3as.ency-education.com

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "3as.ency-education.com"

Transkript

1 املوضوع األول / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة العالمة مجزأة مجموع ) عناصر اإلجابة (الموضوع األول F 60 KN F 60 KN F 0KN D E β G C F1 0KN F1 0KN : الميكانيك التطبيقية : النشاط األول 1.50 F HB A B M M.00 VB.00 VB / XX ' 0 0 H B 0 H B 0 KN 0 VB 180 KN : حساب ردود األفعال 1 F/A 0 (0 ) (60 ) (VB ) (60 6) (0 9) 0 VB 00 KN F /B 0 (0 ) (0 ) ( ) (60 ) (0 6) 0 10 KN : حساب الجهود الداخلية في القضبان مع تحديد طبيعتها :A العقدة NAC NAB A 0 N AB 0 0 N AC 0 N AC 10KN :C العقدة 0KN 0KN C NCD 0 0 NCD NCB s 0 NCD NCB s 0...(1) NCB 0 0 N CA N CB sin 0 N CB 1.16 KN (1) N CD 0 N CB s N CD 10 KN NCA 4 من 1 صفحة as.

2 املوضوع األول / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة :B العقدة NBC NBF NBA β 0KN B 0 00 N BD N BC sin N BF sin 0 N BD 90 KN 00KN :D العقدة 60KN N BA N BF s N BC s 0 N BF 14. KN NBD NDC NDE D 0 NDC NDE NDF s 0 NDE NDF s 10...(1) 0 60 N DB N DF sin 0 N DF 67.11KN β (1) N DE N DF s 10 N DE 60 KN NDF NDB :E العقدة 60KN NED 0 N ED N EG 0 N EG 60 KN 0 60 N EF 0 N EF 60 KN NEG E NEF :G العقدة 0KN NGE G 0 N GE N GF s 0 N GF 67.11KN β NGF EG EF DE DF BF BD CD BC AB AC العناصر الشدة تركيبي الطبيعة FG )KN( : تحديد المجنب المناسب N N BC A BC A 6.6c A A=6.91c حيث L ( ) المجنب : من الجدول نختار 60 4 من صفحة as.

3 اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة مدنية) / الشعبة : تقين رايضي / بكالوراي / 710 : املوضوع األول النشاط الثاني : 1 حساب مساحة التسليح الطولي : Lf حساب النحافة : a حساب المعامل : 0.68 حساب المقطع المصغر : Br a b Br 644c حساب مقطع التسليح النظري : Nu Br f c 8 s Ath Ath 1.86c Ath 0,9 b f e حساب مقطع التسليح األدنى : 0, B ; Max 4u Ain Max 4.4c ;1.5c Ain 4.4c 100 Ain حساب مقطع التسليح المحسوب : Ascalc Max Ath ; Ain Ascalc Max 1.86; 4.4 Ascalc 1.86c اختيار مقطع التسليح الحقيقي : من جدول التسليح نختار : حيث : A c 4HA16 4HA S حساب التسليح العرضي المناسب : 16 t t قطر التسليح العرضي t 5. : نختار t 6 : التباعد : St Min 15 L in ; 40 c ; a 10 c St Min (15 1.4); 40 c ;(5 10) c L ax 61 نختار التباعد St=0c : St 1c HA16 4 HA14 رسم تسليح مقطع العمود : صفحة من 4 as.

4 اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة مدنية) / الشعبة : تقين رايضي / بكالوراي / 710 : املوضوع األول البناء : النشاط األول : 1 حساب مساحة قطعة األرض :ABCDE S ABCDE xa ye yb xb y A yc xc yb yd xd yc ye xe yd y A S ABCDE S ABCDE 017 حساب السمت االحداثي :GAD حساب فروق اإلحداثيات : xad xd xa xad y AD yd y A y AD حساب الزاوية المصغرة : g 74.gr.65 حساب السمت االحداثي GAD بما أن xad 0 y AD 0 tg ( g ) 51 : 0 فإن القطعة AD تقع في الربع األول وبالتالي : GAD g GAD 74.gr استنتاج السمت االحداثي :GDF بما أن GAD=GFD=74.gr فإن : GDF GFD 00 GDF 74.gr 60 النشاط الثاني : تصنيف الطرق تصنيفا إداريا :.1 الطرق السريعة. الطرق الوطنية.. الطرق الوالئية..4 الطرق البلدية صفحة 4 من 4 as. 6

5 املوضوع الثاين / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة العالمة ) عناصر اإلجابة (الموضوع الثاني مجزأة مجموع : الميكانيك التطبيقية : النشاط األول : حساب ردود الفعل 1 HB + FX 0 H B FY 0 VB VB 77KN... 1 M / A 0 VB VB 48.5KN M / B KN 1 VB KN Mf و T كتابة معادالت 1 q 1 0 x.5 :1 1 القطع Mf T x 10x 8.75 A T x 1 q M f KN..5 x 5 : القطع Mf.50 T.5.75KN M f (0) 0 F Mf x 5x 8.75x T KN T x 10x x T M f (x) 5x 16.75x 0 5 من 1 صفحة as. T KN T 5.5KN M f KN. M f KN.

6 املوضوع الثاين / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة q x 5 x 6.5 : القطع q T T VB x Mf Mf F : نختار القطع على اليمين T x x T 5 15KN T x 10x 65 T Mf x 6.5 x 10 M f KN. M f x x M f من رسم المنحنيات على الصفحة : تحديد أبعاد المقطع العرضي 0 ax M f ax W a a 8a 4 a 1 Wxx ' W W a 1 a M M f ax ax f ax ax W a ax M f ax M f ax M f ax a a a a a 14.49c a 15c 00 5 من صفحة as.

7 اإلجابة النموذجية ملوضوع اختبار مادة : التكنولوجيا (هندسة مدنية) / الشعبة : تقين رايضي / بكالوراي / 710 : املوضوع الثاين رسم المنحنيات النشاط الثاني : 1 حساب ردود األفعال صفحة 0 من 5 as.

8 املوضوع الثاين / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة FX 0 H B 6 0 H B 6KN FY 0 VB VB 1KN... 1 M / A 0 VB VB 7KN M / B KN 1 VB KN حساب الجهود الداخلية في القضبان A العقدة NAC NAE F 0 NAE s 0 N AE 0 A F/ yy' 0 81 N AC N AE sin 0 N AC 81KN C العقدة F F/ yy' 0 54 NCA NCE sin 0 NCE 48.67KN C F1 N CD F 0 6 NCE s NCD 0 NCD 76.50KN N CE N CA D العقدة F F/ yy' 0 54 N DE 0 N DE 54KN NDC D F 0 N DB N DC 0 N DB 76.50KN NDE NDB F 0 6 N BD NBE s 0 N BE 48.67KN NBD HB NBE B العقدة B VB 5 من 4 صفحة as.

9 املوضوع الثاين / 710 : بكالوراي / تقين رايضي : الشعبة / ) التكنولوجيا (هندسة مدنية : اإلجابة النموذجية ملوضوع اختبار مادة : جدول النتائج BE DE DB CE CD AE AC تركيبي اختيار المجنب المناسب N N S S N S 1600 S S.5c 51 العنصر (KN) الشدة الطبيعة 05. L (40x40x4) أي المجنب المناسب S=. c من الجدول نختار 50 : النشاط األول : البناء GAF والسمت اإلحداثي LAF حساب طول الضلع 1 X AF YAF LAF LAF الطول X AF X AF YAF YAF 44. L AF tg(g) XAF YAF ( 44.) L AF GAF السمت اإلحداثي g 6.14gr X AF G AF 00 g G AF G AF 17.86gr YAF SABCDEF حساب المساحة 1 Ln Ln 1 sin Gn 1 Gn 1 L AB L AC sin G AC G AB L AC L AD sin G AD G AC S ABCDEF L AD L AE sin G AE G AD L AE L AF sin G AF G AE S ABCDEF x4 0 SABCDEF sin sin sin sin SABCDEF جهاز االرتكاز من النيوبران تسمية العناصر : النشاط الثاني 10 مكعب االرتكاز الخرساني الرافدة الرابطة عمود الركيزة قاعدة األساس ركيزة جسر 5 من 5 صفحة as.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet

Detaljer

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes.

Dagens tema. C-programmering. Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Dagens tema C-programmering Nøkkelen til å forstå C-programmering ligger i å forstå hvordan minnet brukes. Adresser og pekere Parametre Vektorer (array-er) Tekster (string-er) Hvordan ser minnet ut? Variabler,

Detaljer

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering

Dagens tema INF1070. Vektorer (array er) Tekster (string er) Adresser og pekere. Dynamisk allokering Dagens tema Vektorer (array er) Tekster (string er) Adresser og pekere Dynamisk allokering Dag Langmyhr,Ifi,UiO: Forelesning 23. januar 2006 Ark 1 av 23 Vektorer Alle programmeringsspråk har mulighet til

Detaljer

Vektorer. Dagens tema. Deklarasjon. Bruk

Vektorer. Dagens tema. Deklarasjon. Bruk Dagens tema Dagens tema Deklarasjon Vektorer Vektorer (array-er) Tekster (string-er) Adresser og pekere Dynamisk allokering Alle programmeringsspråk har mulighet til å definere en såkalte vektor (også

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

JULETENTAMEN 2016, FASIT.

JULETENTAMEN 2016, FASIT. JULETENTAMEN 2016, FASIT. DELPRØVE 1. OPPGAVE 1 709 + 2598 = 3307 540-71 = 469 c: 2,9. 3,4 116 870 9,86 d: 30,6 : 0,6 = 306 : 6 = 51 30 6 6 OPPGAVE 2 440 kr 4 = 110 kr c: 7 4 7 2 = 7 4+2 =7 6 (Godtar også:

Detaljer

Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret

Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret Offentlig utvalg for punktskrift, OUP Norsk standard for 8-punktskrift punktskrift 24. oktober 2004 sist endret 19.10.2007 Desimal Hex Beskrivelse Tegnets utseende Punktkode 0 0000 4578

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR

Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR Taes med av RIV Taes med av RIE Kjøkkeninnredning ARK Fast inventar AR HC med håndgrep med skult. ( rustfritt stål med benk og skap Volumhette- for mopper Mini med innebygd kjøleskap og komfyr HC tilpasset

Detaljer

E 1996-gutter. B 1998-gutter

E 1996-gutter. B 1998-gutter Gruppe: Gruppe: A B 1999-gutter C 1998-gutter 2000 1997-gutter 1995-gutter AA Åga IL 1 BA Mo IL 1 CA Stålk 1 DA Åga IL 8 EA Stålk 3 FA Åga IL 11 AB Åga IL 2 BB Mo IL 2 CB Stålk 2 DB Åga IL 9 EB Stålk 4

Detaljer

A269 Riving av Tak Revisjon (1) 22.05.2008

A269 Riving av Tak Revisjon (1) 22.05.2008 Block Name Count MATERIAL NR HVA BREDDE LENGDE AREAL A269 Riving av tak 1 Raftutstikk B.300b Ekstrakostnader for spesialtilpassing for nytt Raftutstikk, tilkappes på plassen 0,5 60,5 30,25 A269 Riving

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

(+ /$0 &&&" 1&& 2 3 &$%+ 2 4 $%+ 5

(+ /$0 &&& 1&& 2 3 &$%+ 2 4 $%+ 5 !"#$$%% &%$$'$!"#$'$(&$'&))'!$ *$ +! " #$%& ' $&%!)'&##!(&%!)'&))'!$ *$ () *+%+ $ $),% $ -. #,&)-&%!).#,$$)%&%!)$%&)%$)&)$'")$% &%$$'&"%! &%!)$)"%,&)% '$!"#$/ (+ /$0 &&&" *+%$ " 1&& 2 )$02 0!#!&)%'")!'$,$'&"%1$)%-&%!)2

Detaljer

Oppgaver i kapittel 6

Oppgaver i kapittel 6 Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,

Detaljer

Eksamen 1T våren 2011

Eksamen 1T våren 2011 Eksamen 1T våren 011 Oppgave 1 a) 1) ) 7 6 00 000 =,6 10 0,04 10 =,4 10 4 b) c) x x + 6x= 16 + 6x 16 = 0 6 ± 6 4 1 ( 16) 6 ± 6 + 64 6 ± 100 6 ± 10 x = = = = = ± 5 1 x = 8 eller x = x x xx > 0 ( 1) > 0

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

apple К apple fl 0 0

apple К apple fl 0 0 0 0 4 0 0 4 0 0 0 5 0 5 0 6 0 7 0 0 5 0 0 0 0 0 0 5 0 0 9 0 7 0 5 0 5 0 0 5 0 5 0 0 0 4 0 4 0 0 9 0 0 0 0 0 5 0 0 0 7 0 4 0 0 0 5 0 0 9 0 4 0 5 0 0 0 5 0 0 0 0 6 0 0 0 0 Кapple 6 0 6 5 0 8 0 6 0 4 0 0

Detaljer

Løsningsforslag. Høst Øistein Søvik

Løsningsforslag. Høst Øistein Søvik Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )

Detaljer

Løsning eksamen 1T våren 2010

Løsning eksamen 1T våren 2010 Løsning eksamen 1T våren 010 Oppgave 1 a) 4 3 1 y - -1 1 3 4 5 6-1 x - -3-4 Nullpunktet er gitt ved f ( x) 0 x 30 x 3 3 x 1, 5 Dette ser vi stemmer med grafen. Den skjærer x-aksen i x = 1,5. b) x x 8x

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 1 Kalkulus QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 1 Kalkulus Kapittel 1 Oppgave 1. a) en funksjon b) en funksjon c) ikke en funksjon d) ikke en funksjon Oppgave 2. a) 12,1 b) 4 c)

Detaljer

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4

1T 2014 høst LØSNING 25000000000 0, 0005 = 2, 5 10 10 5 10 4 = 12, 5 10 6 = 1, 25 10 7. 2 2+ x 2 = 2 4 x 2 4 + x = 8 x = 4 3/8/06 T 0 høst LØSNING - matematikk.net T 0 høst LØSNING Contents Diskusjon av denne oppgaven Løsning av del Matteprat spørsmål om oppgave 6 del DEL EN Oppgave 5000000000 0, 0005 =, 5 0 0 5 0 =, 5 0 6

Detaljer

Eksamen MAT1013 Matematikk 1T Våren 2012

Eksamen MAT1013 Matematikk 1T Våren 2012 Eksamen MAT1013 Matematikk 1T Våren 01 DEL 1 Uten hjelpemidler Oppgave 1 (18 poeng) a) Regn ut 1) 8 33 10 1 833 8 694 1 ) 1 9 3 3 1 3 3 3 33 3 3 3 6 6 3 3 1 3 6 4 3 3 81 b) Regn ut og skriv svaret på standardform

Detaljer

GEOMETRI I PLANET KRISTIAN RANESTAD

GEOMETRI I PLANET KRISTIAN RANESTAD GEOMETRI I PLANET KRISTIAN RANESTAD Abstract. Dette kompendiet er laget for et etterutdanningskurs i geometri, og det gir bakgrunn for og supplerer forelesningene i kurset samtidig som det inneholder relevante

Detaljer

Europa-Universität Viadrina

Europa-Universität Viadrina !"#!$% & #' #! ( ))% * +%, -.!!! / 0 1!/ %0 2!!/ 0.!!!/ /! 0 / '3 %0 #$ '! 0 4!""2 " '5 + -#! & %%! ( 6+ * $ '. % & 7 7 8 (8 *& *& *( ** *8, 8 87 - - -! )- % 4!!# &! -! ( - / 9:0 ; ; & * 7 4! + /! ) %

Detaljer

!" #$$ % &'& ( ) * +$ $ %,% '-!" (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % -

! #$$ % &'& ( ) * +$ $ %,% '-! (,+% %#&. /000)( '', 1('2#- ) 34.566,*,, - 7 )8, +$,+$#& *! +&$ % - !" #$$ % &'& ( * +$ $ %,% '!" (,+% %#&. /000( '', 1('2# 34.566,*,, 7 8, +$,+$#& *! +&$ % + 8 ( 9( :.,;(.

Detaljer

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE

NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Oppgavesettet består av 6 (seks) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Matematikk R1 GEOMETRI OG VEKTORER Tillatte hjelpemidler: Alle Varighet: Ubegrenset Dato: 10.4 (Innleveringsfrist) Fagansvarlig:

Detaljer

R2 Eksamen høsten 2014 ( )

R2 Eksamen høsten 2014 ( ) R Eksamen høsten 0 (8..) Løsningsskisser Versjon:.05.6 (Rettet feil i del i oppgave ) Del I - Uten hjelpemidler Oppgave a) Kjerneregel: f x cosu, u x f x 6 sin x b) Produktregel: g x 5e x sin x 5e x cos

Detaljer

Dagens tema: INF2100. Utvidelser av Minila array-er. tegn og tekster. Flass- og Flokkode. prosedyrer. Prosjektet struktur. feilhåndtering.

Dagens tema: INF2100. Utvidelser av Minila array-er. tegn og tekster. Flass- og Flokkode. prosedyrer. Prosjektet struktur. feilhåndtering. Dagens tema: Utvidelser av Minila array-er tegn og tekster Flass- og Flokkode array-er prosedyrer Prosjektet struktur feilhåndtering del 0 Dag Langmyhr,Ifi,UiO: Forelesning 6. september 2005 Ark 1 av 19

Detaljer

Kapittel 3: Kombinatorikk

Kapittel 3: Kombinatorikk Kapittel 3: Kombinatorikk Kombinatorikk handler om å telle opp antall muligheter i ulike situasjoner (for eksempel telle opp antall gunstige og antall mulige i forbindelse med sannsynlighetsberegninger).

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

Del 1 - Uten hjelpemidler

Del 1 - Uten hjelpemidler Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x

Detaljer

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i VG1340 Matematikk 1MX - 02.05.2008 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 1MX er gratis, og det er lastet

Detaljer

RAPPORT 2013/13. Ny bydel i Madla Stavanger. Utvikling for handel og service. Hanne Toftdahl

RAPPORT 2013/13. Ny bydel i Madla Stavanger. Utvikling for handel og service. Hanne Toftdahl RAPPORT 2013/13 Ny bydel i Madla Stavanger. Utvikling for handel og service Hanne Toftdahl "#$%&'()*#+#$,&-./,0#%'#12%&'34&3(&'* "#$%&'()&(*+,&-.. 5(3*#6$#'23&6) 8#44/-*$9::&-;7= 8#44/-**(**&' F)G??212%&'(0#%'#.)*#+#$,&-@A*+(B'($,C/-

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

GEOMETRI I PLANET KRISTIAN RANESTAD

GEOMETRI I PLANET KRISTIAN RANESTAD GEOMETRI I PLANET KRISTIAN RANESTAD 1. Innledning Dette er kompendiet i Euklidsk plangeometri leder til beviser av Pappos setning og Pascals setning. En rekke kjente setninger er vist underveis, med argumenter

Detaljer

Fjord Forsøksstasjon Helgeland AS

Fjord Forsøksstasjon Helgeland AS ECOMARIN SEAFARM AS Fjord Forsøksstasjon Helgeland AS LOKALITETKLASSIFISERING NS 9415 PÅ LOKALITETEN SVINØYA SØR I ALSTAHAUG KOMMUNE Tittel: Sammendrag: Ecomarin seafarm Lokalitetsklassifisering på lokaliteten

Detaljer

Løsningskisse seminaroppgaver uke 11 ( mars)

Løsningskisse seminaroppgaver uke 11 ( mars) HG Mars 008 Løsningskisse seminaroppgaver uke (0.-4. mars) ECON 0 EKSAMEN 004 VÅR Oppgave En gitt prøve er laget som en flervalgsprøve ( multiple choice test ). Prøven består av tre spørsmål. For hvert

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Del Oppgave a) Deriver funksjonene ) ln ) g x f x x x 3e x b) Bestem følgende grenseverdi, dersom den eksisterer:

Detaljer

Mellomprosjekt i MAT4010: Trekanter i planet

Mellomprosjekt i MAT4010: Trekanter i planet Mellomprosjekt i MAT4010: Trekanter i planet Anne Line Kjærgård, Cecilie Anine Thorsen og Marie Vaksvik Draagen 6. mai 2014 1 Innhold 1 Trekanter i plangeometri 3 2 Oppgavebeskrivelse 3 3 Generelle egenskaper

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 9, 2011 KAB (Økonomisk Institutt) Oppsummering May 9, 2011 1 / 25 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

Løsningsskisser - Kapittel 6 - Differensialligninger

Løsningsskisser - Kapittel 6 - Differensialligninger Løsningsskisser - Kapittel 6 - Differensialligninger Vi bruker det vi har lært i 6.3 om løsning av separable differensialligninger også i noen av oppgavene fra 6.1 og 6.2 for å knytte denne løsningsteknikken

Detaljer

FASIT. Rev. per 1.3.2011. Ikke fullstendig. Mer kommer senere. Jan Karlsen byggesaken.no Geomatikkboka

FASIT. Rev. per 1.3.2011. Ikke fullstendig. Mer kommer senere. Jan Karlsen byggesaken.no Geomatikkboka FASIT Rev. per 1.3.2011 Ikke fullstendig. Mer kommer senere. Jan Karlsen byggesaken.no Geomatikkboka LØSNINGSFORSLAG TIL GEOMATIKKBOKA Det er viktig å kontrollere både sine egne arbeider og det en mottar

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 8, 2009 KAB (Økonomisk Institutt) Oppsummering May 8, 2009 1 / 22 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

Eksamensoppgave i MA2401/MA6401 Geometri

Eksamensoppgave i MA2401/MA6401 Geometri Institutt for matematiske fag Eksamensoppgave i MA2401/MA6401 Geometri Faglig kontakt under eksamen: Frode Rønning Tlf: 7355 0256 Eksamensdato: 21. mai 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer

IR Matematikk 1. Utsatt Eksamen 8. juni 2012 Eksamenstid 4 timer Utsatt Eksamen 8. juni 212 Eksamenstid 4 timer IR1185 Matematikk 1 Bokmål Hvis du blir ferdig med oppgavene under del 1 før kl. 11., så kan og bør du starte på del 2 uten bruk av hjelpemidler. Du kan bare

Detaljer

!"#$%&&'&()*+"(, -!"#. "$ *'&(*&!*,/!"# &$*!$*01$*'!22 3, &9 *$ "&$*2 "*( /. )* * - 1*((&$'&&2$!$*2$&* 7* -

!#$%&&'&()*+(, -!#. $ *'&(*&!*,/!# &$*!$*01$*'!22 3, &9 *$ &$*2 *( /. )* * - 1*((&$'&&2$!$*2$&* 7* - !"#$%&$ $"$ ' ($)$)($'!"#$%&&'&()*+"(, -!"#. "$ *'&(*&!*,/!"# &$*!$*01$*'!22 3,!'$ $*$+, $)-$%&4 $($5 6!$"'&' 7!(*2 3'&(* 7& *2 38 ("(3 2* 4 &9 *$ "&$*2 "*( / &! 3'&(*:!* $&2 7*'&(*"2 *2 3&$*2 "*('&. )*

Detaljer

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka

YF kapittel 6 Lengder og vinkler Løsninger til oppgavene i læreboka YF kpittel 6 Lengder og vinkler Løsninger til oppgvene i læreok Oppgve 601 Vi skl gå ett hkk mot høyre, og gnger derfor med 10. 14 cm 14 10 mm 140 mm c Vi skl gå to hkk mot høyre, og gnger derfor med 10

Detaljer

R2 eksamen våren ( )

R2 eksamen våren ( ) R Eksamen V01 R eksamen våren 01. (1.05.01) Løsningsskisser (Versjon 1.05.1) Del 1 - Uten hjelpemidler Oppgave 1 a) f x sin x sin x b) Kjerneregel (u x): g x 6 cosx 6 cosx c) Produktregel: h x e x sinx

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

R1 - Eksamen V

R1 - Eksamen V Delprøve 1 R1 - Eksamen V09.05.10 Løsningsskisser Oppgave 1 1) Kjerneregel: fx u 4, u x 1 f x 4u 3 x 8xx 1 3 ) Produktregel (og kjerneregel på e x ): g x 1e x xe x 1 xe x lim x xx x lim x x xxx 4xx xxx

Detaljer

Institutt for Samfunnsøkonomi

Institutt for Samfunnsøkonomi Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter

Detaljer

! " # $ #!!" #$ %&#"'

!  # $ #!! #$ %&#' !"#$#!!"#$%&#"' % ($ ) * %,, # # ($-.. * %,, # # ($ * - %,, # # ($/..,, */%/012"# & ' (!)"*,-. /0 / # 12# 3 4",56"78" "9,5):"5;

Detaljer

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000

Oppgave 6. Tabellen nedenfor viser folketallet i en by fra 1960 til 2010. 1960 1970 1980 1990 2000 2010 35 000 41 000 43 000 47 000 48 000 56 000 GS3 Forberedelse til tentamen. Ark 38 Løsninger deles ut fredag 19. april. Oppgave 1. Løs ligningene og ulikhetene. a) + = 3 b) 3x > -9 6 (x + 3) c) 3 (x - ) = 2 - d) 3x < - (1 - ) Oppgave 2. Løs ligningssettet.

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

Formelsamling Kalkulus

Formelsamling Kalkulus Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert

Detaljer

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen

Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Kapittel 4 Vektorfluks og sirkulasjon, divergens, virvling, strømfunksjonen Oppgave Gitt et vektorfelt v = ui + vj + wk. Divergensen til v er definert som v = u + v + w z og virvlingen er gitt ved determinanten

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (0 poeng) a) Deriver funksjonene f = e 1) ( ) ) g( ) = 3 1 b) Vis at = 1 er en løsning av likningen 3 6 + 6= 0 Bruk polynomdivisjon til å finne de andre løsningene. c)

Detaljer

Undersøkelse om opplæring i foretak (Continuing Vocational Traing Survey 5) Vennligst bruk bare papirskjema som kladd for å fylle ut webskjema.

Undersøkelse om opplæring i foretak (Continuing Vocational Traing Survey 5) Vennligst bruk bare papirskjema som kladd for å fylle ut webskjema. Undersøkelse om opplæring i foretak (Continuing Vocational Traing Survey 5) Vennligst bruk bare papirskjema som kladd for å fylle ut webskjema. Webskjema side 1 av 25: Skriv inn bruker-id: Skriv inn passordet:

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g e t s å r s b e r e t n i

Detaljer

Oppsummering matematikkdel

Oppsummering matematikkdel Oppsummering matematikkdel ECON 2200 Kjell Arne Brekke Økonomisk Institutt May 6, 2010 KAB (Økonomisk Institutt) Oppsummering May 6, 2010 1 / 23 Innledning Rekker bare å nevne noen hovedpunkter Alt er

Detaljer

R2 Eksamen V

R2 Eksamen V R V011 R Eksamen V011-1.05.011 Del 1 - Uten hjelpemidler Oppgave 1 a) 1) Kjerneregel: fx sin u, u x f x cosu 4 cosx ) Produktregel (og kjerneregel på cosx): g x x cosx x sin x xcosx x sin x ) Kjerneregel:

Detaljer

yt o me e e Av n le et b s e tå a n p lo o d i te e k te e s k a p e e te r sr d e g te se l e t a il n n jk e t d ø n g A R 5 g it g % i 10 t v ve

yt o me e e Av n le et b s e tå a n p lo o d i te e k te e s k a p e e te r sr d e g te se l e t a il n n jk e t d ø n g A R 5 g it g % i 10 t v ve VDGG V-_ ) B ( ; y få N. b å y. f j f b f h å b y j ( å y h D å. ) f h æ y b - B j c j : CH j = D Ny : : : % : b b : : CH G G Y B y b : I y N : : / b - Ø y y : å - F b b f å j - j B - F j f H y j å HC

Detaljer

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren:

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren: Oppgave ABCD og EFGH er like store kvadrater. AB EF og AD EH. Det fargelagte området har areal. Hvor stort er arealet til kvadratet ABCD? A B C ½ D 3/ E Det kommer an på hvordan man plasserer kvadratene

Detaljer

Kapittel 5 - Vektorer - Oppgaver

Kapittel 5 - Vektorer - Oppgaver 5.4 Kapittel 5 - Vektorer - Oppgaver 5.4, 5.5, 5.45, 5.49, 5.300, 5.306 a) Kabeles legde: BA 6, 7, 6 6 7 6 b) Dette er e parameterfremstillig (på vektorform) for e lije: OT 6t,7t, 6t 0, 0, t6, 7, 6 OB

Detaljer

UNIVERSITETET I OSLO. Oppskriftsbok. FDer og MVDer Relasjonsalgebra. Institutt for Informatikk. INF3100 Ellen Munthe-Kaas 1

UNIVERSITETET I OSLO. Oppskriftsbok. FDer og MVDer Relasjonsalgebra. Institutt for Informatikk. INF3100 Ellen Munthe-Kaas 1 UNIVERSITETET I OSLO Oppskriftsbok FDer og MVDer Relasjonsalgebra Institutt for Informatikk INF3100 Ellen Munthe-Kaas 1 Tillukningsalgoritmen Hvordan finne alle kandidatnøkler FDer og MVDer Hvordan finne

Detaljer

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene.

b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig), der svaret i begge skal bli x = -3. Løs også likningene. Oppgave I Likninger og ulikheter a) Løs likningen: x + 2 a. + (3x + 4) 3 6 2 ( x + 2)6 6 6 + (3x + 4) 3 6 2 2x + 4 + 9x + 2 2x 9x 2 5 x b) Lag to likninger med ulik vanskegrad (en ganske lett og en vanskelig),

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

Løsningsforslag til Øving 3 Høst 2010

Løsningsforslag til Øving 3 Høst 2010 TEP5: Fluidmekanikk Løsningsforslag til Øving 3 Høst 2 Oppgave 2.32 Vi skal finne vannhøyden H i røret. Venstre side (A) er fylt med vann og 8cm olje; SG =,827 = ρ olje /ρ vann. Høyre side (B) er fylt

Detaljer

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka

1T kapittel 6 Geometri Løsninger til oppgavene i læreboka T kpittel 6 Geometri Løsninger til oppgvene i læreok Oppgve 6. Vi ruker pytgorssetningen. h 5 + 6 h 5 + 36 h 6 h ± 6 Hypotenusen er 6. Vi ruker pytgorssetningen. h, 4 + 6,7 h h 5, 076 + 45, 04 50, 047

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

K j æ r e b e b o e r!

K j æ r e b e b o e r! K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Arkivnavn: A-3384 Bergen Lokaltrafikkforbund Arkivsignatur: A-3384 Depotinstitusjon: BBA Tidsrom: 1972-1981. Fritt tilgjengelig (lesesalreglement ol.

Arkivnavn: A-3384 Bergen Lokaltrafikkforbund Arkivsignatur: A-3384 Depotinstitusjon: BBA Tidsrom: 1972-1981. Fritt tilgjengelig (lesesalreglement ol. Arkivskaper: A-3384 Bergen Lokaltrafikkforbund Arkivskapernummer: A-3384 Samfunnssektor: Privat Arkivskapertype: Organisasjon Forvaltningsnivå: Regional Land: NORGE Kommune(r): BERGEN, OS (HORDALAND) Historikk:

Detaljer

Prosent- og renteregning

Prosent- og renteregning FORKURSSTART Prosent- og renteregning p prosent av K beregnes som p K 100 Eksempel 1: 5 prosent av 64000 blir 5 64000 =5 640=3200 100 p 64000 Eksempel 2: Hvor mange prosent er 9600 av 64000? Løs p fra

Detaljer

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle

5.5.5 Kombinasjon av ortogonale lastretninger Seismisk last på søylene Dimensjonering av innersøyle 118 5.5.5 Kombinasjon av ortogonale lastretninger Da bygget er regulært i planet samt at det kun er søylene som er avstivende, kan det forutsettes at den seismiske påvirkningen virker separat og ikke behøver

Detaljer

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007

Løsningsforslag Eksamen eksempeloppgave R1 - REA3022 - Desember 2007 Løsningsforslag Eksamen eksempeloppgave R1 - REA022 - Desember 200 eksamensoppgaver.org October 2, 2008 eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksempeloppgave i R1

Detaljer

Digital representasjon

Digital representasjon Hva skal jeg snakke om i dag? Digital representasjon dag@ifi.uio.no Hvordan lagre tall tekst bilder lyd som bit i en datamaskin Hvordan telle binært? Binære tall For å bruke bit (0 og 1) som tall, må vi

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

Lærerveiledning. Oppgave 1. På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik. Tips til veiledning:

Lærerveiledning. Oppgave 1. På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik. Tips til veiledning: Oppgave 1 På figuren er ABCD et kvadrat, mens ABE er en likesidet trekant. Da er ÐAED lik A 10 B 1,5 C 15 D 0 E,5 Skriv på alle kjente vinkler og marker vinkelen dere skal finne på figuren. Marker alle

Detaljer

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen

Løsningsforslag eksamen 1T våren 2010 DEL 1. Oppgave 1. a) Funksjonen f er gitt ved f x 2x 3. Tegn grafen og finn nullpunktene for f f x 2x 3 Grafen Løsningsforslag eksamen T våren 00 DEL Oppgave a) Funksjonen f er gitt ved f 3. Tegn grafen og finn nullpunktene for f f 3 Grafen y 0 8 6 4-4 -3 - - 3 4 - -4 Nullpunkt 3 0 3 Nullpunkt når 3 b) Løs likningen

Detaljer

Planveileder for massevaksinasjon mot pandemisk in u ensa i kommuner og helseforetak

Planveileder for massevaksinasjon mot pandemisk in u ensa i kommuner og helseforetak 201 6 P f j f U H P f j f f 1 j 2016 U H 2 U J2016 T: Pf j f U H B: R f :wwwf Gf: PG L: P :2000 : cxntb IBN9788280827333 IBN9788280827357 Pf j f 3 D f j f j f f D 2008 f f 200910 U Nj f (2014) f D 200910

Detaljer

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x

LØSNINGSFORSLAG EKSAMEN, MAT 1001, HØSTEN (x + 1) 2 dx = u 2 du = u 1 = (x + 1) 1 = 1 x + 1. ln x LØSNINGSFORSLAG EKSAMEN, MAT 00, HØSTEN 06 DEL.. Hvilken av funksjonene gir en anti-derivert for f(x) = (x + )? Løsning. Vi setter u = x +, som gir du = dx, (x + ) dx = u du = u = (x + ) = x + a) x+ b)

Detaljer

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6

Løsningsforslag til del 2 av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Geometri Del Løsningsforslag til del av oppgavesettet Geometri i Sirkel oppgavebok 10B, kapittel 6 Oppgave.1 a Lengden til golvet på tegningen blir: 400 cm 8cm Bredden til golvet på tegningen blir: 300

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22.

Løsningsforslag heldagsprøve 1T 19.05.2011 DEL 1 OPPGAVE 1. a1) Regn ut 10 8 2 2 3 2 2 3 10 8 2 2 3 2 2 3 10 8 2 2 1 10 32 22 22. c) Løs likningen 6 4 x 4 x 6 4 x 4 x Løsningsforslag heldagsprøve 1T 19.05.011 DEL 1 OPPGAVE 1 a1) Regn ut 10 8 3 3 10 8 3 3 10 8 1 10 3 a) 3 5 4 5 3 5 5 4 5 3 5 5 3 5 5 4 5 1 3 5 1 5 1 1 3 1 5 1 3 3 5

Detaljer

Brukshundprøve (nord.progr.) - 2013

Brukshundprøve (nord.progr.) - 2013 03.03.2013 03.03.2013 1503.18.16413 300 10.02.2013 09.03.2013 09.03.2013 10.03.2013 10.03.2013 23.03.2013 23.03.2013 24.03.2013 24.03.2013 06.04.2013 06.04.2013 07.04.2013 07.04.2013 14.04.2013 14.04.2013

Detaljer

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A.

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. R1 kapittel 5 Geometri Løsninger til oppgavene i boka 5.1 a Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. 5. a Vi bruker GeoGebra

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00

EKSAMENSOPPGAVE - Skoleeksamen. Institutt for Samfunnsøkonomi. Utlevering: 17.12.2014 Kl. 09.00 Innlevering: 17.12.2014 Kl. 14.00 EKSAMENSOPPGAVE - Skoleeksamen MET 11803 Matematikk Institutt fo Samfunnsøkonomi Utleveing: 17122014 Kl 0900 Innleveing: 17122014 Kl 1400 Vekt: 70% av MET 1180 Antall side i oppgaven: Antall vedleggsfile:

Detaljer

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l.

- Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking av et lottotall o.l. SANNSYNLIGHETSREGNING Terminologi Kombinatorikk Stokastisk Utfallsrom / utfall (enkeltutfall) - Et stokastisk forsøk er et forsøk underlagt tilfeldige variasjoner, for eks. kast med en terning, trekking

Detaljer

Øving 5: Transaksjonshåndtering, logging og normalisering

Øving 5: Transaksjonshåndtering, logging og normalisering Øving 5: Transaksjonshåndtering, logging og normalisering Lars Kirkholt Melhus Oppgave 1 a) ACID Atomic En transaksjon er en minste enhet. Alle ledd i transaksjonen må gå feilfritt for at transaksjonen

Detaljer

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L

S T Y R E T G J Ø R O P P M E R K S O M P Å A T D Ø R E N E S T E N G E S K L K j æ r e b e b o e r! D u h o l d e r n å i n nk a l l i n g e n t i l å r e t s g e n e r a l f o r s am l i n g i h å n d e n. D e n i n n e h o l d e r b o r e t t s l a g et s å r s b e r e t n i

Detaljer

Løsningsskisser til oppgaver i Kapittel Integrerende faktor

Løsningsskisser til oppgaver i Kapittel Integrerende faktor Løsningsskisser til oppgaver i Kapittel 6.4 - Integrerende faktor Teori: Differensialligninger på formen y fx y gx (lineære i y av første orden) er ikke separable hvis ikke fx og gx er tallkonstanter.

Detaljer