Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Størrelse: px
Begynne med side:

Download "Oversigt [S] 9.6, 11.1, 11.2, App. H.1"

Transkript

1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater Test polære koordinater Calculus Uge

2 En generel funktion [S] 9.6 Functions and surfaces Figur y D (x, y) f(x, y) 0 x D R 2, f : D R Calculus Uge

3 Definitions- og værdimængde [S] 9.6 Functions and surfaces Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable f : D R Calculus Uge

4 Definitions- og værdimængde [S] 9.6 Functions and surfaces Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable f : D R Mængden af talpar kaldes definitionsmœngden. D R 2 Calculus Uge

5 Definitions- og værdimængde [S] 9.6 Functions and surfaces Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable f : D R Mængden af talpar kaldes definitionsmœngden. Mængden af tal kaldes vœrdimœngden. D R 2 f(d) = {f(x,y) R (x,y) D} Calculus Uge

6 Bestem definitionsmængden [S] 11.1 Functions of several variables Eksempel 3 Forskriften g(x,y) = 9 x 2 y 2 Calculus Uge

7 Bestem definitionsmængden [S] 11.1 Functions of several variables Eksempel 3 Forskriften g(x,y) = 9 x 2 y 2 giver en funktion med definitionsmængde D = {(x,y) 9 x 2 y 2 0} = {(x,y) x 2 + y 2 3} som er cirkelskiven med centrum i 0 og radius 3. Calculus Uge

8 Bestem definitionsmængden [S] 11.1 Functions of several variables Eksempel 3 Forskriften g(x,y) = 9 x 2 y 2 giver en funktion med definitionsmængde D = {(x,y) 9 x 2 y 2 0} = {(x,y) x 2 + y 2 3} som er cirkelskiven med centrum i 0 og radius 3. Værdimængden er intervallet g(d) = [0, 3] R Calculus Uge

9 Et populært problem [S] 11.1 Functions of several variables Eksempel Aktive væsker x,y,z blandes med proportional virkning V = xyz Hvilket blandingsforhold giver størst virkning? Calculus Uge

10 Et populært problem [S] 11.1 Functions of several variables Eksempel Aktive væsker x,y,z blandes med proportional virkning V = xyz Hvilket blandingsforhold giver størst virkning? x + y + z = 1 V = xy(1 x y) D = {(x,y) x > 0,y > 0,x + y < 1} Calculus Uge

11 Et populært problem [S] 11.1 Functions of several variables Eksempel Aktive væsker x,y,z blandes med proportional virkning V = xyz Hvilket blandingsforhold giver størst virkning? x + y + z = 1 V = xy(1 x y) D = {(x,y) x > 0,y > 0,x + y < 1} Bestem maksimum for funktionen V på mængden D. Calculus Uge

12 Graf og niveaukurve [S] 9.6, 11.1 Functions of several variables Definition Grafen for en funktion f : D R Γ f = {(x,y,z) (x,y) D,z = f(x,y)} er en flade i rummet R 3. Calculus Uge

13 Graf og niveaukurve [S] 9.6, 11.1 Functions of several variables Definition Grafen for en funktion f : D R Γ f = {(x,y,z) (x,y) D,z = f(x,y)} er en flade i rummet R 3. Niveaukurven(konturlinjen) af kote k for en funktion f : D R f 1 (k) = {(x,y) D f(x,y) = k} er en kurve i planen R 2. Koter k vælges fra værdimængden. Calculus Uge

14 Udseende saddel Figur [S] 11.1 Functions of several variables z x y Grafen af f(x,y) = x 2 y 2 Calculus Uge

15 Udseende saddel Figur [S] 11.1 Functions of several variables z x y Grafen af f(x,y) = x 2 y 2 Calculus Uge

16 Udseende saddel Figur [S] 11.1 Functions of several variables z x y Grafen af f(x,y) = x 2 y 2 Calculus Uge

17 Udseende saddel [S] 11.1 Functions of several variables Figur y y = ± x 2 4 x Niveaukurver for f(x,y) = x 2 y 2 Calculus Uge

18 Udseende saddel [S] 11.1 Functions of several variables Figur y y = ± x 2 4 x Niveaukurver for f(x,y) = x 2 y 2 Calculus Uge

19 Udseende saddel [S] 11.1 Functions of several variables Figur y y = ± x 2 4 x Niveaukurver for f(x,y) = x 2 y 2 Calculus Uge

20 Halvkugleskal [S] 11.1 Functions of several variables Eksempel 3,4,8 g(x,y) = 9 x 2 y 2 Calculus Uge

21 Halvkugleskal [S] 11.1 Functions of several variables Eksempel 3,4,8 g(x,y) = 9 x 2 y 2 Grafen er en halvkugleskal Γ g = {(x,y,z) x 2 + y 2 9,z = 9 x 2 y 2 } = {(x,y,z) x 2 + y 2 + z 2 = 9,z 0} Calculus Uge

22 Halvkugleskal [S] 11.1 Functions of several variables Eksempel 3,4,8 g(x,y) = 9 x 2 y 2 Grafen er en halvkugleskal Γ g = {(x,y,z) x 2 + y 2 9,z = 9 x 2 y 2 } = {(x,y,z) x 2 + y 2 + z 2 = 9,z 0} Niveaukurver er cirkler g 1 (k) = {(x,y) x 2 + y 2 9, 9 x 2 y 2 = k} = {(x,y) x 2 + y 2 = 9 k 2 } Calculus Uge

23 Globus Figur [S] 11.1 Functions of several variables z x y Grafen for g(x,y) = 9 x 2 y 2 Calculus Uge

24 Breddegrader [S] 11.1 Functions of several variables Figur y x 2 + y 2 = 9 k 2 0 x Niveaukurver for g(x,y) = 9 x 2 y 2 Calculus Uge

25 Top og dal Figur [S] 11.1 Functions of several variables z x Grafen af f(x,y) = y y 1 + x 2 + y 2 Calculus Uge

26 Top og dal Figur [S] 11.1 Functions of several variables y x Niveaukurver for f(x, y) = y 1 + x 2 + y 2 Calculus Uge

27 Udvid til mange variable [S] 11.1 Functions of several variables Eksempel 11 Omtalen af funktioner i to variable udvides umiddelbart til tre eller flere variable. Calculus Uge

28 Udvid til mange variable [S] 11.1 Functions of several variables Eksempel 11 Omtalen af funktioner i to variable udvides umiddelbart til tre eller flere variable. Udtrykket f(x,y,z) = ln(z y) + xy sin(z) er en funktion i tre variable, defineret på definitionsmængden D = {(x,y,z) R 3 z > y} Calculus Uge

29 Udvid til mange variable [S] 11.1 Functions of several variables Eksempel 11 Omtalen af funktioner i to variable udvides umiddelbart til tre eller flere variable. Udtrykket f(x,y,z) = ln(z y) + xy sin(z) er en funktion i tre variable, defineret på definitionsmængden D = {(x,y,z) R 3 z > y} Værdimængden er f(d) = R Calculus Uge

30 Goddag igen til grænseværdier [S] 11.2 Limits and continuity 1 Definition Grænseværdien af f(x,y) i et punkt (a,b) skrives eller lim f(x,y) = L (x,y) (a,b) f(x,y) L for (x,y) (a,b) når f antager værdier vilkårligt tæt på L, bare (x,y) er tilstrækkeligt tæt på (a,b). Calculus Uge

31 Helt præcist 5 Definition Grænseværdien eksisterer, hvis [S] Appendix D - Functions of two variables lim f(x,y) = L (x,y) (a,b) ǫ > 0 δ > 0 : (x a)2 + (y b) 2 < δ f(x,y) L < ǫ Calculus Uge

32 Ingen grænseværdi [S] 11.2 Limits and continuity Eksempel 1 f(x,y) = x2 y 2 x 2 + y 2 har ingen grænseværdi for (x,y) (0, 0). Calculus Uge

33 Ingen grænseværdi [S] 11.2 Limits and continuity Eksempel 1 f(x,y) = x2 y 2 x 2 + y 2 har ingen grænseværdi for (x,y) (0, 0). Løsning f(x, 0) = 1,x 0 f(0,y) = 1,y 0 Calculus Uge

34 Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. Calculus Uge

35 Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. 2. Grænseværdien af en differens er differensen af grænseværdierne. Calculus Uge

36 Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. 2. Grænseværdien af en differens er differensen af grænseværdierne. 3. Grænseværdien af en konstant gange en funktion er konstanten gange grænseværdien. Calculus Uge

37 Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. 2. Grænseværdien af en differens er differensen af grænseværdierne. 3. Grænseværdien af en konstant gange en funktion er konstanten gange grænseværdien. 4. Grænseværdien af et produkt er produktet af grænseværdierne. Calculus Uge

38 Regneregler som forventet [S] 2.3 Calculating limits using the... Regneregler 1. Grænseværdien af en sum er summen af grænseværdierne. 2. Grænseværdien af en differens er differensen af grænseværdierne. 3. Grænseværdien af en konstant gange en funktion er konstanten gange grænseværdien. 4. Grænseværdien af et produkt er produktet af grænseværdierne. 5. Grænseværdien af en kvotient er kvotienten af grænseværdierne. Calculus Uge

39 Kontinuitet på ny [S] 11.2 Limits and continuity 3 Definition Kontinuitet af f(x,y) i et punkt (a,b) skrives eller lim f(x,y) = f(a,b) (x,y) (a,b) f(x,y) f(a,b) for (x,y) (a,b) f er kontinuert i D, hvis f er kontinuert i alle punkter (a,b) D. Calculus Uge

40 Godt naboskab [S] 11.2 Limits and continuity Figur y D (x, y) (a, b) f(x, y) f(a, b) 0 x Kontinuitet Calculus Uge

41 Helt præcist Definition Kontinuitet hvis der gælder [S] Appendix D - Functions of two variables lim f(x,y) = f(a,b) (x,y) (a,b) ǫ > 0 δ > 0 : (x a)2 + (y b) 2 < δ f(x,y) f(a,b) < ǫ Calculus Uge

42 Test kontinuitet [S] 11.2 Limits and continuity Test Hvis f(x,y) er en kontinuert funktion defineret i hele R 2, så er lim f(x,y) = f(0, 0). (x,y) (0,0) Afkryds: ja nej Calculus Uge

43 Test kontinuitet [S] 11.2 Limits and continuity Test Hvis f(x,y) er en kontinuert funktion defineret i hele R 2, så er lim f(x,y) = f(0, 0). (x,y) (0,0) Løsning Dette er netop definitionen på kontinuitet i (0, 0). Afkryds: ja nej Calculus Uge

44 Test kontinuitet [S] 11.2 Limits and continuity Test Hvis f(x,y) er en kontinuert funktion defineret i hele R 2, så er lim f(x,y) = f(0, 0). (x,y) (0,0) Løsning Dette er netop definitionen på kontinuitet i (0, 0). Afkryds: ja nej Calculus Uge

45 Regler om kontinuitet [S] 11.2 Limits and continuity Morale for kontinuitet Calculus Uge

46 Regler om kontinuitet [S] 11.2 Limits and continuity Morale for kontinuitet 1. De fire regningsarter og sammensat funktion af kontinuerte funktioner danner igen kontinuerte funktioner. Calculus Uge

47 Regler om kontinuitet [S] 11.2 Limits and continuity Morale for kontinuitet 1. De fire regningsarter og sammensat funktion af kontinuerte funktioner danner igen kontinuerte funktioner. 2. De kendte elementære funktioner er kontinuerte. sin, cos, tan, arcsin,...,exp, log,... Calculus Uge

48 Regler om kontinuitet [S] 11.2 Limits and continuity Morale for kontinuitet 1. De fire regningsarter og sammensat funktion af kontinuerte funktioner danner igen kontinuerte funktioner. 2. De kendte elementære funktioner er kontinuerte. sin, cos, tan, arcsin,...,exp, log, Funktionsudtryk er kontinuerte, hvor de er definerede. Calculus Uge

49 Anvend regler [S] 11.2 Limits and continuity Eksempler om kontinuitet Calculus Uge

50 Anvend regler [S] 11.2 Limits and continuity Eksempler om kontinuitet 1. Kontinuert på R 2 x y x 2 + y Calculus Uge

51 Anvend regler [S] 11.2 Limits and continuity Eksempler om kontinuitet 1. Kontinuert på R 2 x y x 2 + y Kontinuert på R 2,x pπ cosy sinx Calculus Uge

52 Anvend regler [S] 11.2 Limits and continuity Eksempler om kontinuitet 1. Kontinuert på R 2 x y x 2 + y Kontinuert på R 2,x pπ 3. Kontinuert når x 2 + y 2 > 2 cosy sinx ln(x 2 + y 2 2) Calculus Uge

53 Kontinuert de rigtige steder [S] 11.2 Limits and continuity Eksempel 1, 6, 7 g(x,y) = { x 2 y 2, x 2 +y 2 (x,y) (0, 0) 0, (x,y) = 0 er ikke kontinuert i (0, 0), da g(x,y) ingen grænseværdi har for (x,y) (0, 0). Calculus Uge

54 Kontinuert de rigtige steder [S] 11.2 Limits and continuity Eksempel 1, 6, 7 g(x,y) = { x 2 y 2, x 2 +y 2 (x,y) (0, 0) 0, (x,y) = 0 er ikke kontinuert i (0, 0), da g(x,y) ingen grænseværdi har for (x,y) (0, 0). Fra regneregler for kontinuitet følger, at g(x,y) er kontinuert på mængden R 2 \{(0, 0)} af alle talpar fraregnet (0, 0). Calculus Uge

55 Hul i taget [S] 11.2 Limits and continuity Figur z x Ikke kontinuert i (0, 0) y Calculus Uge

56 Øvelse [S] 11.2 Limits and continuity Eksempel 4, 8 f(x,y) = { 3x 2 y, x 2 +y 2 (x,y) (0, 0) 0, (x,y) = 0 er kontinuert på mængden R 2. Calculus Uge

57 Øvelse [S] 11.2 Limits and continuity Eksempel 4, 8 f(x,y) = { 3x 2 y, x 2 +y 2 (x,y) (0, 0) 0, (x,y) = 0 er kontinuert på mængden R 2. Løsning viser, at x 2 f(x,y) = 3 y 3 y x 2 + y2 f(x,y) 0, når (x,y) (0, 0) Calculus Uge

58 Øvelse grafisk [S] 11.2 Limits and continuity Figur z x Kontinuert i (0, 0) y Calculus Uge

59 Udvid det hele til mange variable [S] 11.2 Limits and continuity Flere variable Omtalen af grænseværdi og kontinuitet for funktioner i to variable udvides umiddelbart til tre eller flere variable. Calculus Uge

60 Udvid det hele til mange variable [S] 11.2 Limits and continuity Flere variable Omtalen af grænseværdi og kontinuitet for funktioner i to variable udvides umiddelbart til tre eller flere variable. Eksempel Funktionen f(x,y,z) = 1 x 2 + y 2 + z 2 er kontinuert på mængden R 3 \{(0, 0, 0)}. Calculus Uge

61 Populære koordinater [S] Appendix H.1 Polar coordinates Definition Et polært koordinatsystem i planen består af et punkt polen O og en halvlinje polæraksen ud fra polen. Et vilkårligt punkt P er nu bestemt ved et talpar (r,θ). θ er vinklen mellem polæraksen og linjen OP målt med fortegn mod urets retning. r er afstanden fra O til P regnet med fortegn mht. den valgte polærakse. r P O 1 θ Calculus Uge

62 Pol og sigtelinje [S] Appendix H.1 Polar coordinates Definition Et polært koordinatsystem bestemmer et kartesisk koordinatsystem. Polen og punktet med polære koordinater (1, 0) bestemmer x-aksen og polen og punktet med polære koordinater (1, π ) bestemmer y-aksen. 2 y P(r cos(θ), r sin(θ)) 1 r O 1 θ x Calculus Uge

63 Polær-kartesisk ordbog [S] Appendix H.1 Polar coordinates Sætning Givet et polœrt og tilhørende kartesiske koordinatsystem. Et punkt med polœre koordinater (r,θ) har kartesiske koordinater 1 x = r cos(θ), y = r sin(θ) Et punkt med kartesiske koordinater (x,y), x > 0 har polœre koordinater 2 r = x 2 + y 2, θ = tan 1 ( y x ) Calculus Uge

64 Polær-kartesisk ordbog [S] Appendix H.1 Polar coordinates Eksempel Et punkt med polære koordinater har kartesiske koordinater (r,θ) = (2, 5π 4 ) x = r cosθ = 2 cos 5π 4 = 2 y = r sin θ = 2 sin 5π 4 = 2 (x,y) = ( 2, 2) Calculus Uge

65 Polær-kartesisk ordbog [S] Appendix H.1 Polar coordinates Figur y P(3,3) 5π/4 3 2 π/4 P( 2, 2) 2 1 x Calculus Uge

66 Polær-kartesisk ordbog [S] Appendix H.1 Polar coordinates Eksempel Et punkt med kartesiske koordinater har polære koordinater (x,y) = (3, 3) r = x 2 + y 2 = = 3 2 θ = tan 1 y x = tan = π 4 (r,θ) = (3 2, π 4 ) Calculus Uge

67 Test polære koordinater [S] Appendix H.1 Polar coordinates Test Punktet med kartesiske koordinater (x,y) = (1, 1) har polære koordinater: (a) (r,θ) = (2,π). (b) (r,θ) = ( 2, π 2 ). (c) (r,θ) = ( 2, π 4 ). Afkryds den rigtige: (a) (b) (c) Calculus Uge

68 Test polære koordinater [S] Appendix H.1 Polar coordinates Test Punktet med kartesiske koordinater (x,y) = (1, 1) har polære koordinater: (a) (r,θ) = (2,π). (b) (r,θ) = ( 2, π 2 ). (c) (r,θ) = ( 2, π 4 ). Afkryds den rigtige: (a) (b) (c) Løsning y (1,1) 0 1 x Calculus Uge

69 Test polære koordinater [S] Appendix H.1 Polar coordinates Test Punktet med kartesiske koordinater (x,y) = (1, 1) har polære koordinater: (a) (r,θ) = (2,π). (b) (r,θ) = ( 2, π 2 ). (c) (r,θ) = ( 2, π 4 ). Løsning Afkryds den rigtige: (a) (b) (c) y (1,1) r = x 2 + y 2 = = x tanθ = y x = 1 1 = 1 θ = π 4 Calculus Uge

70 Test polære koordinater [S] Appendix H.1 Polar coordinates Test Punktet med kartesiske koordinater (x,y) = (1, 1) har polære koordinater: (a) (r,θ) = (2,π). (b) (r,θ) = ( 2, π 2 ). (c) (r,θ) = ( 2, π 4 ). Løsning Afkryds den rigtige: (a) (b) (c) y (1,1) r = x 2 + y 2 = = x tanθ = y x = 1 1 = 1 θ = π 4 Calculus Uge

71 Delmængder i polære koordinater [S] Appendix H.1 Polar coordinates Eksempel y 0 a b x Den halve cirkelring i øvre halvplan kan beskrives i både kartesiske koordinater og i polære koordinater. Calculus Uge

72 Delmængder i polære koordinater [S] Appendix H.1 Polar coordinates Eksempel y 0 a b x Den halve cirkelring i øvre halvplan kan beskrives i både kartesiske koordinater og i polære koordinater. I kartesiske koordinater ved {(x,y) a x 2 + y 2 b, 0 y} Calculus Uge

73 Delmængder i polære koordinater [S] Appendix H.1 Polar coordinates Eksempel y 0 a b x Den halve cirkelring i øvre halvplan kan beskrives i både kartesiske koordinater og i polære koordinater. I kartesiske koordinater ved {(x,y) a x 2 + y 2 b, 0 y} I polære koordinater ved {(r,θ) a r b, 0 θ π} Calculus Uge

74 Funktioner i polære koordinater [S] Appendix H.1 Polar coordinates Eksempel En funktion g : R 2 \{0} R er givet i kartesiske koordinater ved forskriften (x,y) x2 y 2 x 2 + y 2 Calculus Uge

75 Funktioner i polære koordinater [S] Appendix H.1 Polar coordinates Eksempel En funktion g : R 2 \{0} R er givet i kartesiske koordinater ved forskriften (x,y) x2 y 2 x 2 + y 2 I polære koordinater x = r cos(θ), y = r sin(θ) er funktionen g givet ved (r,θ) (r cos θ)2 (r sin θ) 2 (r cosθ) 2 + (r sin θ) 2 = (cosθ) 2 (sinθ) 2 = cos(2θ) Calculus Uge

Figur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces.

Figur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces. Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater

Detaljer

Figur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2

Figur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater

Detaljer

Figur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur

Figur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur Oversigt [S] 9.6,.,.2, App. H. En generel funktion [S] 9.6 Functions and surfaces Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i

Detaljer

3. Grænseovergange og grænseværdier

3. Grænseovergange og grænseværdier Oversigt [S] 9.6, 11.1, 11., App. H.1 Her skal du lære om 1. Funktioner i flere variable. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Detaljer

Oversigt [S] 12.4, 12.5, 12.7

Oversigt [S] 12.4, 12.5, 12.7 Oversigt [S] 12.4, 12.5, 12.7 Nøgleord og begreber Repetition: Polære koordinater Lagkagestykker Koordinatskift Type II varianten August 22, opgave 1 Populære anvendelser Flyv højere... Koordinatskift

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Her skal du lære om Lokalt og absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer August 2002,

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

f(a, b) er en lokal minimumsværdi.

f(a, b) er en lokal minimumsværdi. Oversigt [S] 11.7; [LA] 13 Lokalt maksimum/minimum Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum

Detaljer

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

Løsning til matematik aflevering /nm

Løsning til matematik aflevering /nm Løsning til matematik aflevering 07 0404/nm Opg.. a) Reducer ved beregning følgende udtryk mest mulig: f f f b a b a a b b a b a a a a a a b a b a b a b a b a b a a b a a b a a b a b a b a b a b a b a

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Den deriverte og derivasjonsregler

Den deriverte og derivasjonsregler Den deriverte og derivasjonsregler Department of Mathematical Sciences, NTNU, Norway September 3, 2014 Tangenten til en funksjon i et punkt (kap. 2.1) Sekant til en funksjon gjennom to punkter 25 20 f(c+h)

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA3 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 97 44 Eksamensdato: 22. mai 28 Eksamenstid (fra til): 9: 3: Hjelpemiddelkode/Tillatte

Detaljer

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner

Fremdriftplan. I går. I dag. 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner 1 Fremdriftplan I går 1.1 Funksjoner og deres grafer 1.2 Operasjoner av funksjoner I dag 1.3 Trigonometriske funksjoner 1.4 Eksponentialfunksjoner 1.5 Omvendte funksjoner, logaritmiske funksjoner, inverse

Detaljer

a 2 x 2 dy dx = e r r dr dθ =

a 2 x 2 dy dx = e r r dr dθ = NTNU Institutt for matematiske fag TMA4 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon, språk

Detaljer

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).

En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG 3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;

Detaljer

Fordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2)

Fordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2) Fordelingsfunktionen Definition (EH 17.1) Hvis ν er et sandsynlighedsmål på (R, B) defineres fordelingsfunktionen for ν som funktionen ( ) F (x) = ν (, x] for x R. Sætning (EH 17.2) Et sandsynlighedsmål

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.4-3.6 Oppgaver til seksjon 3.4 1. Anta at f(x, y) = x 2 y 3 og r(t) = t 2 i + 3t j. Regn ut g (t) når g(t) = f(r(t)). 2. Anta at f(x, y) = x 2 e xy2 og r(t) = sin t i+cos

Detaljer

Eksamen i MAT1100 H14: Løsningsforslag

Eksamen i MAT1100 H14: Løsningsforslag Eksamen i MAT H4: Løsningsforslag Oppgave. ( poeng) Dersom f(x, y) x sin(xy ), er f y lik: A) sin(xy ) + xy cos(xy ) B) x cos(xy ) C) x y cos(xy ) D) sin(xy ) + x y cos(xy ) E) cos(xy ) Riktig svar: C):

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir

LØSNINGSFORSLAG TIL EKSAMEN I FAGET 5005/7 MATEMATIKK 2 1. august der k er et vilkårlig heltall. Det gir LØNINGFOLAG IL EKAMEN I FAGE 55/7 MAEMAIKK. august Oppgave. (i Ja. (ii Ja. (iii Nei. Alternativt: (i Ja. (ii Ja. (iii Ja. Oppgave. curlf (x, y F i j k (x, y / x / y / z e y + ye x +x xe y + e x + Altså

Detaljer

e y + ye x +2x xe y + e x +1 0 = 0

e y + ye x +2x xe y + e x +1 0 = 0 LØNINGFORLAG TIL EKAMEN I FAGET 55/7 MATEMATIKK. august Oppgave. (i) Ja. (ii) Ja. (iii) Nei. Alternativt: (i) Ja. (ii) Ja. (iii) Ja. Oppgave. a) curlf (x, y) F i j k (x, y) / x / y / z e y + ye x +x xe

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 5. juni 3 EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene

Detaljer

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall

4_Komplekse_tall.odt tg. Kap.4 Komplekse tall 4_Komplekse_tall.odt 04.09.015 tg Kap.4 Komplekse tall e i π +1=0 Innledning... Egenskaper...4 Geometrisk form...5 Regneregler...6 Lengde og argument...8 Polar form...9 Eksponentform - Eulers formel...1

Detaljer

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28.

NTNU. MA1103 Flerdimensjonal Analyse våren Maple-øving 2. Viktig informasjon. Institutt for matematiske fag. maple02 28. NTNU Institutt for matematiske fag MA1103 Flerdimensjonal Analyse våren 2011 Maple-øving 2 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid

Detaljer

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse

EKSAMENSOPPGAVER FOR TMA4120 MATEMATIKK 4K H-03 Del B: Kompleks analyse Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag EKSAMENSOPPGAVER FOR TMA4 MATEMATIKK 4K H-3 Del B: Kompleks analyse Oppgave B- a) Finn de singulære punktene til funksjonen

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

TMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016

TMA4105. Notat om skalarfelt. Ulrik Skre Fjordholm 15. april 2016 TMA4105 Notat om skalarfelt Ulrik Skre Fjordholm 15. april 2016 Innhold 1 Grenseverdier og kontinuitet 2 2 Derivasjon av skalarfelt 5 2.1 Partiellderivert og gradient..................................

Detaljer

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag

SIF5003 Matematikk 1, 6. desember 2000 Løsningsforslag SIF53 Matematikk 1, 6. desember 2 Oppgave 1 Dreid om y aksen: iv). Dreid om x = 1: iii). Oppgave 2 Om bredden på rektanglet er 2x og høyden er y finner vi for det ukjente arealet A og den kjente omkretsen

Detaljer

Prøveeksamen i MAT 1100, H-03 Løsningsforslag

Prøveeksamen i MAT 1100, H-03 Løsningsforslag Prøveeksamen i MAT, H- Løsningsforslag. Integralet cos x dx er lik: +sin x Riktig svar: c) arctan(sin x) + C. Begrunnelse: Sett u = sin x, da er du = cos x dx og vi får: cos x + sin x dx = du du = arctan

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 0 Nøgleord og begreber Egenværdi Egenvektor Hvordan findes egenværdier Karakteristisk polynomium Egenrum Uafhængige egenvektorer Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: Løsningsforslag Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 4 Innleveringsfrist Fredag 11. mars 2016 Antall oppgaver: 10 + 1 Løsningsforslag 1 Hvilken av de to funksjonene vist i guren er den deriverte

Detaljer

Plan. I dag. Neste uke

Plan. I dag. Neste uke Plan I dag Referansegruppe... Ta opp igjen kurvelengde Areal bestemt av en kurve En annen måte å beskrive punkt i planet Kurver med denne beskrivelsen Tangenter, kurvelengde og areal Neste uke Kjeglesnitt

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 11 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 11 Transcendentale funksjoner Vi begynner nå på temaet transcendentale funksjoner. I dagens forelesning

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

R2 eksamen høsten 2017 løsningsforslag

R2 eksamen høsten 2017 løsningsforslag R eksamen høsten 017 løsningsforslag DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x sin3x f x cos3x 3 6cos3x sin x x sin x x sin x x x cos x sin x g x x x b) gx h x x cos x c) h

Detaljer

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00

EKSAMEN I EMNET Løsning: Mat Grunnkurs i Matematikk I Mandag 14. desember 2015 Tid: 09:00 14:00 Universitetet i Bergen Det matematisk naturvitenskapelige fakultet Matematisk institutt Side 1 av 7 BOKMÅL EKSAMEN I EMNET Mat 111 - Grunnkurs i Matematikk I Mandag 14. desember 15 Tid: 9: 14: Tillatte

Detaljer

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005

LØSNINGSFORSLAG TMA4105 Matematikk 2 8. August 2005 LØSNINGSFORSLAG TMA45 Matematikk 8. August 5 Oppgave Vi introduserer funksjonen g(x, y, z) x +y z slik at flaten z x + y er gitt ved g(x, y, z). I dette tilfellet utgjør gradienten til g en normalvektor

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

Øvelse, eksamensoppgaver MAT 1050 mars 2018

Øvelse, eksamensoppgaver MAT 1050 mars 2018 Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir

Detaljer

Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum

Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Oversigt [LA] 9 Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus 2-2005 Uge 44. - Vektorer skaleres Definition

Detaljer

Korreksjoner til fasit, 2. utgave

Korreksjoner til fasit, 2. utgave Korreksjoner til fasit,. utgave Kapittel. Oppgave.. a): / Oppgave.. e):.887, 0.58 Oppgave..9: sin00πt). + ) x Oppgave.7.5 c): ln for 0 < x. x Oppgave.8.0: Uttrykket for a + b) 7 skal være a + b) 7 = a

Detaljer

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009

Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 2009 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 6 Løsningsforslag, eksamen MA1101/MA6101 Grunnkurs i analyse I, vår 009 Oppgave 1 Funksjonen g er definert ved g(x)

Detaljer

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8

LØSNINGSFORSLAG TIL ØVING 11, TMA4105, V2008. x = r cos θ, y = r sin θ, z = 2r for 0 θ 2π, 2 2r 6. i j k. 5 r dr dθ = 8 LØNINGFORLAG TIL ØVING, TMA45, V8 Oppgave 4.5.9. Parametrisering: x = r cos θ, y = r sin θ, z = r for θ π, r 6. r(r, θ) = r cos θ, r sin θ, r. N = r r r θ = cos θ sin θ = r cos θ, r sin θ, r. r sin θ r

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA45 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 5.5.: Kulen er grafen til rφ, θ) asinφ) cosθ)i + sin φ sinθ)j + cosφ)k), φ π, θ < π. Vi har slik at φ θ acosφ) cosθ)i + sinφ) sinθ)j + cosφ)k)

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag TMA405 Matematikk Anbefalte oppgaver - Løsningsforslag Uke 6 3..9: Vi starter med å finne de kritiske punktene. De deriverte blir T x (x, y) = ( x xy)e x y T y (x, y) = ( y xy)e x y, slik at de kritiske

Detaljer

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8

BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 15. april 2016 kl 14 Antall oppgaver: 8 Innlevering BYFE DAFE Matematikk HIOA Obligatorisk innlevering 5 Innleveringsfrist Fredag 5. april 6 kl Antall oppgaver: 8 Funksjonen ft) er vist i guren over. Funksjonen F x) er denert som for x. F x)

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2011 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 20 2 Stigende og avtagende funksjoner Definisjon En funksjon f kalles stigende på intervallet I hvis

Detaljer

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag

SIF5005 Matematikk 2, 13. mai 2002 Løsningsforslag SIF55 Matematikk, 3. mai Oppgave Alternativ : At de to ligningene skjærer hverandre vil si at det finnes parameterverdier u og v som, innsatt i de to parametriseringene, gir samme punkt: Vi løser hver

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010

Funksjoner Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 19. august 2010 Funksjoner Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 9. august 200 2 Funksjon som en maskin x Funksjon f f(x) 3 Definisjon- og verdimengde x f(x) 4 Funksjon som en

Detaljer

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Eksamen R2, Våren 2011 Løsning

Eksamen R2, Våren 2011 Løsning R Eksamen, Våren 0 Løsning Eksamen R, Våren 0 Løsning Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Deriver funksjonene

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT1100 Kalkulus Eksamensdag: Fredag 11. desember 2015 Tid for eksamen: 09.00 13.00. Oppgavesettet er på 5 sider. Vedlegg: Svarark,

Detaljer

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye.

Løsningsforslag. Alle svar skal grunngis. Alle deloppgaver teller like mye. Eksamen i FO929A - Matematikk Dato: 2013 Målform: Bokmål Antall oppgaver: 5 (20 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver teller

Detaljer

x t + f y y t + f z , og t = k. + k , partiellderiverer vi begge sider av ligningen x = r cos θ med hensyn på x. Da får vi = 1 sin 2 θ r sin(θ)θ x

x t + f y y t + f z , og t = k. + k , partiellderiverer vi begge sider av ligningen x = r cos θ med hensyn på x. Da får vi = 1 sin 2 θ r sin(θ)θ x TMA4105 Matematikk 2 Vår 2015 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 5 Alle oppgavenummer refererer til 8. utgave av Adams & Essex Calculus:

Detaljer

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener.

Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. NTNU Institutt for matematiske fag TMA45 Matematikk, øving, vår Løsningsforslag Notasjon og merknader Oppgavene er hentet fra fagets lærebok, Hass, Weir og Thomas, samt gamle eksamener. Oppgaver fra kapittel

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v v x i+v y j er virvlingen gitt ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Matematikk 1 Første deleksamen. Løsningsforslag

Matematikk 1 Første deleksamen. Løsningsforslag HØGSKOLEN I ØSTFOLD, AVDELING FOR INFORMASJONSTEKNOLOGI Matematikk Første deleksamen 4. juni 208 Løsningsforslag Christian F. Heide June 8, 208 OPPGAVE a Forklar kortfattet hva den deriverte av en funksjon

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN

NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN NOTAT OM UNIFORM KONTINUITET VEDLEGG TIL BRUK I KURSET MAT2 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN OG ARNE STRAY. Innledning og definisjoner Vi vil i dette notatet betrakte reelle funksjoner

Detaljer

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7

Løsningsforslag eksamen i TMA4100 Matematikk desember Side 1 av 7 Løsningsforslag eksamen i TMA4 Matematikk 2. desember 23. Side av 7 Oppgave Løs initialverdiproblemet y (2/x)y, y() 2. Løsning: y (2/x)y er en førsteordens lineær differensialligning. Vi finner en løsning

Detaljer

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver)

Øving 3. Oppgave 1 (oppvarming med noen enkle oppgaver fra tidligere midtsemesterprøver) Institutt for fysikk, NTNU TFY455/FY003: Elektrisitet og magnetisme Vår 2008 Veiledning: Fredag 25. og mandag 28. januar Innleveringsfrist: Fredag. februar kl 2.00 Øving 3 Oppgave (oppvarming med noen

Detaljer

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I

Eksamen. Fag: AA6516 Matematikk 2MX. Eksamensdato: 7. desember 2005. Vidaregåande kurs I / Videregående kurs I Eksamen Fag: AA6516 Matematikk 2MX Eksamensdato: 7. desember 2005 Vidaregåande kurs I / Videregående kurs I Studieretning: Allmenne, økonomiske og administrative fag Privatistar/Privatister Oppgåva ligg

Detaljer

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1) = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ

β = r 2 cosθsinθ. β = β β i+ j = yi+xj. (8.1) = 2rcosθsinθi r +r( sinθsinθ+cosθcosθ)i θ Kapittel 8 Polarkoordinater Oppgave 1 Vi har gitt skalarfeltet β(x, y) = xy i kartesiske koordinater. a) For polarkoordinater (r,θ) og kartesiske koordinater (x,y) har vi sammenhengen x = rcosθ og y =

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

PS: Noen hadde riktig kurve, men tolket oppgaven som om området R kun var delen til høyre for y-aksen, med tilsvarende areal lik. (2 θ) 2 dθ.

PS: Noen hadde riktig kurve, men tolket oppgaven som om området R kun var delen til høyre for y-aksen, med tilsvarende areal lik. (2 θ) 2 dθ. Løsningsforslag Eksamen MAT2 vår 202 med forbehold om trykkfeil Alle referanser er til læreboken, eller notatet om uniform kontinuitet. Nøyaktige referanser er med bare for å hjelpe forståelsen (og fremtidige

Detaljer

Divergens- og virvelfrie felter. Potensialstrøm

Divergens- og virvelfrie felter. Potensialstrøm Kapittel 9 Divergens- og virvelfrie felter. Potensialstrøm Oppgave Det eksisterer et hastighetspotensiale φ hvis feltet er virvelfritt. For et to-dimensjonalt felt v = v x i+v y j er virvlingen gitt ved

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i Eksamensdag: 11. juni 21. Tid for eksamen: 14.3 17.3. Oppgavesettet er på 7 sider. Vedlegg: Tillatte hjelpemidler: MAT111 Kalkulus

Detaljer

Løsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik

Løsningsforslag R2 Eksamen Nebuchadnezzar Matematikk.net Øistein Søvik Løsningsforslag R2 Eksamen 6 Vår 3.05.20 Nebuchadnezzar Matematikk.net Øistein Søvik Sammendrag De fleste forlagene som gir ut lærebøker til den videregående skolen, gir ut løsningsforslag til tidligere

Detaljer

Løsningsforslag til prøveeksamen i MAT1050, vår 2019

Løsningsforslag til prøveeksamen i MAT1050, vår 2019 Løsningsforslag til prøveeksamen i MT15, vår 19 Oppgave 1. a) Vi har sinx + y) d R cosx + y) sinx + π) + sin x siden alle fire leddene er. yπ y π dx sinx + y) dy dx cosx + π) + cos x) dx sin π + sin π)

Detaljer

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx

lny = (lnx) 2 y y = 2lnx x y = 2ylnx x = 2xlnx lnx NTNU Institutt for matematiske fag TMA4100 Matematikk 1 høsten 2012 Løsningsforslag - Øving 2 Avsnitt 3.7 95 Vi antar at > 0 og får Avsnitt 3.8 6 a) 2π/3 b) π/4 c) 5π/6 ln = (ln) 2 = 2ln = 2ln = 2ln ln.

Detaljer

Løsningforslag, Øving 9 MA0001 Brukerkurs i Matematikk A

Løsningforslag, Øving 9 MA0001 Brukerkurs i Matematikk A Løsningforslag, Øving 9 MA Brukerkurs i Matematikk A Læreboka s. 7-74 9. Finn /, dersom y(x) er gitt ved ue 4u du Løsning: Vi bruker fundamentalteoremet (del ): = d [ ] ue 4u du = xe 4x. Bruk Leibniz s

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 7. desember Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA6524/AA6526 Matematikk 3MX Eksamensdato: 7. desember 2005 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011

Derivasjon Forelesning i Matematikk 1 TMA4100. Hans Jakob Rivertz Institutt for matematiske fag 2. september 2011 Derivasjon Forelesning i Matematikk TMA400 Hans Jakob Rivertz Institutt for matematiske fag 2. september 20 Kapittel 3.7. Derivasjon av inverse funksjoner 3 Derivasjon av inverse til deriverbare funksjoner

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

5 z ds = x 2 +4y 2 4

5 z ds = x 2 +4y 2 4 TMA45 Matematikk 2 Vår 25 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving Alle oppgavenummer referer til 8. utgave av Adams & Essex Calculus: A Complete

Detaljer

Eksamen R2 høsten 2014 løsning

Eksamen R2 høsten 2014 løsning Eksamen R høsten 04 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f x cos3x Vi bruker kjerneregelen

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA1103 Flerdimensjonal analyse Faglig kontakt under eksamen: Mats Ehrnstrøm Tlf: 735 917 44 Eksamensdato: 22. mai 2018 Eksamenstid (fra til): 09:00 13:00

Detaljer

TMA Representasjoner. Funksjoner. Operasjoner

TMA Representasjoner. Funksjoner. Operasjoner TMA 4105 Representasjoner Funksjoner Operasjoner Funksjoner f : D R m! f(d) R n reelle funksjoner kurver flater vektorfelt Funksjoner i) f : D R n! R reell funksjon av n variabler, f(x), f(x,y) eller f(x,y,z)

Detaljer

Trigonometriske funksjoner (notat til MA0003)

Trigonometriske funksjoner (notat til MA0003) Trigonometriske funksjoner (notat til MA0003) 0. mars 2005 Radianer Gitt et punkt A på en sirkel med radius og sentrum O. La punktet P v flytte seg fra punktet A slik at det beveger seg langs en sirkelbue

Detaljer

Eksamensoppgave i MA1103 Flerdimensjonal analyse

Eksamensoppgave i MA1103 Flerdimensjonal analyse Institutt for matematiske fag Eksamensoppgave i MA113 Flerdimensjonal analyse Faglig kontakt under eksamen: Tlf: Eksamensdato: 5. Juni 19 Eksamenstid (fra til): 9: 13: Hjelpemiddelkode/Tillatte hjelpemidler:

Detaljer

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8

Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 2017 kl 14:30 Antall oppgaver: 8 Innlevering Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Onsdag 15. november 017 kl 14:30 Antall oppgaver: 8 1 Deriver følgende funksjoner a) ( x) b) (3 5x) 6 c) x x + 3 d) x ln

Detaljer

Fasit til obligatorisk oppgave i MAT 100A

Fasit til obligatorisk oppgave i MAT 100A 3. november, 000 Fasit til obligatorisk oppgave i MAT 00A Oppgave a) Grensen er et 0 0-uttrykk, og vi bruker l Hôpitals regel: ln cos π (ln ) (cos π ) ( sin π ) π b) Vi må først skrive uttrykket på eksponentiell

Detaljer