse opp parentesene først. Hvis det står et tall eller et

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

1T eksamen våren 2018

1T eksamen våren 2018 1T eksamen våren 018 DEL 1 Uten hjelpemidler Tid: Del 1 skal leveres inn etter 3 timer. Hjelpemidler: Del 1 Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 ( poeng) Løs

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter:

Husk at minustegn foran et tall eller en variabel er å tenke på som tallet multiplisert med det som kommer etter: Økonomisk Institutt, november 2006 Robert G. Hansen, rom 1207 ECON 1210: Noen regneregler og løsningsprosedyrer som brukes i kurset (A) Faktorisering og brøkregning (1) Vi kan sette en felles faktor utenfor

Detaljer

Analysedrypp I: Bevis, mengder og funksjoner

Analysedrypp I: Bevis, mengder og funksjoner Analysedrypp I: Bevis, mengder og funksjoner Hensikten med Analysedrypp er å bygge en bro mellom MAT1100 og MAT1110 på den ene siden og MAT2400 på den andre. Egentlig burde det være unødvendig med en slik

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Fagdag CAS-trening

Fagdag CAS-trening Fagdag 03.12.2015 - CAS-trening Innhold: Viktige kommandoer på side 1. Eksempler på bruk av CAS side 1-4. Arbeidsoppgaver på side 5 og utover. Viktige kommandoer: Se oversiktene side 444 og side 446 i

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Kapittel 10 LIGNING AV FØRSTE GRAD MED EN UKJENT. Hvor mange lodd må vi flytte for å balansere vekta?

Kapittel 10 LIGNING AV FØRSTE GRAD MED EN UKJENT. Hvor mange lodd må vi flytte for å balansere vekta? Hvor mange lodd må vi flytte for å balansere vekta? Vekta balanserer når vi flytter lodd. 4 16 4 16 Vi adderer tallet til begge sidene. Vi legger nye lodd i hver skål. 4 16 4 4 16 4 Vi subtraherer 4 fra

Detaljer

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2.9 Løsningsforslag til oppgavene i avsnitt Løsningsforslag. a. b. .9 til oppgavene i avsnitt.9.9. Regn ut (a) k ( i + j ), () ( i k ) ( j + 3k ), (c) ( i j + 3k ) ( 3i + j k ) a. k ( i + j ) = 0,0,,,0 = 0 + 0 + 0 = 0. ( i k ) ( j k ) ( ) + 3 =, 0, 0,,3 = 0 + 0 + 3 =

Detaljer

Kompendium h-2013. MAT100 Matematikk. Del 1 (av 2) Per Kristian Rekdal

Kompendium h-2013. MAT100 Matematikk. Del 1 (av 2) Per Kristian Rekdal Kompendium h-2013 MAT100 Matematikk Del 1 (av 2) Per Kristian Rekdal Forord Dette er kompendiet i kurset MAT100 Matematikk ved Høgskolen i Molde, 2013. Forelesningene vil i all hovedsak følge dette kompendiet.

Detaljer

1 Potenser og tallsystemer

1 Potenser og tallsystemer Oppgaver 1 Potenser og tallsystemer KATEGORI 1 1.1 Potenser Oppgave 1.110 3 b) 3 c) 4 d) 4 Oppgave 1.111 10 3 b) ( 5) c) ( ) 3 d) ( ) 4 Oppgave 1.11 Skriv uttrykkene som én potens. 3 4 b) 5 3 c) 5 3 5

Detaljer

JULETENTAMEN 2016, FASIT.

JULETENTAMEN 2016, FASIT. JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:

Detaljer

Algebraiske morsomheter Vg1-Vg3 90 minutter

Algebraiske morsomheter Vg1-Vg3 90 minutter Lærerveiledning Passer for: Varighet: Algebraiske morsomheter Vg1-Vg3 90 minutter Algebraiske morsomheter er et skoleprogram hvor elevene kan bruke forskjellige matematiske modeller i praktiske undersøkende

Detaljer

R2 - Vektorer i rommet

R2 - Vektorer i rommet R2 - Vektorer i rommet - 26.01.17 Del I - Uten hjelpemidler Løsningsskisser - versjon 31.01.17 Oppgave 1 Gitt vektorene u 1, 2, 3 og v 2, 1, 4. a) Regn ut u v b) Regn ut u v c) Regn ut w u t v d) Løs vektorligningen

Detaljer

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013

Kvalifiseringstjenesten Tentamen matematikk GS3 22. 04. 2013 Tentamen matematikk GS3 Mandag 22. april 2013 DEL 1 Excel Oppgave 1. Hans låner 90 000 kr i banken til 4 % rente pr år. Nedbetalingstiden for lånet er 6 år. a) Lag tabellen nedenfor i Excel. År % rente

Detaljer

Kompendium til MATH001 - Forkurs i matematikk

Kompendium til MATH001 - Forkurs i matematikk Kompendium til MATH001 - Forkurs i matematikk Høst 017, NMBU Kine Josefine Aurland-Bredesen, e-post: kine.josefine.aurland-bredesen@nmbu.no f (x) = 1 x Kompendiumet gir en rask gjennomgang av grunnleggende

Detaljer

Heltallsdivisjon og rest div og mod

Heltallsdivisjon og rest div og mod Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b

Detaljer

1.1 Tall- og bokstavregning, parenteser

1.1 Tall- og bokstavregning, parenteser MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.

Detaljer

Dette er en FORELØBIG versjon fra 13. juni 2001, for korrektur og kommentarer!

Dette er en FORELØBIG versjon fra 13. juni 2001, for korrektur og kommentarer! MATEMATIKK Dette er en FORELØBIG versjon fra 3. juni 00, for korrektur og kommentarer! Det har tatt adskillig mer tid å skrive dette enn antatt. Noen konsekvenser av dette: Kapittel 8, lineær algebra,

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer