Figur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces.
|
|
- Siw Guttormsen
- 7 år siden
- Visninger:
Transkript
1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater Test polære koordinater Calculus Uge En generel funktion [S] 9.6 Functions and surfaces D (, ) f(, ) 0 D R 2, f : D R Calculus Uge
2 Definitions- og værdimængde [S] 9.6 Functions and surfaces Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable f : D R Mængden af talpar kaldes definitionsmœngden. Mængden af tal kaldes vœrdimœngden. D R 2 f(d) = {f(, ) R (, ) D} Calculus Uge Bestem definitionsmængden Eksempel 3 Forskriften g(, ) = giver en funktion med definitionsmængde D = {(, ) } = {(, ) } som er cirkelskiven med centrum i 0 og radius 3. Værdimængden er intervallet g(d) = [0, 3] R Calculus Uge
3 Et populært problem Eksempel Aktive væsker,, z blandes med proportional virkning V = z Hvilket blandingsforhold giver størst virkning? + + z = 1 V = (1 ) D = {(, ) > 0, > 0, + < 1} Bestem maksimum for funktionen V på mængden D. Calculus Uge Graf og niveaukurve [S] 9.6, 11.1 Functions of several variables Definition Grafen for en funktion f : D R Γ f = {(,, z) (, ) D, z = f(, )} er en flade i rummet R 3. Niveaukurven(konturlinjen) af kote k for en funktion f : D R f 1 (k) = {(, ) D f(, ) = k} er en kurve i planen R 2. Koter k vælges fra værdimængden. Calculus Uge
4 Udseende saddel z Grafen af f(, ) = 2 2 Calculus Uge Udseende saddel = ± 2 4 Niveaukurver for f(, ) = 2 2 Calculus Uge
5 Halvkugleskal Eksempel 3,4,8 g(, ) = Grafen er en halvkugleskal Γ g = {(,, z) , z = } = {(,, z) z 2 = 9, z 0} Niveaukurver er cirkler g 1 (k) = {(, ) , = k} = {(, ) = 9 k 2 } Calculus Uge Globus z Grafen for g(, ) = Calculus Uge
6 Breddegrader = 9 k 2 0 Niveaukurver for g(, ) = Calculus Uge Top og dal z Grafen af f(, ) = Calculus Uge
7 Top og dal Niveaukurver for f(, ) = Calculus Uge Udvid til mange variable Eksempel 11 Omtalen af funktioner i to variable udvides umiddelbart til tre eller flere variable. Udtrkket f(,, z) = ln(z ) + sin(z) er en funktion i tre variable, defineret på definitionsmængden D = {(,, z) R 3 z > } Værdimængden er f(d) = R Calculus Uge
8 Goddag igen til grænseværdier [S] 11.2 Limits and continuit 1 Definition Grænseværdien af f(, ) i et punkt (a, b) skrives eller lim f(, ) = L (,) (a,b) f(, ) L for (, ) (a, b) når f antager værdier vilkårligt tæt på L, bare (, ) er tilstrækkeligt tæt på (a, b). Calculus Uge Helt præcist 5 Definition Grænseværdien eksisterer, hvis [S] Appendi D - Functions of two variables lim f(, ) = L (,) (a,b) ɛ > 0 δ > 0 : ( a)2 + ( b) 2 < δ f(, ) L < ɛ Calculus Uge
9 Ingen grænseværdi [S] 11.2 Limits and continuit Eksempel 1 f(, ) = har ingen grænseværdi for (, ) (0, 0). Løsning f(, 0) = 1, 0 f(0, ) = 1, 0 Calculus Uge Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. 2. Grænseværdien af en differens er differensen af grænseværdierne. 3. Grænseværdien af en konstant gange en funktion er konstanten gange grænseværdien. 4. Grænseværdien af et produkt er produktet af grænseværdierne. 5. Grænseværdien af en kvotient er kvotienten af grænseværdierne. Calculus Uge
10 Kontinuitet på n [S] 11.2 Limits and continuit 3 Definition Kontinuitet af f(, ) i et punkt (a, b) skrives eller lim f(, ) = f(a, b) (,) (a,b) f(, ) f(a, b) for (, ) (a, b) f er kontinuert i D, hvis f er kontinuert i alle punkter (a, b) D. Calculus Uge Godt naboskab [S] 11.2 Limits and continuit D (, ) (a, b) f(, ) f(a, b) 0 Kontinuitet Calculus Uge
11 Helt præcist Definition Kontinuitet [S] Appendi D - Functions of two variables lim f(, ) = f(a, b) (,) (a,b) hvis der gælder ɛ > 0 δ > 0 : ( a)2 + ( b) 2 < δ f(, ) f(a, b) < ɛ Calculus Uge Test kontinuitet [S] 11.2 Limits and continuit Test Hvis f(, ) er en kontinuert funktion defineret i hele R 2, så er lim f(, ) = f(0, 0). (,) (0,0) Løsning Dette er netop definitionen på kontinuitet i (0, 0). Afkrds: ja nej Calculus Uge
12 Regler om kontinuitet [S] 11.2 Limits and continuit Morale for kontinuitet 1. De fire regningsarter og sammensat funktion af kontinuerte funktioner danner igen kontinuerte funktioner. 2. De kendte elementære funktioner er kontinuerte. sin, cos, tan, arcsin,..., ep, log, Funktionsudtrk er kontinuerte, hvor de er definerede. Calculus Uge Anvend regler [S] 11.2 Limits and continuit Eksempler om kontinuitet 1. Kontinuert på R Kontinuert på R 2, pπ 3. Kontinuert når > 2 cos sin ln( ) Calculus Uge
13 Kontinuert de rigtige steder [S] 11.2 Limits and continuit Eksempel 1, 6, 7 g(, ) = { 2 2, (, ) (0, 0) 0, (, ) = 0 er ikke kontinuert i (0, 0), da g(, ) ingen grænseværdi har for (, ) (0, 0). Fra regneregler for kontinuitet følger, at g(, ) er kontinuert på mængden R 2 \{(0, 0)} af alle talpar fraregnet (0, 0). Calculus Uge Hul i taget [S] 11.2 Limits and continuit z Ikke kontinuert i (0, 0) Calculus Uge
14 Øvelse [S] 11.2 Limits and continuit Eksempel 4, 8 f(, ) = { 3 2, (, ) (0, 0) 0, (, ) = 0 er kontinuert på mængden R 2. Løsning viser, at 2 f(, ) = f(, ) 0, når (, ) (0, 0) Calculus Uge Øvelse grafisk [S] 11.2 Limits and continuit z Kontinuert i (0, 0) Calculus Uge
15 Udvid det hele til mange variable [S] 11.2 Limits and continuit Flere variable Omtalen af grænseværdi og kontinuitet for funktioner i to variable udvides umiddelbart til tre eller flere variable. Eksempel Funktionen f(,, z) = z 2 er kontinuert på mængden R 3 \{(0, 0, 0)}. Calculus Uge Populære koordinater [S] Appendi H.1 Polar coordinates Definition Et polært koordinatsstem i planen består af et punkt polen O og en halvlinje polæraksen ud fra polen. Et vilkårligt punkt P er nu bestemt ved et talpar (r, θ). θ er vinklen mellem polæraksen og linjen OP målt med fortegn mod urets retning. r er afstanden fra O til P regnet med fortegn mht. den valgte polærakse. r P θ O 1 Calculus Uge
16 Pol og sigtelinje [S] Appendi H.1 Polar coordinates Definition Et polært koordinatsstem bestemmer et kartesisk koordinatsstem. Polen og punktet med polære koordinater (1, 0) bestemmer -aksen og polen og punktet med polære koordinater (1, π ) bestemmer -aksen. 2 P (r cos(θ), r sin(θ)) 1 r θ O 1 Calculus Uge Polær-kartesisk ordbog [S] Appendi H.1 Polar coordinates Sætning Givet et polœrt og tilhørende kartesiske koordinatsstem. Et punkt med polœre koordinater (r, θ) har kartesiske koordinater 1 = r cos(θ), = r sin(θ) Et punkt med kartesiske koordinater (, ), > 0 har polœre koordinater 2 r = 2 + 2, θ = tan 1 ( ) Calculus Uge
17 Polær-kartesisk ordbog [S] Appendi H.1 Polar coordinates Eksempel Et punkt med polære koordinater har kartesiske koordinater (r, θ) = (2, 5π 4 ) = r cos θ = 2 cos 5π 4 = 2 = r sin θ = 2 sin 5π 4 = 2 (, ) = ( 2, 2) Calculus Uge Polær-kartesisk ordbog [S] Appendi H.1 Polar coordinates P (3, 3) 5π/4 3 2 π/4 P ( 2, 2) 2 1 Calculus Uge
18 Polær-kartesisk ordbog [S] Appendi H.1 Polar coordinates Eksempel Et punkt med kartesiske koordinater har polære koordinater (, ) = (3, 3) r = = = 3 2 θ = tan 1 = tan = π 4 (r, θ) = (3 2, π 4 ) Calculus Uge Test polære koordinater [S] Appendi H.1 Polar coordinates Test Punktet med kartesiske koordinater (, ) = (1, 1) har polære koordinater: (a) (r, θ) = (2, π). (b) (r, θ) = ( 2, π 2 ). (c) (r, θ) = ( 2, π 4 ). Løsning Afkrds den rigtige: (a) (b) (c) (1, 1) r = = = tan θ = = 1 1 = 1 θ = π 4 Calculus Uge
19 Delmængder i polære koordinater [S] Appendi H.1 Polar coordinates Eksempel 0 a b Den halve cirkelring i øvre halvplan kan beskrives i både kartesiske koordinater og i polære koordinater. I kartesiske koordinater ved {(, ) a b, 0 } I polære koordinater ved {(r, θ) a r b, 0 θ π} Calculus Uge Funktioner i polære koordinater [S] Appendi H.1 Polar coordinates Eksempel En funktion g : R 2 \{0} R er givet i kartesiske koordinater ved forskriften (, ) I polære koordinater = r cos(θ), = r sin(θ) er funktionen g givet ved (r, θ) (r cos θ)2 (r sin θ) 2 (r cos θ) 2 + (r sin θ) 2 = (cos θ) 2 (sin θ) 2 = cos(2θ) Calculus Uge
Figur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2
Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater
DetaljerFigur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur
Oversigt [S] 9.6,.,.2, App. H. En generel funktion [S] 9.6 Functions and surfaces Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i
DetaljerOversigt [S] 9.6, 11.1, 11.2, App. H.1
Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater
Detaljer3. Grænseovergange og grænseværdier
Oversigt [S] 9.6, 11.1, 11., App. H.1 Her skal du lære om 1. Funktioner i flere variable. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater
DetaljerOversigt [S] 12.4, 12.5, 12.7
Oversigt [S] 12.4, 12.5, 12.7 Nøgleord og begreber Repetition: Polære koordinater Lagkagestykker Koordinatskift Type II varianten August 22, opgave 1 Populære anvendelser Flyv højere... Koordinatskift
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer
Detaljer1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
Detaljerf(a, b) er en lokal minimumsværdi.
Oversigt [S] 11.7; [LA] 13 Lokalt maksimum/minimum Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
DetaljerLektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum
Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Her skal du lære om Lokalt og absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer August 2002,
DetaljerOversigt [LA] 11, 12
Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz
DetaljerOversigt [LA] 11, 12
Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz
DetaljerLektion 14. Repetition
Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())
DetaljerLøsning til matematik aflevering /nm
Løsning til matematik aflevering 07 0404/nm Opg.. a) Reducer ved beregning følgende udtryk mest mulig: f f f b a b a a b b a b a a a a a a b a b a b a b a b a b a a b a a b a a b a b a b a b a b a b a
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerFremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner
1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse
DetaljerEn (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).
Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom
DetaljerAlle svar skal grunngis. Alle deloppgaver har lik vekt.
Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom
DetaljerNøgleord og begreber
Oversigt [LA] 0 Nøgleord og begreber Egenværdi Egenvektor Hvordan findes egenværdier Karakteristisk polynomium Egenrum Uafhængige egenvektorer Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus
DetaljerLøsningsforslag til underveiseksamen i MAT 1100, H-06
Løsningsforslag til underveiseksamen i MAT, H-6. ( poeng) Det komplekse tallet z har polarkoordinater r = 4, θ = π 4. Da er z lik: + i + i + i i + i Riktig svar: c) + i Begrunnelse: z = r(cos θ + i sin
DetaljerPlan. I dag. Neste uke
Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt
DetaljerNøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum
Oversigt [LA] 9 Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus 2-2005 Uge 44. - Vektorer skaleres Definition
DetaljerEksamen i MAT1100 H14: Løsningsforslag
Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):
DetaljerFordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2)
Fordelingsfunktionen Definition (EH 17.1) Hvis ν er et sandsynlighedsmål på (R, B) defineres fordelingsfunktionen for ν som funktionen ( ) F (x) = ν (, x] for x R. Sætning (EH 17.2) Et sandsynlighedsmål
Detaljer4_Komplekse_tall.odt tg. Kap.4 Komplekse tall
4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1
DetaljerLøsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/
Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss
DetaljerMA0002 Brukerkurs i matematikk B Vår 2014
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 8 Oppgaver fra boken: 10.1 : 13, 14, 18 10.2 : 15, 18, 32 10.3
Detaljeri den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG
3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;
DetaljerNOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN
NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner
DetaljerSIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag
SIF53 Matematikk 1, 6. desember 2 Oppgave 1 Dreid om y aksen: iv). Dreid om x = 1: iii). Oppgave 2 Om bredden på rektanglet er 2x og høyden er y finner vi for det ukjente arealet A og den kjente omkretsen
DetaljerMa-1410: Analyse, Obligatorisk øvelse 2, høsten løsningsforslag
Ma-40: Analyse, Obligatorisk øvelse, høsten 00 - løsningsforslag Ma-40: Analyse, Obligatorisk øvelse, høsten 00 - løsningsforslag. Løsningsforslag: Oppgave. Oppgave : (Numerisk integrasjon. Du får bruk
DetaljerOppfriskningskurs i matematikk 2008
Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-
DetaljerTMA4100 Matematikk1 Høst 2008
TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen
DetaljerFormelsamling Kalkulus
Formelsamling Kalkulus Martin Alexander Wilhelmsen December 8, 009 En liten formelsamling for MAT00 ved UiO. Vennligst meld fra om feil til martinaw@student.matnat.uio.no. Dette dokumentet er publisert
DetaljerUNIVERSITETET I BERGEN
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar
DetaljerLøsningsforslag til eksamen i MAT 1100 H07
Løsningsforslag til eksamen i MAT H7 DEL. (3 poeng Hva er den partiellderiverte f y når f(x, y, z = xeyz? xze yz e yz xe yz e yz + xze yz e yz + xze yz + xye yz Riktig svar: a xze yz Begrunnelse: Deriver
Detaljercappelendamm.no Funksjoner av to variable 7.1 FIGUR 7.1 FIGUR 7.2 FIGUR 7.3 Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 1
7. Funksjoner av to variable Df FIGUR 7. FIGUR 7. FIGUR 7. Matematikk for økonomi og samfunnsfag 9. utgave kapittel 7 FIGUR 7. FIGUR 7.5 FIGUR 7.6 Matematikk for økonomi og samfunnsfag 9. utgave kapittel
DetaljerMa-1410: Analyse, Obligatorisk øvelse 2, høsten 2001.
Ma-40: Analyse, Obligatorisk øvelse, høsten 00 Ma-40: Analyse, Obligatorisk øvelse, høsten 00. Beskjeder: Frist for innlevering: Lørdag 3. november. (Annet tidspunkt kan avtales.) Besvarelsene leveres
DetaljerMA1102 Grunnkurs i analyse II Vår 2019
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA1102 Grunnkurs i analyse II Vår 2019 10.2.27 a) Vi skal vise at u + v 2 = u 2 + 2u v + v 2. (1) Som boka nevner på side 581,
DetaljerFasit til obligatorisk oppgave i MAT 100A
3. november, 000 Fasit til obligatorisk oppgave i MAT 00A Oppgave a) Grensen er et 0 0-uttrykk, og vi bruker l Hôpitals regel: ln cos π (ln ) (cos π ) ( sin π ) π b) Vi må først skrive uttrykket på eksponentiell
DetaljerSIF5003 Matematikk 1, 5. desember 2001 Løsningsforslag
SIF5003 Matematikk, 5. desember 200 Oppgave For den første grensen får vi et /-uttrykk, og bruker L Hôpitals regel markert ved =) : lim 0 + ln ln sin 0 + cos sin 0 + cos sin ) =. For den andre får vi et
DetaljerInnlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8
Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln
DetaljerDen deriverte og derivasjonsregler
Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning
DetaljerPrøveeksamen i MAT 1100, H-03 Løsningsforslag
Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan
DetaljerDeleksamen i MAT111 - Grunnkurs i Matematikk I
Bergen, oktober. 2004. Løsningsforslag til Deleksamen i MAT - Grunnkurs i Matematikk I Mandag. oktober 2004, kl. 09-2. Oppgave Beregn grensen f.eks. ved hjelp av l Hôpitals regel. lim x ln x x Vi ser at
DetaljerNotasjon i rettingen:
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Løsningsforslag med kommentarer) til Innlevering /4 i emnet MAT, høsten 207 Notasjon i rettingen: R Rett R Rett, men med liten tulle)feil
DetaljerI = (x 2 2x)e kx dx. U dv = UV V du. = x 1 1. k ekx x 1 ) = x k ekx 2x dx. = x2 k ekx 2 k. k ekx 2 k I 2. k ekx 2 k 1
TMA4 Høst 6 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 6 6..4 Vi skal evaluere det ubestemte integralet I = ( e k. Vi starter med å dele opp integralet
DetaljerUNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet. Eksamen i MAT111 Grunnkurs i matematikk I Løsningsforslag
UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i MAT Grunnkurs i matematikk I Løsningsforslag Onsdag 9. mai, kl. 9. 4. Bokmål Oppgave a) La R være området mellom kurvene Finn
DetaljerOppgavehefte om komplekse tall
Oppgavehefte om komplekse tall Tore August Kro, tore.a.kro@hiof.no 11. august 009 1 Aritmetikk Eksempel 1.1 Vi skriver komplekse tall på kartesisk form z = a + ib. Tenk på i som et symbol som oppfyller
DetaljerEksamensoppgave i MA1103 Flerdimensjonal analyse
Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte
DetaljerLøsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org
Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.
DetaljerLøsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus
DetaljerLøsningsforslag Eksamen M100 Våren 2002
Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.
DetaljerUNIVERSITETET I BERGEN
BOKMÅL MAT - Høst 03 UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Grunnkurs i Matematikk I Mandag 6. desember 03, kl. 09- Tillatte hjelpemidler: Lærebok ( Calculus
DetaljerFremdriftplan. Siste uke. I dag. Kap. 1 Funksjoner Grenseverdier
1 Fremdriftplan Siste uke Kap. 1 Funksjoner 2.1-2.2 Grenseverdier I dag 2.3 Den formelle definisjonen av grenseverdi 2.4 Ensidige grenser og grenser i uendelig 2.5 Uendelige grenser og vertikale asymptoter
DetaljerElektrisk potensial/potensiell energi
Elektrisk potensial/potensiell energi. Figuren viser et uniformt elektrisk felt E heltrukne linjer. Langs hvilken stiplet linje endrer potensialet seg ikke? A. B. C. 3 D. 4 E. Det endrer seg langs alle
DetaljerFunksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010
Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en
DetaljerLøsningsforslag til utvalgte oppgaver i kapittel 5
Løsningsforslag til utvalgte oppgaver i kapittel 5 I kapittel 5 har mange av oppgavene et mer teoretisk preg enn du er vant til fra skolematematikken, og jeg har derfor lagt vekt på å lage løsningsforslag
DetaljerHøgskolen i Bergen. Formelsamling. for. ingeniørutdanningen. FOA150 høsten 2006 fellespensum. 3.utgave
Høgskolen i Bergen Formelsmling for ingeniørutdnningen FOA5 høsten 6 fellespensum. 3.utgve Funksjoner. Elementære regneregler og funksjoner: y = y, ( ) =, y y =,, =, = ) = ) = = log = ln ln c) ln y = y
DetaljerEksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
DetaljerEksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II
Eksamen Fag: AA6524/AA6526 Matematikk 3MX Eksamensdato: 7. desember 2005 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister
DetaljerLøysingsforslag Eksamen MAT111 Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 2016
Løysingsforslag Eksamen MAT Grunnkurs i Matematikk I Universitetet i Bergen, Hausten 26 OPPGÅVE Det komplekse talet z = 3 i tilsvarar punktet eller vektoren Rez, Imz) = 3, ) i det komplekse planet, som
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.
DetaljerNTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.
NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt
DetaljerTrigonometriske funksjoner (notat til MA0003)
Trigonometriske funksjoner (notat til MA0003) 0. mars 2005 Radianer Gitt et punkt A på en sirkel med radius og sentrum O. La punktet P v flytte seg fra punktet A slik at det beveger seg langs en sirkelbue
DetaljerMatematikk 1 Første deleksamen. Løsningsforslag
HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon
DetaljerNTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.
NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid
DetaljerFunksjoner oppgaver. Innhold. Funksjoner R1
Funksjoner oppgaver Innhold 3.1 Funksjoner... 3. Kontinuitet, grenseverdier og asymptoter til funksjoner... 3 Grenseverdier... 3 Rasjonale funksjoner og asymptoter... 6 Kontinuitet... 8 Funksjoner med
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK Mandag 10. desember 2007 kl
NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY1002 BØLGEFYSIKK
DetaljerMatematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF300 Løsningsforslag 23. januar 205 Tidsfrist: 30.januar 205 Oppgave a) Gjør om til kanoniske polarkoordinater, d.v.s. (r, θ)-koordinater innenfor området r 0 og 80 < θ < 80.
DetaljerKomplekse tall og komplekse funksjoner
KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som
DetaljerEKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00
Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte
DetaljerEksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
DetaljerMAT Vår Oblig 2. Innleveringsfrist: Fredag 23.april kl. 1430
MAT 00 Vår 00 Oblig Innleveringsfrist: Fredag 3.april kl. 430 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7. etg. i Niels Henrik Abels hus innen fristen.
Detaljera 2 x 2 dy dx = e r r dr dθ =
NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk
DetaljerSecond Order ODE's (2P) Young Won Lim 7/1/14
Second Order ODE's (2P) Copyright (c) 2011-2014 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
DetaljerMatematikk 1 (TMA4100)
Matematikk 1 (TMA4100) Forelesning 2: Funksjoner (fortsettelse) Eirik Hoel Høiseth Stipendiat IMF NTNU 16. august, 2012 Eksponentialfunksjoner Eksponentialfunksjoner Definisjon: Eksponentialfunksjon En
DetaljerLøsning, funksjoner av flere variable.
Ukeoppgaver, uke 3 Matematikk 3, funksjoner av flere variable 1 Løsning, funksjoner av flere variable Oppgave 1 a) = +=, b) =, =y3 d ) e ) = 3+= 3 Selv om ikke x er med kan det betraktes som funksjon av
DetaljerLøsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org
Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,
DetaljerSIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag
SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver
Detaljer=,,,,, = det( A) a a a a a a a a a a + a a 0 1. a11 a12 a22 a12 a11 a22 a12 a21 a11a12 + a12 a11
3.3 Oppgaver 3.3.1 1 2 3 1 2 3 2 0 1.La A,,,,, 3 4 B 2 1 C 0 1 a -1 b 1 c 2 Regn ut (a) A a, (b) B b, (c) C c, (d) A B, (e) A B C ( a) ( c) ( e) ( f ) 1-2 2 1 2 + ( 2) ( 1) 4 A a 3 4 1 3 2 + 4 ( 1 ( b)
DetaljerFunksjonsdrøfting MAT111, høsten 2017
Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2
DetaljerTMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016
TMA4105 Notat om skalarfelt Ulrik Skre Fjordholm 15. april 2016 Innhold 1 Grenseverdier og kontinuitet 2 2 Derivasjon av skalarfelt 5 2.1 Partiellderivert og gradient..................................
DetaljerEKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene
DetaljerOversikt over Matematikk 1
1 Oversikt over Matematikk 1 Induksjon Grenser og kontinuitet Skjæringssetningen Eksistens av ekstrempunkt Elementære funksjoner Derivasjon Sekantsetningen Integrasjon Differensialligninger Kurver i planet
DetaljerTMA4105 Matematikk2 Vår 2008
TMA4105 Matematikk2 Vår 2008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 11.4.1 Vi ser på kurven i xy-planet gitt ved r(t) ti + (ln(cos t))j π/2
DetaljerGeometri, (E-opgaver 9b)
Geometri, (E-opgaver 9b) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER... 3
Detaljerx, og du dx = w dy (cosh u) = sinh u H sinh w H x = sinh w H x. dx = H w w > 0, så h har ikke flere lokale ekstremverdier.
NTNU Institutt for matematiske fag TMA400 Matematikk høsten 00 Løsningsforslag - Øving 3 Avsnitt 3. u 49 a) Fra tabell 3.4 på sie i boka: (cosh u) = sinh u. Her har vi at u = w H, og u = w y H. Det følger
DetaljerKortfattet løsningsforslag til ekstra prøveeksamen i MAT1100, høsten 2014
Kortfattet løsningsforslag til ekstra prøveeksamen i MAT, høsten 4 DEL Oppgave. 3 poeng Hvis f, y = ye y, er f y lik: A y 3 e y B y e y C e y ye y D e y y e y E e y ye y Riktig svar: D e y y e y Oppgave.
DetaljerGrunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,
Grunnleggende notasjon ℕ,, 3, 4, 5, 6, ℤ, 3,,, 0,,, 3, ℝ 𝑎𝑙𝑙𝑒 𝑟𝑒𝑒𝑙𝑒 𝑡𝑎𝑙𝑙 ℚ 𝑎𝑙𝑙𝑒 𝑟𝑎𝑠𝑗𝑜𝑛𝑎𝑙𝑒 𝑡𝑎𝑙𝑙 𝑎 𝑎, ℤ, 0 Induksjonsprinsippet Anta at for hver 𝑛 ℕ har vi gitt et utsagn 𝑃. Anta videre at vi vet at følgende
DetaljerLØSNINGSFORSLAG TIL EKSAMEN I MA0001 BRUKERKURS A Tirsdag 14. desember 2010
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 LØSNINGSFORSLAG TIL EKSAMEN I MA1 BRUKERKURS A Tirsdag 14. desember 1 Oppgave 1 Ligningen kan skrives 4 ln x 3 ln
DetaljerNotat om trigonometriske funksjoner
Notat om trigonometriske funksjoner Dette notatet ble først skrevet for MA000 våren 005 av Ole Jacob Broch. Dette er en noe omarbeidet versjon skrevet høsten 0. Radianer Anta at en vinkel A er gitt, f.eks
DetaljerTMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon
DetaljerLøsning, Trippelintegraler
Ukeoppgaver, uke 7 Matematikk, rippelintegraler Løsning, rippelintegraler Oppgave a) b) c) 6 x + + ) d d dx x + +/) d dx x) d d dx x + + /] d dx x + /+/] dx x +6)dx 8 6 d ) ) d xdx 6 ) ) ) d d xdx 6 8
DetaljerOppfriskningskurs i Matematikk
Oppfriskningskurs i Matematikk Dag 2 Stine M. Berge 06.07.19 Stine M. Berge (NTNU) Oppfriskningskurs i Matematikk 06.07.19 1 / 16 Funksjoner Definisjon En funksjon f er en prosses som ett element i en
Detaljer