NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE"

Transkript

1 Oppgavesettet består av 6 (seks) sider. NORGES INFORMASJONSTEKNOLOGISKE HØGSKOLE Matematikk R1 GEOMETRI OG VEKTORER Tillatte hjelpemidler: Alle Varighet: Ubegrenset Dato: 10.4 (Innleveringsfrist) Fagansvarlig: Lars Sydnes Oppgavesettet består av 6 oppgaver (med deloppgaver). Alle de 6 oppgavene skal løses. Dette oppgavesettet er i overkant stort. Dere tilbys hele oppgavesettet, men for å hjelpe dem som ikke rekker over alt, er de viktigste oppgavene merket med. De oppgavene man ikke får gjort, kan spares til en senere anledning. OPPGAVE 1 I denne oppgaven skal vi regne på punktene A(3, 4), B( 2, 3) C(2.3, π). Svarene oppgis med 3 desimalers nøyaktighet. 1a Finn AB, BA, BC og CA 1b Finn AB + BC ved regning. 1c Finn AB + BA og ved regning. AB + BC + CA 1d Finn AB + BA og AB + BC + CA på en annen måte enn i forrige punkt.

2 1e Bestem avstandene AB, BC og AC. 1f Finn ut om AB og AC er parallelle. 1g Finn ut om punktene A, B, C ligger på linje. 1h Regn ut skalarproduktet BC BA 1i Bestem vinkelen ABC. 1j Finn koordinatene til midtpunktet på linjestykket BC. 1k La D(x, y) være et punkt på linjestykket BC slik at AD står vinkelrett på BC. Bestem koordinatene til D. OPPGAVE 2 2a Vinkelen v = 20 er en periferivinkel tilhørende sirkelbuen AB. Hvor manger grader spenner sirkelbuen over? 2b Punktet P ligger 3cm fra sentrum S i en sirkel med radius 2cm. Anta at A er et punkt på sirkelen som ligger 3cm fra P, og la B være det andre skjæringspunktet mellom sirkelen og linjen P A. Hva er avstanden mellom P og B? 2c Finn ut om ABC er formlik med DEF når 1. A = 60, B = E = 40 og D = AB = 10, BC = 12, AC = 8 og DE = 15, EF = 18, DF = 12.

3 3. AB = AC = 3, A = 80 og OD = [ 1, 2], OF = [ 4, 6]. OE = [3, 5], OPPGAVE 3 (Hentet fra eksamen høst 2009, oppgave2) La ABC være en likesidet trekant med sidelengde AB = BC = CA = L, og la P være et villkårlig punkt plassert inne i trekanten. La A være et punkt på linjestykket BC slik at P A står normalt (90 ) på BC. La B være et punkt på linjestykket CA slik at P B står normalt (90 ) på CA. La C være et punkt på linjestykket AB slik at P C står normalt (90 ) på AB. 3a Tegn en figur der du merker av trekanten ABC, punktet P og linjestykkene P A, P B, P C. 3b Regn ut arealet av trekantene ABP, BCP, BAP. Uttrykk svaret ved høydene P C, P A, P B og sidelengden L 3c Bruk det du fant i forrige punkt til å finne et uttrykk for arealet av hele ABC. 3d La H være høyden i trekanten ABC. Uttrykk arealet av ABC ved høyden H og sidelengden L.

4 3e Bevis at P A + P B + P C = H ved å sammenligne de ulike formlene du fant for arealet av trekanten ABC. OPPGAVE 4 (Hentet fra eksamen høst 2011) En sirkel har sentrum i O. A, B, C, D er punkter på sirkelen slik at AB skjærer av en bue på 60 og CD skjærer av en bue på 20. Se Figur 1. Figur 1: (hentet fra eksamen høst 2011) 4a Beregn ADB 4b Beregn DBE 4c Vis at ACB = 20. OPPGAVE 5 (Hentet fra eksamen vår 2011)

5 I denne oppgaven skal vi forholde oss til punktene Punktet C er bestemt ved at A(2, 1) og B(5, 3). AC = [ 1, 2] 5a Regn ut AB, AB og avstanden mellom A og B. 5b Regn ut koordinatene til punktet C. 5c Regn ut skalarproduktet AC BC. Hva kan du si om vinkelen ACB? OPPGAVE 6 (Hentet fra eksamen høsten 2011) En teatersal er formet som en regulær sekskant ABCDEF med sidekant 16m. Scenekanten er siden AB i sekskanten. Et sete er plassert i punktet S. La α betegne siktvinkelen til dette setet. Se Figur 2. Figur 2: (hentet fra eksamen høsten 2011)

6 6a Hva er lengden AD? Hvor stor er vinkelen ABD? 6b Regn ut lengden av linjestykket BD. 6c Forklar hvorfor α = 30 når setet S er plassert i et av hjørnene C, D, E, F. 6d Vis ved hjelp av en konstruksjon hvor de setene som har siktvinkel α = 90 befinner seg. 6e Vis ved en skisse hvor vi kan plassere S i tilfellet der α = 45. Slutt på oppgavesettet

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (0 poeng) a) Deriver funksjonene f = e 1) ( ) ) g( ) = 3 1 b) Vis at = 1 er en løsning av likningen 3 6 + 6= 0 Bruk polynomdivisjon til å finne de andre løsningene. c)

Detaljer

Eksamen REA3022 R1, Høsten 2010

Eksamen REA3022 R1, Høsten 2010 Eksamen REA30 R1, Høsten 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (0 poeng) a) Deriver funksjonene 1) f x x e x e x

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter timer. Del

Detaljer

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4.

Punktene A, B, C og D ligger på linje med innbyrdes avstander AB = 3, BC = 6, CD = 8 og DE = 4. Oppgave Punktene A, B, C og D ligger på linje med innbyrdes avstander AB =, BC = 6, CD = 8 og DE =. Hva er minste mulige verdi for AE? A 0 B C D E 5 Tegn! Start med å tegne ei lang rett linje, plasser

Detaljer

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 30.11.2010. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 30.11.010 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter timar. Del

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Deriver funksjonene gitt ved. Polynomet P er gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (5 poeng) Deriver funksjonene gitt ved. Polynomet P er gitt ved DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene gitt ved a) b) f x x x ( ) 3 6 4 g x x x 3 ( ) 5ln( ) c) h( x) x x Oppgave (5 poeng) Polynomet P er gitt ved 3 P( x) x 7x 4x k a) Vis at P er

Detaljer

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka

R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka R1 kapittel 6 Geometri Løsninger til kapitteltesten i læreboka 6.A a ABC DEC fordi C er felles i de to trekantene. AB DE, og da er BAC = EDC og ABC = DEC. Vinklene i de to trekantene er parvis like store,

Detaljer

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene

R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene R1 kapittel 6 Geometri Løsninger til innlæringsoppgavene 6.1 a Det geometriske stedet er en sirkellinje med sentrum i punktet og radius 5 cm. 6. Vi ser at koordinataksene er vinkelhalveringslinjene for

Detaljer

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter.

Trekanter er mangekanter med tre sider. Vi skal starte med å bli kjent med verktøyet som brukes til å tegne mangekanter. Trekanter GeoGebra er godt egnet til å tegne trekanter og eksperimentere med dem. Vi skal nå se på hvordan vi kan tegne trekanter når vi kjenner en eller flere sider eller vinkler. Vi skal også se på hvordan

Detaljer

Eksamen våren 2008 Løsninger

Eksamen våren 2008 Løsninger Eksamen våren 008 Løsninger Eksamen våren 008 Løsninger Del Hjelpemidler: Vanlige skrivesaker, passer, linjal med cm-mål og vinkelmåler Oppgave a f x ( ) x ln = x f ( x) = x lnx+ x = xlnx+x x b c ( ) (

Detaljer

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten?

Lærerveiledning. Oppgave 1. Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? Oppgave 1 Tallene på figuren viser omkretsen av hver av de fire små trekantene. Hva er omkretsen av den store trekanten? A 43 B 59 C 55 D 67 E 91 Hvilke linjestykker er en del av omkretsen til den store

Detaljer

GEOMETRI I PLANET KRISTIAN RANESTAD

GEOMETRI I PLANET KRISTIAN RANESTAD GEOMETRI I PLANET KRISTIAN RANESTAD Abstract. Dette kompendiet er laget for et etterutdanningskurs i geometri, og det gir bakgrunn for og supplerer forelesningene i kurset samtidig som det inneholder relevante

Detaljer

Løsning eksamen R1 våren 2009

Løsning eksamen R1 våren 2009 Løsning eksamen R1 våren 009 Oppgave 1 a) 1) f( ) ( 1) 4 f ( ) 4( 1) ( 1) 4( 1) 8 ( 1) ) g ( ) e 3 3 3 g( ) e ( e ) 1 e e ( ) 1e e (1) e b) ( ) lim lim lim ( ) 4 4 4 ( ) ( ) ( ) ( ) c) ( ) ( ) ( ) ( )

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene

DEL 1. Uten hjelpemidler. Oppgave 1 (2 poeng) Oppgave 2 (4 poeng) Oppgave 3 (4 poeng) I er en konstant. Deriver funksjonene DEL 1 Uten hjelpemidler Oppgave 1 ( poeng) Deriver funksjonene 3 a) f( x) 5x x 5 b) g( x) x e x Oppgave (4 poeng) Polynomfunksjonen P er gitt ved 3 P( x) x x 10x 8, DP a) Faktoriser P( x ) i førstegradsfaktorer.

Detaljer

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo

Bevis i Geometri. 23. April, Kristian Ranestad Matematisk Institutt, Universitetet i Oslo Kristian Ranestad Matematisk Institutt, Universitetet i Oslo 23. April, 2012 Matematikk - å regne - å resonnere/argumentere Geometri -hvorfor? Argumentasjon og bevis, mer enn regning etter oppskrifter.

Detaljer

Oppgaver i kapittel 6

Oppgaver i kapittel 6 Oppgaver i kapittel 6 603, 604, 606, 607, 608, 609, 610, 616, 619, 68, 630, 63, 633, 641 Jeg har ikke laget figurer på alle oppgavene, men det bør dere gjøre! 603 u og 70 er begge periferivinkler til v,

Detaljer

Løsningsforslag uke 42

Løsningsforslag uke 42 Løsningsforslag uke 42 Oppgave 2 (Eksamen 2008). La,, være hjørnene i en trekant i planet, og la de motstående sidene ha lengdene a, b, c. Punktet D på linjen er slik at D står normalt på. La være det

Detaljer

Løsningsforslag kapittel 3

Løsningsforslag kapittel 3 Løsningsforslag kapittel 3 Innhold Oppgave 3.2... 2 Oppgave 3.4... 2 Oppgave 3.8... 3 Oppgave 3.14... 5 Oppgave 3.17... 6 Oppgave 3.23... 7 Oppgave 3.29... 8 Oppgave 3.35... 9 Oppgave 3.38... 10 Oppgave

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 2 Innleveringsfrist Torsdag 25. oktober 2012 kl. 14:30 Antall oppgaver: 16 1 Finn volum og overateareal til følgende gurer. Tegn gjerne

Detaljer

5.A Digitale hjelpemidler i geometri

5.A Digitale hjelpemidler i geometri 5.A Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (13 poeng) a) Skriv på standardform 1) 36 00 000 ) 0,034 10 b) Løs likningen x + 6x = 16 c) Løs ulikheten x x> 0 d) På tallinjen ovenfor har vi merket av 1 punkter. Hvert

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.05.2008. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 8.05.008 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Vedlegg: Framgangsmåte Rettleiing om vurderinga: 5 timar: Del 1

Detaljer

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5.

Løsningsforslag. 7(x + 1/2) 5 = 5/6. 7x = 5/ /2 = 5/6 + 3/2 = 14/6 = 7/3. Løsningen er x = 1/3. b) Finn alle x slik at 6x + 1 x = 5. Prøve i FO99A - Matematikk Dato: 3. desember 01 Målform: Bokmål Antall oppgaver: 5 (0 deloppgaver) Antall sider: Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

1.7 Digitale hjelpemidler i geometri

1.7 Digitale hjelpemidler i geometri 1.7 Digitale hjelpemidler i geometri Geometri handler om egenskapene til punkter, linjer og figurer i planet og i rommet. I alle tider har blyant og papir samt passer og linjal vært de viktigst hjelpemidlene

Detaljer

Eksamensoppgave i MA2401/MA6401 Geometri

Eksamensoppgave i MA2401/MA6401 Geometri Institutt for matematiske fag Eksamensoppgave i MA2401/MA6401 Geometri Faglig kontakt under eksamen: Frode Rønning Tlf: 7355 0256 Eksamensdato: 21. mai 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

EKSAMEN RF3100 Matematikk og fysikk

EKSAMEN RF3100 Matematikk og fysikk Side 1 av 5 Oppgavesettet består av 5 (fem) sider. EKSAMEN RF3100 Matematikk og fysikk Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 4.juni 2015 Emneansvarlig: Lars Sydnes

Detaljer

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte.

Der oppgaveteksten ikke sier noe annet, kan du fritt velge framgangsmåte. Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5

Detaljer

Faktor terminprøve i matematikk for 10. trinn

Faktor terminprøve i matematikk for 10. trinn Faktor terminprøve i matematikk for 10. trinn Høsten 201 Bokmål Navn: Gruppe: Prøveinformasjon Prøvetid: Hjelpemidler på Del 1 og 2: Framgangsmåte og forklaring: 5 timer totalt. Del 1 og Del 2 blir utdelt

Detaljer

Kapittel 3 Geometri Mer øving

Kapittel 3 Geometri Mer øving Kapittel 3 Geometri Mer øving Oppgave 1 Utfør disse konstruksjonene. a Konstruer en normal fra en linje til et punkt. Konstruer en normal fra en linje i et punkt på linja. c Konstruer en midtnormal. d

Detaljer

R1 - Eksamen H Løsningsskisser. Del 1

R1 - Eksamen H Løsningsskisser. Del 1 Oppgave R - Eksamen H0-30..00 Løsningsskisser Del ) Produktregel: f x e x xe x e x x ) Kjerneregel: g x 3 u, u x g x 3 u x 3x x P 3 6 6 6 6 0 Trenger ikke polynomdivisjon, kan faktorisere direkte: x x

Detaljer

Kurs. Kapittel 2. Bokmål

Kurs. Kapittel 2. Bokmål Kurs 8 Kapittel 2 Bokmål D.8.2.1 1 av 4 Introduksjon til dynamisk geometri med GeoGebra Med et dynamisk geometriprogram kan du tegne og konstruere figurer som du kan trekke og dra i. I noen slike programmer

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL Uten hjelpemidler Oppgave ( poeng) Regn ut og skriv svaret på standardform 5000000000 0,0005 Oppgave ( poeng) Løs likningen 6 Oppgave 3 ( poeng) Løs likningen lg( 3) 0 Oppgave 4 ( poeng) Løs ulikheten

Detaljer

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A.

Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. R1 kapittel 5 Geometri Løsninger til oppgavene i boka 5.1 a Det geometriske stedet for punktene som ligger 5 cm fra et punkt A, er en sirkel med radius 5 cm og har sentrum i A. 5. a Vi bruker GeoGebra

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Del Oppgave a) Deriver funksjonene ) ln ) g x f x x x 3e x b) Bestem følgende grenseverdi, dersom den eksisterer:

Detaljer

Løsning eksamen R1 våren 2008

Løsning eksamen R1 våren 2008 Løsning eksamen R våren 008 Oppgave a) f ( ) ln f ( ) ( ) ln (ln ) ln ln b) c) d) e) ( 4 6) : ( ) 4 6 6 0 64 ( 8) ( 8) 8 8 8 6 lim lim lim 8 8 6 8 ( 8) 8 lg( y ) lg y lg lg lg y lg y lg lg y lg lg y y

Detaljer

Heldagsprøve R Thora Storms vgs.

Heldagsprøve R Thora Storms vgs. R1 HD V01 Heldagsprøve R1-6.04.1 - Thora Storms vgs. Løsningsskisser Del 1 - Uten hjelpemidler Oppgave 1 a) Deriver funksjonene: 1) fp 0. 01p 4 0. 7p 3. 1 f p 0. 01 4p 3 0. 7 0. 084p 3 0. 7 ) gx x 1 x

Detaljer

3.4 Geometriske steder

3.4 Geometriske steder 3.4 Geometriske steder Geometriske steder er punkter eller punktmengder som følger visse kriterier; dvs. ligger på bestemte steder i forhold til andre punkter eller punktmengder. Av disse kan man definere

Detaljer

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen. Høst 28.11.2011. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Høst 28.11.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Delprøve 1. 1) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. 2) Finn eventuelle vendepunkter på grafen til g. Tegn grafen.

Delprøve 1. 1) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. 2) Finn eventuelle vendepunkter på grafen til g. Tegn grafen. Delprøve OPPGAVE a) Deriver funksjonen ( ) = x f x e x b) Gitt funksjonen 4 3 ( ) = 4 g x x x ) Finn eventuelle topp-, bunn- og terrassepunkter på grafen til g. ) Finn eventuelle vendepunkter på grafen

Detaljer

Årsprøve i matematikk for 9. trinn Kannik skole

Årsprøve i matematikk for 9. trinn Kannik skole Årsprøve i matematikk for 9. trinn Kannik skole Våren 2013 bokmål Navn: Gruppe: Informasjon Oppgavesettet består av to deler hvor alle oppgaver skal besvares. Del 1 og del 2 blir delt ut samtidig, men

Detaljer

Løsningsforslag R1 Eksamen. Høst 29.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen. Høst 29.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Høst 29.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del

Detaljer

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren:

Hvis noen vil løse oppgaven ved regning, må de bruke bokstaver som representasjon for noen av linjestykkene i figuren: Oppgave ABCD og EFGH er like store kvadrater. AB EF og AD EH. Det fargelagte området har areal. Hvor stort er arealet til kvadratet ABCD? A B C ½ D 3/ E Det kommer an på hvordan man plasserer kvadratene

Detaljer

1.8 Digital tegning av vinkler

1.8 Digital tegning av vinkler 1.8 Digital tegning av vinkler Det går også an å tegne mangekanter digitalt når vi kjenner noen vinkler og sider. Her tegner vi ABC når A = 50, AB = 6 og AC = 4. I GeoGebra setter vi først av linjestykket

Detaljer

Eksamen REA3022 R1, Våren 2010

Eksamen REA3022 R1, Våren 2010 Eksamen REA0 R1, Våren 010 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 a) Deriver funksjonene 1) ln f 1 f ) g ln ln ln 1 4e

Detaljer

3Geometri. Mål. Grunnkurset K 3

3Geometri. Mål. Grunnkurset K 3 Geometri Mål Når du er ferdig med grunnkurset, skal du kunne finne speilingssymmetri og rotasjonssymmetri i figurer i planet kjenne til vinkelsummen i en trekant, komplementærvinkler, supplementvinkler,

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 0.05.016 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del 1 skal leverast inn etter 3 timar.

Detaljer

1.9 Oppgaver Løsningsforslag

1.9 Oppgaver Løsningsforslag til Oppgaver 19 19 Oppgaver 191 (Eksamen i grunnskolen 1993) a I et parallellogram ABCD er avstanden mellom de parallelle sidene AB og CD 5,0 cm Konstruer parallellogrammet når siden AB=9,0 cm og A = 45

Detaljer

Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 31.05.011 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 29.11.2012. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen 29.11.2012 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

Fasit. Grunnbok. Kapittel 4. Bokmål

Fasit. Grunnbok. Kapittel 4. Bokmål Fasit 9 Grunnbok Kapittel 4 Bokmål Kapittel 4 Areal og omkrets 4.1 Alle unntatt C kan være riktige. 4.2 250 cm (= 2,50 m) langt kantebånd 4.3 3 m 4.4 a b 4 c 4 : 1 d e 9. Forhold 9 : 1 f s 2 g s 2 : 1

Detaljer

Innhold. Matematikk for ungdomstrinnet

Innhold. Matematikk for ungdomstrinnet Innhold DYNAMISK GEOMETRIPROGRAM... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 PUNKT OG SIRKLER... 5 Punkt... 5 Sirkel... 6 Linjer... 7 NYTTIGE VERKTØY... 8 Lagre...

Detaljer

Forkurs, Avdeling for Ingeniørutdanning

Forkurs, Avdeling for Ingeniørutdanning Eksamen i FO929A Matematikk Prøve-eksamen Dato 13. desember 2007 Tidspunkt 09.00-1.00 Antall oppgaver Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag Oppgave 1 a) Likningen

Detaljer

Matematikk for ungdomstrinnet

Matematikk for ungdomstrinnet Innhold Dynamisk geometriprogram... 3 Skjermbildet i GeoGebra... 3 Oppsett av skjermbildet... 4 Verktøylinja... 4 Punkt og sirkler... 5 Punkt... 5 Sirkel... 6 Lagre... 6 To nyttige verktøy: «Flytt eller

Detaljer

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene

1P kapittel 3 Geometri Løsninger til innlæringsoppgavene 1P kapittel Geometri Løsninger til innlæringsoppgavene.1 a 10 mm = 10 1 mm = 10 0,1 cm = 1 cm Bredden av A4-arket er 1 cm. 9800 m = 9800 1 m = 9800 0,001 km = 9,8 km Anne løp 9,8 km. c 60 km = 60 1 km

Detaljer

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål

Eksamen 25.05.2011. MAT1013 Matematikk 1T. Nynorsk/Bokmål Eksamen 25.05.2011 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x)

DEL 1. Uten hjelpemidler. Oppgave 1 (3 poeng) Oppgave 2 (3 poeng) Oppgave 3 (4 poeng) Oppgave 4 (4 poeng) Deriver funksjonene. b) g( x) 5e sin(2 x) DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) cos(3 x) x b) g( x) 5e sin( x) Oppgave (3 poeng) Bestem integralene a) b) 3 ( )d e 1 x x x x ln x dx Oppgave 3 (4 poeng) a) Løs

Detaljer

1 Å konstruere en vinkel på 60º

1 Å konstruere en vinkel på 60º 1 Å konstruere en vinkel på 60º Vi skal konstruere en 60º vinkel med toppunkt i A. Høyre vinkelbein skal ligge langs linja l. Slå en passende sirkelbue om A. Sirkelbuen skjærer l i et punkt B. Slå en sirkelbue

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 15 5,5 10 3,0 10 Oppgave ( poeng) Regn ut og skriv svaret så enkelt som mulig 1 0 1 3 9 6 4 8 Oppgave 3 (1 poeng) Løs

Detaljer

Eksamen i matematikk løsningsforslag

Eksamen i matematikk løsningsforslag Eksamen i matematikk 101 - løsningsforslag BOKMÅL Emnekode: MAT101 Eksamen Tid: 4 timer Dato: 24.10.2016 Hjelpemidler: Kalkulator, linjal, tegne- og skrivesaker Studiested: Notodden og nett Antall sider:

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag 1T Eksamen. Høst 26.11.2012. Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag 1T Eksamen 6 Høst 26.11.2012 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del1. Oppgave 1. a) Deriver funksjonene: 1) f x x. b) Regn ut grenseverdien hvis den eksisterer. lim. c) Trekk sammen. fx x x x

Del1. Oppgave 1. a) Deriver funksjonene: 1) f x x. b) Regn ut grenseverdien hvis den eksisterer. lim. c) Trekk sammen. fx x x x Del Oppgave a) Deriver funksjonene: 4 ) f x x ) g x x e x b) Regn ut grenseverdien hvis den eksisterer x x lim x x c) Trekk sammen x x 4x x x x x x 4 d) Gitt punktenea,, B 5,4 og C 4,7. ) Bestem AB, AC

Detaljer

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 4. mai 2007. Felles allmenne fag Privatistar/Privatister

Eksamen. Fag: VG1341 Matematikk 1MY. Eksamensdato: 4. mai 2007. Felles allmenne fag Privatistar/Privatister Eksamen Fag: VG1341 Matematikk 1MY Eksamensdato: 4. mai 2007 Felles allmenne fag Privatistar/Privatister Oppgåva ligg føre på begge målformer, først nynorsk, deretter bokmål. / Oppgaven foreligger på begge

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2

Løsning av utvalgte øvingsoppgaver til Sigma R2 kapittel 2 Løsning av utvalgte øvingsoppgaver til Sigma R kapittel B. a Da ABC er 90, blir AC + 8. Siden CAE er 90, blir CE + 8 7. b Vinkelen mellom CE og grunnflata blir vinkel ACE. tan ACE som gir at vinkelen blir

Detaljer

R1 Eksamen høsten 2009 Løsning

R1 Eksamen høsten 2009 Løsning R1 Eksamen, høsten 009 Løsning R1 Eksamen høsten 009 Løsning Del 1 Oppgave 1 3 a) Deriver funksjonen f( x) 5e x f( x) 5e 3 15e 3 x 3x b) Deriver funksjonen gx x 3 ln x x x g( x) 3x ln x x 3 x 3ln 1 3 c)

Detaljer

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram

Eksamen. 15. november MAT1006 Matematikk 1T-Y. Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Eksamen 15. november 016 MAT1006 Matematikk 1T-Y Yrkesfaglege utdanningsprogram Yrkesfaglige utdanningsprogram Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel del 1 Hjelpemiddel del

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (14 poeng) a) Skriv så enkelt som mulig x x 5 10x 5 b) Løs likningen x 1 3 1 c) Skriv så enkelt som mulig a a 1 4 3 4 a 3 a d) Gitt ABC ovenfor. AB 5,0, AC 3,0 og BC 4,0.

Detaljer

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Hjelpemidler på Del 2 Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

H. Aschehoug & Co www.lokus.no Side 1

H. Aschehoug & Co www.lokus.no Side 1 1 Bli kjent med GeoGebra GeoGebra er et dynamisk geometriprogram. Det vil si at vi kan gjøre en del endringer på figurene vi tegner, uten å måtte tegne dem på nytt, figuren endres dynamisk. Dette gir oss

Detaljer

11 Nye geometriske figurer

11 Nye geometriske figurer 11 Nye geometriske figurer Det gylne snitt 1 a) Mål lengden og bredden på et bank- eller kredittkort. Regn ut forholdet mellom lengden og bredden. Hvilket tall er forholdet nesten likt, og hva kaller vi

Detaljer

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse

R1-6.1-6.4 Geometri. I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30. Geometri. Løsningsskisse R1-6.1-6.4 Geometri Løsningsskisse I Figuren viser et trapes ABCD, hvor CAB 30, DBC 40, BDC 30 a) Hvilke kongruente trekanter finner du her? b) Hvilke formlike trekanter finner du her? c) Finn alle vinklene

Detaljer

Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole

Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole Heldagsprøve i R1-9.mai 2008 Adolf Øiens skole Informasjon: Tid: Hjelpemidler: Framgangsmåte og forklaringer: Om vurderingen: 5 timer. Del 1 skal leveres etter 2 timer, dvs. kl.11.00. Del 2 skal leveres

Detaljer

Eksamen REA3022 R1, Våren 2013

Eksamen REA3022 R1, Våren 2013 Eksamen REA30 R1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Formlene for arealet A av en sirkel og volumet

Detaljer

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen 22.05.2009. REA3022 Matematikk R1. Nynorsk/Bokmål Eksamen.05.009 REA30 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:

Detaljer

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor

Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor Lokalt gitt eksamen januar 2015 Praktiske opplysninger til rektor MATEMATIKK 1TY for yrkesfag 9.1.2015 MAT1006 8 sider inkludert forside og opplysningsside Forhold som skolen må være oppmerksom på: Elevene

Detaljer

Eksamen REA3022 Matematikk R1. Nynorsk/Bokmål

Eksamen REA3022 Matematikk R1.  Nynorsk/Bokmål Eksamen 9.05.013 REA30 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast

Detaljer

Løsningsforslag. Høst Øistein Søvik

Løsningsforslag. Høst Øistein Søvik Eksamen R Løsningsforslag Høst 0..0 Øistein Søvik Del Oppgave a ) ) f x x ex Her bruker vi regelen som sier at uv ' u ' v uv ' u x, u ' og v e x, v ' e x f ' x ex x ex f ' x x ex f ' x x e x Oppgave )

Detaljer

Kapittel 5. Lengder og areal

Kapittel 5. Lengder og areal Kapittel 5. Lengder og areal Mål for Kapittel 5, Lengder og areal. Kompetansemål Mål for opplæringen er at eleven skal kunne bruke og grunngi bruk av formlikhet, målestokk og Pytagoras setning til beregninger

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Per har lest 150 sider i en bok. Dette er 30 % av sidene i boka. Hvor mange sider er det i boka? Oppgave 2 (1 poeng) På et kart er avstanden fra et punkt A til

Detaljer

Løsningsforslag R1 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R1 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R1 Eksamen 6 Vår 31.05.2011 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 27052010 REA022 Matematikk R1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del 2: Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del

Detaljer

Eksamen 1T våren 2011

Eksamen 1T våren 2011 Eksamen 1T våren 011 Oppgave 1 a) 1) ) 7 6 00 000 =,6 10 0,04 10 =,4 10 4 b) c) x x + 6x= 16 + 6x 16 = 0 6 ± 6 4 1 ( 16) 6 ± 6 + 64 6 ± 100 6 ± 10 x = = = = = ± 5 1 x = 8 eller x = x x xx > 0 ( 1) > 0

Detaljer

-!4%-!4)++5.$%23 +%,3%.

-!4%-!4)++5.$%23 +%,3%. 6EDLEGG -!4%-!4)++5.$%23 +%,3%. Dette er en undersøkelse om forkunnskaper hos nye studenter. Den blir gjennomført ved alle universiteter og høgskoler i Norge. Ansvarlig for undersøkelsen er Norsk Matematikkråd.

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn

Detaljer

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven

Fagdag 1 - R1. Torsdag Geometri og vektorregning Johansen og Ulven Innledning Fagdag 1 - R1 Torsdag 26.08.09 Geometri og vektorregning Johansen og Ulven Den første fagdagen skal fokusere på vektorregning (kapittel 1), geometri (kapittel 6) og bruk av GeoGebra Jeg starter

Detaljer

Løsningsforslag til eksamen i MAT101 vår 2016

Løsningsforslag til eksamen i MAT101 vår 2016 sforslag til eksamen i MAT101 vår 2016 Oppgave 1 (vekt 30 %) a) Gjør om tallene til det angitte tallsystemet i) 567 åtte = ti ii) 476 ti = åtte : i) 567 åtte = 5 8 2 + 6 8 + 7 = 375 ti ii) 476 ti = 7 8

Detaljer

Eksempeloppgåve/ Eksempeloppgave Desember 2007

Eksempeloppgåve/ Eksempeloppgave Desember 2007 Eksempeloppgåve/ Eksempeloppgave Desember 007 REA30 Matematikk R Programfag Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid Hjelpemiddel på Del Hjelpemiddel på Del Vedlegg Vedlegg som skal leverast

Detaljer

Kurshefte GeoGebra. Ungdomstrinnet

Kurshefte GeoGebra. Ungdomstrinnet Kurshefte GeoGebra Ungdomstrinnet GeoGebra Geometri og algebra Dynamisk geometriverktøy Algebraisk verktøy Gratis Brukes på alle nivåer i utdanningssystemet Finnes på både bokmål og nynorsk Kan lastes

Detaljer