Løsninger til forkursstartoppgaver
|
|
- Gaute Andreas Tønnessen
- 7 år siden
- Visninger:
Transkript
1 Løsninger til forkursstartoppgaver Prosent: Oppgave 1. Prisforskjell er Kylling er da =66 2 prosent dyrere Vi beregner hvor mange prosent 20 er av 30. Kylling er også =40 prosent billigere. 50 Vi beregner hvor mange prosent 20 er av 50. Oppgave 2. Forskjell i lønn er Lønn i Finnmark er da =75 prosent mer Vi beregner hvor mange prosent er av Lønn i Haparanda (med kjent vansklig skolesjef) er = = prosent mindre. Oppgave Lønn øket med 500, det er = = 20 7 =2 6 7 prosent mer. Vi beregner hvor mange prosent 500 er av Oppgave Varen selges for 1.25 =120 dersom hvis vi øker 120 med 25 prosent må vi multiplisere med 1.25 Hvis vi regner prosent på innkjøpspris er fortjeneste 20 prosent. Normalt beregnes fortjeneste på salgspris likevel og da blir fortjeneste kun = = prosent. Oppgave 5. Hvis 300 øker med 10 prosent får vi nyt beløp Hvis dette beløp deretter minker med 10 prosent får vi beløp =297 Hvis 300 minker med 10 prosent og deretter minker med 10 prosent får vi =297 igjen.
2 Beløp minker med 3 som er 1 prosent av 300. For 500 får vi på samme måte = =495 og beløp har minket med 5 som gir 1 prosent mindre. Oppgave 6. Beløp øker først til go deretter til = =242 Beløp øker med 42 hvilket er 21 prosent av 200. For 400 får vi =484 hvilket også er 21 prosent mer. Hvis 200 øker tre ganger får vi er 33.1 prosent mer =399.3 hvilket For 400 får vi også 33.1 prosent mer: =532.4 For å finne ut hvor mange ganger vi må øke 200 for å fordobble gir ønsket ulikhet n 400 og vi ønsker å finne minimalt n som gir minimal antall ganger vi må øke. Forkorter vi ulikhet med 200 får vi ulikhet 1.1 n =2 Prøver vi ulike verdier finner vi at n=7 gir 1.94<2 og n=8 gir over 2. Vi må øke med minst 8 ganger. Potenser: Oppgave 1. a) a m n =a mn for m=4 og n=2 og a=x som gir x 8 Vi kan også tenke at x 4 2 =x 4 x 4 = x x x x x x x x =x 8 b) Igjen kan vi bruke a m n =a mn men for m=3 og n =5 som gir a 3 5 =a 3 5 =a 15 Vi kan også tenke at 2 a 3 5 =2 a 3 a 3 a 3 a 3 a 3 =2 a a a a a a a a a a a a a a a =2 a 15 c) Vi kan bruke a m a n =a m n for m=5 og n=2 og a=n som gir n 5 2 =n 7 Vi kan også tenke at n 5 n 2 = n n n n n n n =n 7 d) Vi kan bruke a m a n =am n hvor m=5 og n=2 og a=n hvilket gir n 5 2 =n 3 Vi kan også tenke at n 5 n = n n n n n =n n n=n 3 2 n n
3 e) Bruker vi a m a n =a m n med m=k og n=2 får vi n k 2 f) Bruker vi a m a n =am n med m=k og n=2 og a=n får vi n k 2 g) Bruker vi a m n =a mn med m=2, n=k og a=n får vi n 2k Oppgave 2. a) Bruker vi a m n =a mn med m=2 og n=3 får vi a 2 3 =a 6 Bruker vi deretter a m a n =a m n med m=1 og n=6 får vi a a 2 3 =a a 6 =a 1 a 6 =a 7 Vi kan også tenke at a a 2 3 =a a 2 a 2 a 2 =a a a a a a a =a 7 b) Bruker vi a m a n =a m n hvor m=4 og n=1 og a=x får vi x 4 x= x 4 x 1 = x 5 Bruker vi deretter a m n =a mn hvor m=5 og n=2 og a=x får vi x 5 2 = x 10 c) Bruker vi a m n =a mn hvor m=2 og n=10 får vi a 2 10 =a 20 Bruker vi deretter a m a n =am n hvor m=20 og n=15 får vi a 2 10 a 15 = a20 a 15 =a20 15 =a 5 d) Bruker vi a m n =a mn hvor m=3, n=4 og a=y får vi y 3 4 = y 3 4 = y 12 Bruker vi deretter a m a n =a m n hvor m=12, n=4 og a=y får vi y 3 4 y 4 = y 12 y 4 = y 12 4 = y 16 e) Bruker vi a m a n =a m n hvor m=3, n=5 og a=m får vi m 3 m 5 =m 3 5 =m 8 Bruker vi deretter a m n =a mn hvor m=8, n=3 og a=m får vi m 3 m 5 3 = m 8 3 =m 8 3 =m 24
4 f) Bruker vi a m a n =am n hvor m=7, n=2 og a=x får vi x 7 x 2 =x7 2 = x 5 Bruker vi deretter a m n =a mn hvor m=n=5 og a=x får vi 2 5 x7 = x = x 5 5 =x 5 5 =x 25 x Oppgave 3. a) 10 a 3 3 = 10 a 3 10 a 3 10a 3 = 10 a 3 10 a 3 10 a 3 hvilket er lik a 3 a 3 a 3 = 10 3 a 3 3 = 1000a 9 b) 6c 3 2 = 6c 3 6c 3 = 6 6 c 3 c 3 =36c 6 c) 3x 2x 3 =3x 2x 2x 2x= x x x x=24 x 4 d) a 2 b 2 ab 2 3 = a 2 2 b 2 a 3 b 2 3 =a 4 b 2 a 3 b 6 =a 4 3 b 2 6 =a 7 b 8 e) yz 2 2yz z= y 2 z y 3 z z= y2 z 2 y 3 z 3 z= y2 3 z =4y 5 z 6 Oppgave 4. a) 2ab 2 4ab = 22 a 2 b 2 3 4ab = a2 1 b 2 3 =1 a 1 b 1 = a b dersom b 1 = 1 b b) 81b 6 c 3 c 3 c 3 3b 2 c 4 = 81b6 3 4 b 2 4 c 4 = 81b6 3 4 b 8 c = b6 8 c 3 4 = 1 b 2 c 1 = 1 b 2 c c) 9 a 2 c c 3 3 3a 3 c 2 3 = 9 a2 3 3 a 3 3 c 2 = 9 a6 c a 9 c = a6 9 c 9 6 = 1 3 a 3 c 3 = c3 3a 3 f) d) e) 24 x 4 y 3 2xy 3 = 24 x4 y x 3 y 3 = 24 8 x4 3 y 3 3 =3x 2a 2 c 5 2 4a 2 c 2 = 22 a 2 2 c a 2 3 c 2 = 4a4 c a 6 c = a4 6 c 10 6 = 1 16 a 2 c 4 = c4 16a 2 x 2 3 y 2 2 x 3 y 3 3 = x6 y 4 x 9 y 9 = 1 x 3 y 5
5 Oppgave 5. a) = = = = = =4 2 =16 4 b) = = =2 3 = 1 2 3= 1 8 c) = = = = = eller tenk Oppgave 6. a) = = = =15 9 b) 5 20 = = =55 10 Oppgave 7. a) a 5 c 4 c b 2 c 5 = a5 c 4 b 2 c 5 c =a 5 b 2 c 4 c 5 =a 5 b 2 c =a 5 b 2 c 0 =a 5 b 2 c b) 18 u 2 v 3 w 8 v 2 s = 18 v 3 v 2 w 8 s 6v 4 w 5 4 s 2 24 u2 v 4 w 5 s = u2 v w 8 5 s 1 = 3u2 w 3 v 3 s c) 5 4 a a 2 3b 2 5b = a 3 a b 2 b 3 =53 3 a 3 2 b 2 3 =375 a 1 b = 375 ab d) a 2n 1 a 3n 1 =a2n 1 3n 1 =a 2n 1 3n 1 =a 2 n
6 e) b x 3 b 2x 1 b 3 x b b x 3 2x 1 bx 4 = = 5x 2 3 x 5x 2 b b 4x 1 =bx 4 4x 1 =b 3 3x f) x n y y n 2 x y 2 x 3 1 = x n y n 2 y n x n 2 y 2 x 3 = xn n 2 y n 2 n y 2 x 3 = x 2 y 2 y 2 x 3 = x 2 3 y 2 2 =x 1 y 0 = x Oppgave 8. a) = = =24 54=78 b) = = =8 8 27= 8 26= 208 Rekkefølger: Oppgave 1. a) 7 8 9=7 72=79 multiplikajson først b) =12 30=42 multiplikasjonene først c) = = = 50 =2 dersom det ikke fins faktorer 25 i teller og nevner å forkorte med må teller og nevner regnes ut først, potens i teller må regnes først d) = = =54 54=108 potense regnes først e) = = =10 4=6 brøket først 10 f) =30 15 =2 teller og nevner regnes først før forkorting Parenteser: Oppgave 2. Sum x x2 300 x4 x x x blir x x x4 og
7 x x x4 = x x x4 Oppgave 8. Inntekt er x x x 2 =200x 0.01 x x 3 Profitt er inntekt minus kostnad 200x 0.01x x x 0.02x 2 hvilket blir 200x 0.01x x x 0.02x 2 = x 0.03 x x 3 Oppgave 9. Inntekt er x x 0.001y y x 0.02y hvilket blir 100x 0.01x xy 50y 0.002xy 0.02y 2 =100x 50y 0.01x xy 0.02y 2 For profitt trekker vi fra kostnadene 100x 50y 0.01x xy 0.02y x 0.01x y 0.01y 2 og får 100x 50y 0.01x xy 0.02y x 0.01x y 0.01y 2 deretter trekker sammen og får x 30y 0.02x xy 0.03y 2 Oppgave 10. a) 5 a 2 2ab b 2 =5a 2 5 2ab 5b 2 =5a 2 10ab 5b 2 b) 2b 2 b ab 4a 2 =2b 2 b 2b 2 ab 2b 2 4a 2 =2b 3 2b 2 ab 8a 2 b 2 =2b 3 2ab 3 8a 2 b 2 c) 3c 3 4d 3cd c 2 = 3c 3 4d 3c 3 3cd 3c 3 c 2 = 12c 3 d 9c 4 d 3c 5
8 d) 4st 2 3s 2 t s 2t 1 = 4st 2 3s 2 t 4st 2 s 4st 2 2t 4st 2 1 gir 12 s s 2 t 2 t 4st 2 s 8s t 2 t 4st 2 = 12s 3 t 3 4s 2 t 2 8st 3 4st 2 Oppgave 12. 2m 1 2m 5 =2m 2m 2m 5 1 2m 1 5=4m 2 10m 2m 5=4m 2 12m 5 y 4 3y 4 = y 3y y 4 4 3y 4 4 =3y 2 4y 12y 16=3y 2 16y 16 m 2 3n m 2 n =m 2 m 2 m 2 n 3n m 2 3n n =m 4 m 2 n 3nm 2 3n 2 =m 4 2nm 2 3n 2 3y 2v 3y 2v 3y 2v = 3y 2v 3y 3y 3y 2v 2v 3y 2v 2v hvilket er lik 3y 2v 9y 2 6yv 6vy 4v 2 = 3y 2v 9y 2 4v 2 hvilket er lik 3y 9y 2 3y 4v 2 2v 9y 2 2v 4v 2 =27y 3 12yv 2 18vy 2 8v 3 2t v s t 2 v s =2t t 2t 2v 2t s v t v 2v v s s t s 2v s s hvilket er lik 2 t 2 4t v 2 t s vt 2 v 2 vs st 2 s v s 2 =2 t 2 3 tv ts 3 sv 2 v 2 s 2 Oppgave 13. Vi multipliserer to ganger med p hvilket gir K p p =K p 0.01p p 0.01p hvilket er K p 0.01p p 2 =K p p 2 = K p 0.01p 2 Vi har faktorisert 0.02p p 2 gjennom å dele på 0.01 til p 0.01p 2 Vi kan teste at vi kan komme tilbake gjennom å multiplisere parentes igjen med Beløp har øket 2p 0.01p 2 prosent
Prosent- og renteregning
FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra
DetaljerForberedelseskurs i matematikk
Forberedelseskurs i matematikk Formålet med kurset er å friske opp matematikkunnskapene før et år med realfag. Temaene for kurset er grunnleggende algebra med regneregler, regnerekkefølgen, brøk, ligninger
DetaljerKAPITTEL 1 - ALGEBRA. 1. Regnerekkefølger og regneregler. Legg først merke til at: Legg spesielt merke til at :
KAPITTEL - ALGEBRA. Regnerekkefølger og regneregler Legg først merke til at: 2( ) = 2 ( ) = 6, ab = a b = b a = ba og a a = a 2 Legg spesielt merke til at : a 2 = a a, ( a) 2 = ( a) ( a) = a 2 og ( a)
DetaljerTallregning og algebra
30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer
DetaljerSTEGARK. Når du behersker oppgavene som er på dette nivået, har du oppnådd minst lav kompetanse innen temaet algebra.
STEGARK NIVÅ A: POSITIVE UTTRYKK MED SAMME VARIABEL lav kompetanse innen temaet algebra. A.1: Trekke sammen positive uttrykk med samme variabel: Trekk sammen: 3d + 5d + 2d = A.2: Multiplisere et uttrykk
DetaljerINNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER
INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...
DetaljerRegning med variabler
Regning med variabler???? (x y) (x y) Hvordan kan Herman regne ut uttrykket på tavla? Når vi skal regne ut bokstavuttrykk med parenteser, må vi løse opp parentesene først. Hvis det står et tall eller et
DetaljerOppfriskningskurs dag 1
Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24
DetaljerFaktorisering og multiplisering med konjugatsetningen
Faktorisering og multiplisering med konjugatsetningen De følgende oppgavene er øvinger i faktorisering og multiplisering ved hjelp av konjugatsetningen /3. kvadratsetning. Gjennom oppgavene gir vi elevene
DetaljerMatematikktentamen - eksamensklassen Onsdag 11. desember Løsningsforslag. Oppgave 1. Regn ut.
Matematikktentamen - eksamensklassen Onsdag 11. desember 2013 Løsningsforslag Oppgave 1. Regn ut. a) 11 2 4 + 1 = 11 8 + 1 = 4 b) 10 : (-2) + 4 + 8 : 4 = -5 + 4 + 2 = 1 c) -5 (10 4 2) = -5 (10 8) = -5
DetaljerHeldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
DetaljerFormelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 5. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 9A og 9B
SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi
DetaljerEn konstant er et symbol med en fast verdi. 2 og er eksempler pô konstanter.
Algebra Variabel Konstant trekke sammen Algebra er bokstavregning. Det er et verktöy som forenkler regneoperasjonene i forskjellige omrôder av matematikken. Bokstavene er symboler for tall og skal behandles
DetaljerMatematikk for økonomer Del 2
Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at
DetaljerTest, 1 Tall og algebra
Test, 1 Tall og algebra Innhold 1.1 Tallregning... 1. Potenser... 5 1.3 Algebraiske uttrykk... 8 1.4 Likninger... 10 1.5 Faktorisering... 14 1.6 Andregradslikninger... 17 1.7 Faktorisering av andregradsuttrykk
DetaljerHva man må kunne i kapittel 2 - Algebra
Hva man må kunne i kapittel 2 - Algebra Teknikker og type-eksempler Faktorisering Se også eget notat om faktorisering på nettsidene mine. Faktorisering brukes til å: Finne fellesnevner i rasjonale uttrykk.
DetaljerNAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18
NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet
DetaljerFormelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009. Hossein Rostamzadeh
Formelsamling i matematikk vg1 Tillatt hjelpemiddel under tentamen del 2 Bleiker vgs. 2008/2009 Hossein Rostamzadeh 6. mai 2009 2 Kapittel 1 Algebra 1.1 Brøkregler 1.1.1 Addisjon av brøker a b + c d =
DetaljerEnkel matematikk for økonomer. Del 1 nødvendig bakgrunn. Parenteser og brøker
Vedlegg Enkel matematikk for økonomer I dette vedlegget går vi gjennom noen grunnleggende regneregler som brukes i boka. Del går gjennom de helt nødvendige matematikk-kunnskapene. Dette må du jobbe med
DetaljerDette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10.
SAMMENDRAG Dette er et sammendrag av det du har arbeidet med om tall og tallregning i Nummer 8, Nummer 9 og Nummer 10. Hvis du trenger mer trening utover oppgavene i Nummer 10, finner du ekstra oppgaver
DetaljerINNHOLD SAMMENDRAG TALL OG TALLREGNING
SAMMENDRAG TALL OG TALLREGNING INNHOLD TALL OG TALLREGNING... 2 PLASSVERDISYSTEMET... 2 PLASSERING PÅ TALLINJE... 2 UTVIDET FORM... 3 REGNESTRATEGIER... 3 DELELIGHETSREGLER... 3 SKRIFTLIG REGNING... 4
DetaljerMen han kan også først finne ut hvor mange kasser han har solgt og deretter regne ut hvor mange epler det blir.
3.0 Variabler Peder har en stor eplehage og selger epler i hele kasser. En dag selger han 3 kasser og den neste 5 kasser. Han vil finne ut hvor mange epler han har solgt til sammen når det er 50 epler
DetaljerOversikt over aktuelle temaer til matematikkprøve onsdag 28. november
Oversikt over aktuelle temaer til matematikkprøve onsdag 28. november 1. Algebra 1.1 Innsetting av tallverdier i bokstavuttrykk Eksempel 1: Sett inn a = 2 og regn ut verdien til uttrykket 4a 3 4a 3 = 4
DetaljerNoen regneregler som brukes i Keynes-modeller
Forelesningsnotat nr 5, august 2009, Steinar Holden Noen regneregler som brukes i Keynes-modeller Først litt repetisjon ) Vi kan sette en felles faktor utenfor en parentes: Y ty = Y(-t) der det siste uttrykket
DetaljerSAMMENDRAG OG FORMLER. Nye Mega 10A og 10B
SAMMENDRAG OG FORMLER Nye Mega 10A og 10B 1 Sammendrag og formler Nye Mega 10A Kapittel A GEOMETRI Oversikt over vinkelkonstruksjoner 90 45 60 30 120 135 67 1 2 75 Den pytagoreiske læresetningen I en rettvinklet
DetaljerVerktøyopplæring i kalkulator
Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk
DetaljerEnkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015
Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8
DetaljerUlikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter.
Ulikheter. Vi gir her eksempel på hvordan man kan finne ut hvornår ulikheter er sanne på forskjellige måter. Dersom man ofte ikke er intressert i å finne eksakte løsninger kun sikkre interval, er ulikheter
DetaljerForord. Molde, august 2011. Per Kristian Rekdal. Copyright c Høyskolen i Molde, 2011.
1 13. august 011 Forord Høgskolen i Molde gjennomfører forkurs i matematikk for studenter som har svakt grunnlag i dette faget, eller som ønsker å friske opp gamle kunnskaper. Formål: Målet med forkurset
DetaljerREGEL 1: Addisjon av identitetselementer
REGEL 1: Addisjon av identitetselementer Addisjon av identitetselementer a + 0 = a x + 0 = x Et identitetselement (nøytralt element) er et element som ikke medfører noen endring når det kombineres med
DetaljerHandelshøyskolen BI Eksamen i Met Matematikk for økonomer kl til Løsninger
Handelshøyskolen BI Eksamen i Met 91001 Matematikk for økonomer..1 00 kl 09.00 til 1.00 Løsninger OPPGAVE 0.1 Vi skal derivere disse funksjonene a) b) f( x) 3x 8 + 3x f ( x) x 8 1 + 3 x x 9 + 6x fx ( )
DetaljerKompendium til MATH001 - Forkurs i matematikk
Kompendium til MATH001 - Forkurs i matematikk Høst 017, NMBU Kine Josefine Aurland-Bredesen, e-post: kine.josefine.aurland-bredesen@nmbu.no f (x) = 1 x Kompendiumet gir en rask gjennomgang av grunnleggende
DetaljerCAS GeoGebra. Innhold. Matematikk for ungdomstrinnet
CAS GeoGebra Innhold CAS GeoGebra... 1 REGNING MED CAS-VERKTØYET... 2 Rette opp feil, slette linjer... 3 Regneuttrykk... 4 FAKTORISERE TALL... 4 BRØK... 4 Blandet tall... 5 Regneuttrykk med brøk... 5 POTENSER...
DetaljerRegning med tall og bokstaver
Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger
DetaljerKapittel 8. Potensregning og tall på standardform
Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive
DetaljerMAT1030 Plenumsregning 5
MAT1030 Plenumsregning 5 Ukeoppgaver Mathias Barra - 13. februar 2009 (Sist oppdatert: 2009-03-06 18:29) Oppgave 4.18 Uttrykk følgende påstander i predikatlogikk, og finn deres sannhetsverdier. (a) Det
DetaljerSammendrag R1. Sandnes VGS 19. august 2009
Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A
DetaljerSAMMENDRAG OG FORMLER
SAMMENDRAG OG FORMLER SAMMENDRAG OG FORMLER Nye Mega 8A Kapittel A GEOMETRI LINJE, LINJESTYKKE OG STRÅLE linje stråle linjestykke VINKLER VINKELBEIN OG TOPPUNKT En vinkel har et toppunkt. Denne vinkelen
DetaljerEmnenavn: Eksamenstid: 4 timer. Faglærer: Hans Kristian Bekkevard
EKSAMEN Emnekode: SFB10711 Dato: 2. mars 2018 Hjelpemidler: Godkjent kalkulator og utdelt formelsamling Emnenavn: Metodekurs 1, deleksamen i matematikk Eksamenstid: 4 timer Faglærer: Hans Kristian Bekkevard
DetaljerVerktøyopplæring i kalkulator for elever
Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator
Detaljer1.1 Tall- og bokstavregning, parenteser
MATEMATIKK: 1 Algebra 1 Algebra 1.1 Tall- og bokstavregning, parenteser Matematikk er et morsomt fag hvis vi får det til. Som på de fleste områder er det er morsomt og givende når vi lykkes. Skal en f.eks.
DetaljerOppgave P. = 2/x + C 6 P. + C 6 P. d) 12(1 x) 5 dx = 12u 5 1/( 1) du = 2u 6 + C = 2(1 x) 6 + C 6 P. Oppgave P.
Løsning MET 86 Matematikk for siviløkonomer Innleveringsfrist 5. mars 9 kl Vi benytter maksimal score 6p på hver deloppgave og 44p totalt, og grensen for å bestå er ca 86p. Du kan selv fylle ut tabellen
DetaljerLøsningsforslag matematikk S1 V14
Løsningsforslag matematikk S1 V14 Oppgave 1 Bruker ABC-formelen: ABC-formelen gir x = 2 x = 3 x 2 + 3x 3 = 3 2x x 2 + 5x 6 = 0 x = b ± b 2 4ac 2a lg(x + 2) = 2 lg x lg(x + 2) = lg x 2 10 lg(x+2) lg x2
DetaljerEksamen S2, Høsten 2013
Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x
DetaljerOppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn.
Plenumsregning 5 Ukeoppgaver fra kapittel 4 Roger Antonsen - 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse og den kontrapositive av følgende utsagn. Husk at hvis p q er påstanden,
DetaljerLøsningsforslag oppgave 1: En måte å løse oppgave på, er å først sette inn tall for de eksogene variable og parametre, slik at vi får
Steinar Holden, oktober 29 Løsningsforslag til oppgave-sett Keynes-modeller Oppgave Betrakt modellen: () Y C (2) C Y >, < < der Y er BNP, C er konsum, og er realinvesteringer. Y og C er de endogene variable,
DetaljerPotenser og prosenter
Potenser og prosenter 1.9 Læreplanmål 1 1.1 Potenser 2 1.2 Potensene a 0 og a n 2 1.3 Flere regneregler for potenser 3 1.4 Tall på standardform 5 1.5 Regning med tid 7 1.6 Prosentfaktorer 9 1.7 Vekstfaktorer
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerMAT1030 Diskret matematikk
MAT1030 Diskret matematikk Plenumsregning 5: Ukeoppgaver fra kapittel 4 Roger Antonsen Matematisk Institutt, Universitetet i Oslo 14. februar 2008 Oppgave 4.4 Skriv ned setninger som svarer til den konverse
Detaljer4 Matriser TMA4110 høsten 2018
Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere
DetaljerRasjonale potenser. For å finne side av kvadrat med gitt areal A løser vi likning x 2 = A.
Rasjonale potenser Vi har tidligere sett hvordan man definierer potenser med heltall. Vi skal nå se hvordan man naturlig definierer potenser også for rasjonale tall, dvs brøk hvor teller og nevner er heltall.
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Fagoppgave MET 804 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 28.02.209 Kl. 09:00 Innlevering: 07.03.209 Kl. 2:00 For mer informasjon om formalia, se eksamensoppgaven.
DetaljerTillegg til kapittel 2 Grunntall 9
18.09.2013 Kvadratsetningene Tillegg til kapittel 2 Grunntall 9 Nytt læringsmål i revidert læreplan 2013 Mål for det du skal lære: kunne bruke kvadratsetningene til å multiplisere to parentesuttrykk Bjørn
DetaljerMatematikkkurs M0 Oppgaver
Matematikkkurs M0 Oppgaver Avdeling for Lærerutdanning, Høgskolen i Vestfold. oktober 007 Brøk, desimaltall og prosent. Illustrer disse addisjonenen og subtraksjonene med papirark og bretting av rektangel
DetaljerFasit. Innhold. Tall og algebra Vg1T
Tall og algebra VgT Fasit Innhold Innhold.... Tallregning... 3 Tall og tallmengder... 3 Regningsarter... 4 Å regne med negative tall... 5 Addisjon og subtraksjon av brøker... 5 Multiplikasjon og divisjon
DetaljerMer om likninger og ulikheter
Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere
DetaljerEksamen S1 vår 2011 DEL 1. Uten hjelpemidler. Oppgave f x x. f x x. x x. S1 Eksamen våren 2011, Løsning MATEMATIKK
S Eksamen våren 0, Løsning Eksamen S vår 0 DEL Uten hjelpemidler Oppgave a) Vi har funksjonen f x x 3 x 5 ) Deriver funksjonen. f x x 3 3 5 f x x 6 5 ) Bestem f. Hva forteller svaret deg om grafen til
DetaljerPrissetting ved monopolistisk konkurranse. Pris. Y i = D(P i /P, Y) P i2 P i1. Y i2 Y i1. Kvantum
Vedlegg setting ved monopolistisk konkurranse I dette vedlegget skal vi se på nærmere på atferden til en enkelt bedrift, som vi vil kalle bedrift i. Vi antar at salget til bedrift i, Y i, avhenger av hvor
DetaljerJULETENTAMEN 2016, FASIT.
JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:
DetaljerS1-eksamen høsten 2017
S1-eksamen høsten 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Løs likningene a) x x 80, a 1, b, c 8 b b 4ac 4 1 ( 8) 4 6 1
DetaljerUDIRs eksempeloppgave høsten 2008
UDIRs eksempeloppgave høsten 008 Løsningsskisser Del Oppgave f x cos3x x sin3x 3 cos3x 6x sin3x fx 3u, u e 4x (Produktregel og kjerneregel på cos3x.) u e 4x 4 (Kjerneregel enda en gang...) d) f x 6uu 6u4e
DetaljerEmnenavn: Eksamenstid: Faglærer: Hans Kristian Bekkevard. består av 8 sider inklusiv denne forsiden og vedlagt formelsamling.
e. Høgskoleni Østfold ). EKSAMEN Emnekode: Emnenavn: SFB10711 Metode 1 matematikk deleksamen Dato: Eksamenstid: 3. juni 2016 4 timer Hjelpemidler: Kalkulator og vedlagt formelsamling Faglærer: Hans Kristian
DetaljerEksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
DetaljerOppgave 1. Oppgave 2. Oppgave 3. Oppgave 4
Kontrollprøve 1 i MET1180 1 - Matematikk for siviløkonomer 9.-16. oktober 2018 LØSNINGSFORSLG Oppgave 1 (a) Vi setter u = x 20 og får andregradslikningen u 2 20u = 21. Vi fullfører kvadratet: (u 10) 2
DetaljerLøsningsforslag til del 2 av oppgavesettet Tall og algebra i Sirkel oppgavebok 10B, kapittel 6
Tall og algera Del Løsningsforslag til del av oppgavesettet Tall og algera i Sirkel oppgaveok 10B, kapittel 6 Oppgave.1 a En pakke skinke holder til åtte horn. Sju pakker holder til 56 horn, og åtte pakker
DetaljerStudentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform
1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller
DetaljerAndregradslikninger. x 2 =d hvor d = c a
Andregradslikninger En andregradslikning har form ax bx c=0 hvor x er ukjent. Den enkelste er når b=0. Vi har då x =d hvor d = c a Denne likning kan løses med å ta rot. Eksempel 1. Vi løser x =11 Vi ønsker
DetaljerVi bruker desimaltall for Ô oppgi verdiene mellom de hele tallene. Tall med komma kaller vi desimaltall, og sifrene bak komma kaller vi desimaler.
196 FAKTA De naturlige tallene bestôr av ett eller ere sifre: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,...Alle de hele positive tallene kaller vi naturlige tall, og tallmengden kaller vi N. NÔr vi tar med 0 og
DetaljerFAKTORISERING FRA A TIL Å
FAKTORISERING FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til faktorisering F - 2 2 Grunnleggende om faktorisering F - 2 3 Fremgangsmåter F - 3 3.1 Den grunnleggende
DetaljerSammendrag R1. 26. januar 2011
Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander
DetaljerRonny Kjelsberg. Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk
Ronny Kjelsberg Noen grunnleggende elementer innen manipulasjon av brøk og enkle algebraiske uttrykk Contents Hvordan bli en BRØKREGNER på en, to, tre:. EN: Basics................................ Hva er
DetaljerAlgebra S1 Quiz. Test, S1 Algebra
Test, S1 Algebra Innhold 1.1 Potenser og kvadratrøtter... 1. Algebraiske uttrykk... 5 1.3 Likninger... 8 1.4 Andregradslikninger... 1 1.5 Ulikheter... 15 1.6 Logaritmer... 1 1.7 Implikasjon og ekvivalens...
DetaljerUniversitetet i Agder Fakultet for teknologi og realfag EKSAMEN
Bokmål Universitetet i Agder Fakultet for teknologi og realfag EKSAMEN Emnekode: MA-5 og MA-38 Emnenavn: Matematikk med anvendelse i økonomi Dato: 2. desember 20 Varighet: 09.00-3.00 Antall sider: 3 +
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Mål for Kapittel 1, Tallregning. Kompetansemål Mål for opplæringen er at eleven skal kunne gjøre overslag over svar, regne praktiske oppgaver, med og uten digitale verktøy, presentere
DetaljerMatriser. Kapittel 4. Definisjoner og notasjon
Kapittel Matriser Vi har lært å løse et lineært ligningssystem ved å sette opp totalmatrisen til systemet gausseliminere den ved hjelp av radoperasjoner på matrisen Vi skal nå se nærmere på egenskaper
DetaljerR2-01.09.14 - Løsningsskisser
R - 0.09.4 - Løsningsskisser Algebra Oppgave Finn den eksplisitte formelen for n te ledd i tallfølgene: a), 4, 6, 8, 0,... b),, 5, 7, 9,... c), 4, 9, 6, 5,... d),, 4, 5 4, 6 5,... a) Vi ser at følgen med
DetaljerLøsningsforslag: Eksamen i Brukerkurs for informatikere MA 0003, onsdag 30. november 2005
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 8 Løsningsforslag: Eksamen i Brukerkurs for informatikere MA 3, onsdag 3. november 5 Del Oppgave Funksjonen f(x) er
DetaljerHvordan kan du skrive det som desimaltall?
7 0 av jordoverflaten er vann. Hvordan kan du skrive det som desimaltall? 9 Alle disse tre har samme verdi! Brøk og desimaltall MÅL I dette kapitlet skal du lære om likeverdige brøker multiplikasjon av
DetaljerKapittel 1. Tallregning
Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser
DetaljerEksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
DetaljerEn divisor til et heltall N er et heltall som går opp i N. Både 1 og N regnes blant divisorene til N.
Oppgave 1 Hvilket av disse tallene er ikke heltall? 11! 12345678910 11 11! 11! 11! 11! 11! A B C D E 20 21 22 23 24 Hva må være oppfylt for at brøkene i løsningsalternativene skal bli hele tall? Hvilke
DetaljerE.1: Lage et uttrykk som viser sammenhengen mellom to variabler hvor nødvendige opplysninger gis eksplisitt E.2: Faktorisere flerleddet
1. november 2013 INNHOLD INNHOLD... 2 INNLEDNING... 4 STEGARK... 5 NIVÅ A: POSITIVE UTTRYKK MED SAMME VARIABEL... 5 NIVÅ B: TREKKE SAMMEN POSITIVE OG NEGATIVE UTTRYKK, INNSETTING AV POSITIVE VERDIER...
DetaljerInnhold Innhold... 1 Kompetansemål Algebra, S Innledning Potenser og kvadratrøtter... 4
1 Algebra Innhold Innhold... 1 Kompetansemål Algebra, S1... 3 Innledning... 3 1.1 Potenser og kvadratrøtter... 4 Regneregler for potenser... 5 Definisjoner og regnereglene for potenser Oppsummering...
DetaljerEuklids algoritmen. p t 2. 2 p t n og b = p s 1. p min(t 2,s 2 )
For å finne største felles divisor (gcd) kan vi begrense oss til N, sidenfor alle a, b Z, harvi gcd(a, b) =gcd( a, b ). I prinsippet, dersom vi vet at a = p t 1 kan vi se at 1 p t 2 2 p t n og b = p s
DetaljerMET Matematikk for siviløkonomer
SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,
DetaljerEksamen S2 va r Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (6 poeng)
Eksamen S va r 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x b) g x lnx 1 h x x e c) x Oppgave (
DetaljerMatematikk 01 - Matematikk for data- og grafiske fag.
Høgskolen i Gjøvik Avdeling for teknologi Versjon per. juni 004 Matematikk 0 - Matematikk for data- og grafiske fag. y x Hans Petter Hornæs hans.hornaes@hig.no Forord Dette kompendiet er skrevet for faget
DetaljerTALLÆRE UKE 34. Rest. Hvis vi deler a med b og det ikke går opp har vi rest som er mindre enn b.
TALLÆRE UKE 34. Faktor. Hva er en faktor i et heltall? Vi fant ut at hvis et heltall b er med i et regnestykke med kun multiplikasjon som gir heltallet a som svar da er b faktor i a. Eksempel: 3 8=24 og
DetaljerAlgebra. Mål. for opplæringen er at eleven skal kunne
8 1 Algebra Mål for opplæringen er at eleven skal kunne regne med potenser, formler, parentesuttrykk og rasjonale og kvadratiske uttrykk med tall og bokstaver omforme en praktisk problemstilling til en
DetaljerLøsningsforslag Eksamen R1 - REA3022-28.05.2008
Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerHeltallsdivisjon og rest div og mod
Heltallsdivisjon og rest div og mod La a og b være to heltall med a 0. Vi sier at a går opp i b (eng. a divides b) hvis det finnes et heltall c slik at b = ac. I så fall kalles a for en faktor i b og b
DetaljerSandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET Side 1 av 8
Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE MATEMATIKK 8.TRINN SKOLEÅRET 2016-2017 Side 1 av 8 Periode 1: UKE 33 - UKE 39 Sammenligne og regne om mellom hele tall, desimaltall, brøker,
DetaljerDette er en FORELØBIG versjon fra 13. juni 2001, for korrektur og kommentarer!
MATEMATIKK Dette er en FORELØBIG versjon fra 3. juni 00, for korrektur og kommentarer! Det har tatt adskillig mer tid å skrive dette enn antatt. Noen konsekvenser av dette: Kapittel 8, lineær algebra,
DetaljerAlgebra II. -Utgave B- (ToPLUSS for matematikkundervisningen) Eksempelsider! F. Rothe. 2006 by Frank Rothe, Salzburg, www.calculemus.
006 by Frank Rothe, Salzburg, www.calculemus.at Algebra II -Utgave B- (ToPLUSS for matematikkundervisningen) F. Rothe 006 by Frank Rothe, Salzburg, www.calculemus.at 3 Innholdsfortegnelse Forord...4 Oppgaver...5
Detaljerder Y er BNP, C er konsum, I er realinvesteringer og r er realrente. Y og C er de endogene variable, og I og r er eksogene.
Steinar Holden, februar 205 Løsningsforslag til oppgave-sett Keynes-modeller Oppgave Betrakt modellen: () Y = C + I (2) C = z C + Y - 2 r 0 < 0 der Y er BNP, C er konsum, I er realinvesteringer
Detaljer