Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum
|
|
- Matias Hagen
- 6 år siden
- Visninger:
Transkript
1 Oversigt [LA] 9 Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus Uge 44. -
2 Vektorer skaleres Definition Lad A være en n n-matrix. En n-søjlevektor u kaldes en egenvektor for A, hvis for en skalar λ R. Au = λu Calculus Uge
3 Vektorer skaleres Definition Lad A være en n n-matrix. En n-søjlevektor u kaldes en egenvektor for A, hvis for en skalar λ R. Au = λu Hvis u 0 kaldes λ en egenværdi for A og u er en egentlig egenvektor. Calculus Uge
4 Vektorer skaleres Definition Lad A være en n n-matrix. En n-søjlevektor u kaldes en egenvektor for A, hvis for en skalar λ R. Au = λu Hvis u 0 kaldes λ en egenværdi for A og u er en egentlig egenvektor. Nulvektoren er altid en egenvektor. Calculus Uge
5 Vektorer skaleres Au = λu u For en egenvektor gælder Au span(u) Calculus Uge
6 Mange egenvektorer Eksempel Identitetsmatricen I n opfylder for alle vektorer u. I n u = u Calculus Uge
7 Mange egenvektorer Eksempel Identitetsmatricen I n opfylder for alle vektorer u. I n u = u Altså er alle vektorer egenvektorer og tallet er eneste egenværdi. Calculus Uge
8 Mange egenvektorer Eksempel Nulmatricen 0 n opfylder 0 n u = 0 for alle vektorer u. Calculus Uge
9 Mange egenvektorer Eksempel Nulmatricen 0 n opfylder 0 n u = 0 for alle vektorer u. Altså er alle vektorer egenvektorer og tallet 0 er eneste egenværdi. Calculus Uge
10 Gættet eksempel Eksempel Matricen A = ( ) har egentlige egenvektorer ( ) u = e = 0 med tilhørende egenværdier,u 2 = e 2 = ( ) 0 λ =,λ 2 = 3 Calculus Uge
11 Gættet eksempel Eksempel - fortsat Dette følger af udregningerne ( ) ( ) 0 = ( ) 0 = ( ) ( ) 0 Au = λ u ( ) ( ) 0 = ( ) 0 3 = 3 ( ) 0 Au 2 = λ 2 u 2 Calculus Uge
12 Gættet eksempel Eksempel - fortsat - figur y Au 2 = 3u 2 u 2 Au = u u x Calculus Uge
13 Note eksempel Eksempel Af udregningen ( ) ( ) = ( ) 6 2 = 2 ( ) 3 ( ) 3 3 fås, at matricen A = har en egentlig egenvektor 2 4 ( ) 3 u = med egenværdi λ = 2. Calculus Uge
14 Note eksempel Eksempel - fortsat - figur y Au = 2u u = ( 3,) x Calculus Uge
15 Ligninger og egenværdi Bemærkning Lad A være en n n-matrix. Et tal λ er en egenværdi, hvis ligningssystemet a x a n x n = λx a 2 x a 2n x n = λx 2. a n x a nn x n = λx n har ikke-nul (egentlige) løsninger. Calculus Uge 44. -
16 Matrixligning og egenværdi Bemærkning - fortsat Lad A være en n n-matrix. Et tal λ er en egenværdi, hvis ligningssystemet Ax = λx har ikke-nul (egentlige) løsninger x R n. Calculus Uge
17 Matrixligning og egenværdi Bemærkning - fortsat Lad A være en n n-matrix. Et tal λ er en egenværdi, hvis ligningssystemet Ax = λx har ikke-nul (egentlige) løsninger x R n. Dette kan skrives (A λi n )x = 0 og er dermed et homogent lineært ligningssystem med koefficientmatrix A λi n Calculus Uge
18 Determinant og egenværdi Sætning 4 Lad A vœre en n n-matrix. Et tal λ er en egenvœrdi, hvis og kun hvis determinanten A λi n = 0 Calculus Uge
19 Determinant og egenværdi Sætning 4 Lad A vœre en n n-matrix. Et tal λ er en egenvœrdi, hvis og kun hvis determinanten A λi n = 0 Bemærkning n-te grads polynomiet ovenfor kaldes det karakteristiske polynomium for matricen A. Egenværdierne er altså netop rødderne i det karakteristiske polynomium. Calculus Uge
20 Karakteristisk polynomium Definition - skematisk Det karakteristiske polynomium af en n n-matrix A er n-te grads polynomiet a λ a 2 a n a 2 a 22 λ a 2n a n a n2 a nn λ = ( ) n λ n + + A = A λi n Calculus Uge
21 Karakteristisk polynomium Eksempel Det karakteristiske polynomium af en 2 2-matrix A er andengrads polynomiet a λ a 2 a 2 a 22 λ = (a λ)(a 22 λ) a 2 a 2 = λ 2 (a + a 22 )λ + (a a 22 a 2 a 2 ) Calculus Uge
22 Trekantsmatrix Eksempel Udregningen a λ a 2 a n 0 a 22 λ a 2n a nn λ = (a λ)(a 22 λ) (a nn λ) viser at egenværdierne i en trekantsmatrix netop udgøres af diagonal indgangene. Calculus Uge
23 Egengenrum Sætning 5 Lad A vœre en n n-matrix og λ en egenvœrdi. Så er mœngden af egenvektorer for A et lineœrt underrum af R n. Calculus Uge
24 Egengenrum Sætning 5 Lad A vœre en n n-matrix og λ en egenvœrdi. Så er mœngden af egenvektorer for A et lineœrt underrum af R n. Dette kaldes egenrummet hørende til λ og betegnes E λ Calculus Uge
25 Egengenrum Sætning 5 Lad A vœre en n n-matrix og λ en egenvœrdi. Så er mœngden af egenvektorer for A et lineœrt underrum af R n. Dette kaldes egenrummet hørende til λ og betegnes E λ Bevis Egenrummet er løsningsrummet for det homogene ligningssystem med koefficientmatrix A λi n. Calculus Uge
26 Andengradsligning Eksempel 2 Fra andengradspolynomiet 3 λ λ = (3 λ)( 4 λ) 3 ( 2) = λ2 + λ 6 fås, at matricen A = ( ) har de to rødder som egenværdier. λ = 3, λ 2 = 2 Calculus Uge
27 Beregn egenrum Eksempel 2 - fortsat For λ = 3 beregnes egenrummet som løsningsrum for det homogene ligningssystem med matrix ( ) 3 λ λ = ( ) ( ) Calculus Uge
28 Beregn egenrum Eksempel 2 - fortsat For λ = 3 beregnes egenrummet som løsningsrum for det homogene ligningssystem med matrix ( ) 3 λ λ x 2 = ( ) Heraf fås egenvektorerne ( ) ( ) ( x = x 2 2 = x 2 2 x 2 hvor x 2 vælges frit. ) ( ) Calculus Uge
29 Beregn egenrum Eksempel 2 - fortsat For λ 2 = 2 beregnes egenrummet som løsningsrum for det homogene ligningssystem med matrix ( ) 3 λ λ 2 = ( ) ( ) Calculus Uge
30 Beregn egenrum Eksempel 2 - fortsat For λ 2 = 2 beregnes egenrummet som løsningsrum for det homogene ligningssystem med matrix ( ) 3 λ λ 2 = ( ) Heraf fås egenvektorerne ( ) ( ) ( ) x 3x 2 3 = = x 2 x 2 x 2 hvor x 2 vælges frit. ( ) Calculus Uge
31 Egenrum Eksempel 2 - fortsat Matricen A = ( ) har egenværdier og egenrum E 3 = span{ λ = 3, λ 2 = 2 ( 2 ) ( ) 3 }, E 2 = span{ } Calculus Uge
32 Egenrum underrum Eksempel 2 - fortsat - figur y E 3 E 2 ( 3,) (.5,) x Calculus Uge
33 Tredjegradsligning Eksempel 3 ( λ) λ 0 0 λ = 2 λ λ λ λ + 0 λ 2 har tre rødder = λ 3 + 3λ 2 2λ λ = 0,, 2 Calculus Uge
34 Egenværdier Eksempel 3 - fortsat 3 3-matricen A = har karakteristisk polynomium A λi 3 = λ 3 + 3λ 2 2λ og egenværdier λ = 0, λ 2 =, λ 3 = 2 Calculus Uge
35 Egenvektorer Eksempel 3, 4 For λ = 0 er koefficientmatricen 0 A = Calculus Uge
36 Egenvektorer Eksempel 3, 4 For λ = 0 er koefficientmatricen 0 A = Egenvektorerne er da løsninger til det reducerede ligningssystem hvor x 3 er en fri variabel. x + x 3 = 0 x 2 + x 3 = 0 Calculus Uge
37 Egenvektorer Eksempel 3, 4 - fortsat Dette giver x = x 3 x 2 = x 3 Calculus Uge
38 Egenvektorer Eksempel 3, 4 - fortsat Dette giver Heraf fås egenvektorerne hvor x 3 vælges frit. x x 2 x 3 = x = x 3 x 2 = x 3 x 3 x 3 = x 3 x 3 Calculus Uge
39 Egenvektorer Eksempel 3, 4 - fortsat For λ 2 = er koefficientmatricen 0 0 A I = Calculus Uge
40 Egenvektorer Eksempel 3, 4 - fortsat For λ 2 = er koefficientmatricen 0 0 A I = Egenvektorerne er da løsninger til det reducerede ligningssystem hvor x 2 er en fri variabel. x 2 x 2 = 0 x 3 = 0 Calculus Uge
41 Egenvektorer Eksempel 3, 4 - fortsat Dette giver x = 2 x 2 x 3 = 0 Calculus Uge
42 Egenvektorer Eksempel 3, 4 - fortsat Dette giver x = 2 x 2 x 3 = 0 Heraf fås egenvektorerne hvor x 2 vælges frit. x x 2 x 3 = 2 x 2 x 2 0 = x Calculus Uge
43 Egenvektorer Eksempel 3, 4 - fortsat For λ 3 = 2 er koefficientmatricen 0 A 2I = Calculus Uge
44 Egenvektorer Eksempel 3, 4 - fortsat For λ 3 = 2 er koefficientmatricen 0 A 2I = Heraf fås egenvektorerne hvor x 3 vælges frit. x x 2 x 3 = x 3 x 3 x 3 = x 3 Calculus Uge
45 Egenrum Eksempel 3, 4 - fortsat A = har egenværdier λ = 0, λ 2 =, λ 3 = 2 og egenrum 2 E 0 = span{ }, E = span{ }, E 2 = span{ } 0 Calculus Uge
46 Egenvektorer Eksempel 3, 4 - figur (,,) z x (,,) (0.5,,0) y Egenvektorer Calculus Uge
47 Tredjegradsligning Eksempel 7 λ λ 0 λ = ( λ) λ λ har en rod og en dobbelt rod = ( λ) 2 ( + λ) λ =, Calculus Uge
48 Egenværdier Eksempel 7 - fortsat 3 3-matricen A = har karakteristisk polynomium A λi 3 = ( λ) 2 ( + λ) og egenværdier λ =, λ 2 = λ 2 siges at have multiplicitet 2. Calculus Uge
49 Egenvektorer Eksempel 7 - fortsat For λ = er koefficientmatricen A + I = Calculus Uge
50 Egenvektorer Eksempel 7 - fortsat For λ = er koefficientmatricen A + I = Heraf fås egenvektorerne hvor x 3 vælges frit. x x 2 x 3 = 0 x 3 = x 3 x 3 0 Calculus Uge
51 Egenvektorer Eksempel 7 - fortsat For λ 2 = er koefficientmatricen A I = Calculus Uge
52 Egenvektorer Eksempel 7 - fortsat For λ 2 = er koefficientmatricen A I = Egenvektorerne er da løsninger til det reducerede ligningssystem hvor x,x 3 er en frie variable. x 2 x 3 = 0 Calculus Uge
53 Egenvektorer Eksempel 7 - fortsat Dette giver x 2 = x 3 Calculus Uge
54 Egenvektorer Eksempel 7 - fortsat Dette giver x 2 = x 3 Heraf fås egenvektorerne x x 2 x 3 = hvor x,x 3 vælges frit. x x 3 x 3 = x 0 + x Calculus Uge
55 Egenvektorer Eksempel 7 - figur (0,,) z (0,,) x (,0,0) Egenvektorer y Calculus Uge
56 Egenvektorer Eksempel 7 - fortsat For λ = er egenrummet 0 E = span{ } Calculus Uge
57 Egenvektorer Eksempel 7 - fortsat For λ = er egenrummet 0 E = span{ } For λ 2 = er egenrummet E = span{ 0, 0 0 } Calculus Uge
Nøgleord og begreber
Oversigt [LA] 0 Nøgleord og begreber Egenværdi Egenvektor Hvordan findes egenværdier Karakteristisk polynomium Egenrum Uafhængige egenvektorer Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus
DetaljerOversigt [LA] 11, 12
Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz
DetaljerOversigt [LA] 11, 12
Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
DetaljerOversigt [S] 11.7; [LA] 13
Oversigt [S] 11.7; [LA] 13 Her skal du lære om Lokalt og absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer August 2002,
Detaljer1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder
Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan
Detaljerf(a, b) er en lokal minimumsværdi.
Oversigt [S] 11.7; [LA] 13 Lokalt maksimum/minimum Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum
DetaljerVær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
DetaljerEgenverdier og egenvektorer
Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon
DetaljerSKRIFTLIG EKSAMEN I MATEMATIK B-sektorens 7. semester 17. januar 2001 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet
SKRIFTLIG EKSAMEN I MATEMATIK B-sektorens. semester. januar kl. 8.-. Alle hjρlpemidler er tilladt OPGAVE Givet randvρrdiproblemet @ u(r;t) @r + r @u(r;t) @r @u(r;t) @t ; r ]; [ ; t ]; [ @u(;t) @r :u(;t)
DetaljerOversigt [S] 12.4, 12.5, 12.7
Oversigt [S] 12.4, 12.5, 12.7 Nøgleord og begreber Repetition: Polære koordinater Lagkagestykker Koordinatskift Type II varianten August 22, opgave 1 Populære anvendelser Flyv højere... Koordinatskift
DetaljerLO510D Lin.Alg. m/graf. anv. Våren 2005
TF Høgskolen i Sør Trøndelag Avdeling for informatikk og e læring LO5D Lin.Alg. m/graf. anv. Våren 5 Løsningsforslag Eksamen a) Setter α = og β = i ligningssystemet og gausseliminerer totalmatrisen til
DetaljerUniversitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
DetaljerR: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
DetaljerMA0002 Brukerkurs i matematikk B Vår 2013
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA Brukerkurs i matematikk B Vår Løsningsforslag Øving 6 9..7 Anta at en populasjon er delt inn i tre aldersklasser, og at %
Detaljery(x) = C 1 e 3x + C 2 xe 3x.
NTNU Institutt for matematiske fag TMA4115 Matematikk eksamen 4 juni 9 Løsningsforslag 1 Innsatt for z = x + iy kan ligningen skrives x + 1 + i(y ) = x 1 + i(y + ) Ved å benytte at z = a + b for et kompleks
DetaljerUNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
Detaljer7 Egenverdier og egenvektorer TMA4110 høsten 2018
7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A
DetaljerTMA4110 Matematikk 3 Haust 2011
Noregs teknisk naturvitskaplege universitet Institutt for matematiske fag TMA40 Matematikk 3 Haust 0 Løysingsforslag Øving Oppgåver frå læreboka kap 5, s 7-73 5 Eigenrommet som svarar til λ = 5 er det
DetaljerMAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
DetaljerLøsning Eksamensrelevante oppgaver i ELE 3719 Matematikk Vektorer, matriser og lineær algebra Dato Februar Oppgave 1. (A) Vi leser av at
Løsning Eksamensrelevante oppgaver i ELE 379 Matematikk Vektorer, matriser og lineær algebra Dato Februar 05 Oppgave. (A) Vi leser av at A = 3 5, B = ( 0 5 ), C = 0 5 9 og har dermed at π x = Ax + BT =
DetaljerMAT Prøveeksamen 29. mai - Løsningsforslag
MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]
DetaljerMAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
DetaljerTMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0
TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x
DetaljerEksamen i ELE Matematikk valgfag Torsdag 18. mai Oppgave 1
Eksamen i ELE79 - Matematikk valgfag Torsdag 8. mai 07 LØSNINGFORSLAG Oppgave (a) Den utvidede matrisen til likningssystemet er 6 Gausseliminasjon: ganger rad I legges til rad II: 0 0 Rad I trekkes fra
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 EKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Fredag 4. desember 2009 løsningsforslag Hjelpemidler (kode C): Enkel kalkulator
DetaljerOppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
DetaljerForelesning 14 Systemer av dierensiallikninger
Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som
DetaljerFigur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur
Oversigt [S] 9.6,.,.2, App. H. En generel funktion [S] 9.6 Functions and surfaces Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i
DetaljerFigur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces.
Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater
DetaljerFigur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2
Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
Detaljer13 Oppsummering til Ch. 5.1, 5.2 og 8.5
3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne
DetaljerMA0002 Brukerkurs i matematikk B Vår 2016
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 06 Anbefalte øvingsoppgaver fra boken: 9.3 : 53, 6, 64, 7, 75. Det er bare oppgaven under
DetaljerMA2501, Vårsemestre 2019, Numeriske metoder for lineære systemer
MA5 Vårsemestre 9 Numeriske metoder for lineære systemer Introduksjon Vi vil approksimere løsningen av lineære systemet av n ligningene og n ukjente: a x + a x + + a n x n b a x + a x + + a n x n b ()
DetaljerEksamensoppgave i TMA4110/TMA4115 Calculus 3
Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerDiagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1
Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med
DetaljerHomogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
DetaljerGauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
DetaljerMA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
DetaljerA 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DetaljerOversigt [S] 9.6, 11.1, 11.2, App. H.1
Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater
DetaljerLøsningsforslag MAT 120B, høsten 2001
Løsningsforslag MAT B, høsten Sett A = ( ) (a) Finn egenverdiene og egenvektorene til A ( ) λ =, e = ( λ =, e = ) (b) Finn matrisen e ta og den generelle løsningen på initialverdiproblemet Ẋ = AX, X()
DetaljerLøsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
DetaljerMAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.
MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom
Detaljer=cos. =cos 6 + i sin 5π 6 = =cos 2 + i sin 3π 2 = i.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 L SNINGSFORSLAG TIL EKSAMEN I SIF59 MATEMATIKK Bokmål Fredag. desember Oppgave a) Vi har z = i r e iθ = e i π r =,
Detaljer1. Finn egenverdiene og egenvektorene til matrisen A = 2 1 A =
Fasit MAT102 juni 2017 Oppgave 1 1. Finn egenverdiene og egenvektorene til matrisen ( ) 1 2 A = 2 1 Løsning: Egenverdiene er røttene til det karakteristiske polynom gitt ved determinanten av matrisen (
DetaljerEKSAMEN. 1 Om eksamen. EMNE: MA2610 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen. Klasser: (div) Dato: 24. mai 2004 Eksamenstid:
EKSAMEN EMNE: MA6 FAGLÆRER: Svein Olav Nyberg, Trond Stølen Gustavsen Klasser: (div) Dato: mai Eksamenstid: Eksamensoppgaven består av følgende: Antall sider (ink forside): 5 Antall oppgaver: Antall vedlegg:
DetaljerLineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
DetaljerFordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2)
Fordelingsfunktionen Definition (EH 17.1) Hvis ν er et sandsynlighedsmål på (R, B) defineres fordelingsfunktionen for ν som funktionen ( ) F (x) = ν (, x] for x R. Sætning (EH 17.2) Et sandsynlighedsmål
DetaljerMA1201, , Kandidatnummer:... Side 1 av 5. x =.
MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =
DetaljerMAT UiO mai Våren 2010 MAT 1012
200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)
DetaljerOppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
DetaljerEKSAMEN I NUMERISK LINEÆR ALGEBRA (TMA4205)
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side av 6 Faglig kontakt under eksamen: Navn: Brynjulf Owren 93064 EKSAMEN I NUMERISK LINEÆR ALGEBRA TMA405 Fredag 5 desember
DetaljerEgenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
DetaljerLØSNINGSSKISSE TIL EKSAMEN I FAG SIF august 2001
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 LØSNINGSSKISSE TIL EKSAMEN I FAG SIF500 0. august 00 Oppgave 5 +6 ( 4 +6)0 dvs. at vi har en rot 0 og 4 røtter av
DetaljerTil enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerEKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
Detaljer4.1 Vektorrom og underrom
4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,
DetaljerKapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer
Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil
DetaljerDiagonalisering. Kapittel 10
Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel
DetaljerInstitutt for Samfunnsøkonomi
Institutt for Samfunnsøkonomi Løsninger i: ELE 379 Matematikk valgfag Dato: 6.6., 9: 4: Tillatte hjelpemidler: Alle hjelpemidler + Eksamenskalkulator: TEXAS INSTRUMENTS BA II Plus TM Innføringsark: Ruter
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser våren 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i MA22/MA622 Lineær algebra med anvendelser våren 29 Oppgave a) Rangen til A er lik antallet
DetaljerEksamensoppgave MAT juni 2010 (med løsningsforslag)
Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6
DetaljerSKRIFTLIG EKSAMEN I NUMERISK DYNAMIK B-sektorens 7. semester 30. januar 2002 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet randvρrdiprob
SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK B-sektorens 7. semester 0. januar 00 kl. 0.00-1.00 Alle hjρlpemidler er tilladt OPGAVE 1 Givet randvρrdiproblemet k @ u(r;t) @r + 1 r @u(r;t) @u(r;t) @r = @t u(c; t)
DetaljerMAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
DetaljerEksamensoppgave i TMA4115 Matematikk 3
Institutt for matematiske fag Eksamensoppgave i TMA45 Matematikk 3 Faglig kontakt under eksamen: Aslak Bakke Buan a, Morten Andreas Nome b, Tjerand Silde c Tlf: a mobil Aslak, b mobil Morten, c mobil Tjerand
DetaljerLøsningsforslag til eksamen i MA1202/MA6202 Lineær algebra med anvendelser høsten 2009.
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 9 Løsningsforslag til eksamen i MA/MA6 Lineær algebra med anvendelser høsten 9 Oppgave a) Rangen til A er lik antallet
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:
DetaljerObligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = 0 0 0 0. 0 0 a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en
DetaljerEKSAMEN I TMA4110 MATEMATIKK 3 Bokmål Mandag 6. juni 2011 løsningsforslag
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 6 EKSAMEN I TMA4 MATEMATIKK 3 Bokmål Mandag 6. juni løsningsforslag Hjelpemidler (kode C): Enkel kalkulator (HP3S eller
DetaljerPensum i lineæralgebra inneholder disse punktene.
Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise
Detaljer12 Diagonalisering av matriser og operatorer (Ch. 5.1, 5.2 og 8.5)
Diagonalisering av matriser og operatorer (Ch 5, 5 og 85) Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A I kalkulus (teori av differensiallikninger) er
Detaljeri den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG
3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Kalkulus og lineær algebra Eksamensdag: Lørdag 25. Mai 29. Tid for eksamen: :5 4:5. Oppgavesettet er på 7 sider. Vedlegg:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Ny/utsatt eksamen i Eksamensdag: 9. august 2. Tid for eksamen: 9 2. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler: MAT Kalkulus
DetaljerMAT-1004 Vårsemester 2017 Prøveeksamen
MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av
Detaljer(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
DetaljerMA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +
DetaljerTMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:
TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og
DetaljerVi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
DetaljerMA1202/MA S løsningsskisse
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0/MA0 0S løsningsskisse Rettet. august 0 Oppgave a) Vi finner det karakteristiske polynomet, λ 0 λ λ λ λ detλi A) λ 0 λ λ
DetaljerLektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum
Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert
Detaljer7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
DetaljerLineær uavhengighet og basis
Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c
Detaljer2 3 2 t der parameteren t kan være et vilkårlig reelt tall. i) Finn determinanten til M. M =
Oppgave a) Løs likningssystemet x + 3x + x 3 = x + x 3 = 0 3x + x + 3x 3 = 8 Svar: Rekkereduksjon av totalmatrisen gir 0 0 0 0 7 0 0 0 0 Det betyr at løsningen er gitt ved x +x 3 = 0, x = 7 og x 3 en fri
DetaljerEksamensoppgave i MA1201 Lineær algebra og geometri
Institutt for matematiske fag Eksamensoppgave i MA1201 Lineær algebra og geometri Faglig kontakt under eksamen: Steffen Oppermann Tlf: 9189 7712 Eksamensdato: 05.10.2016 Eksamenstid (fra til): 08:15 09:45
Detaljer6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
DetaljerKap. 5 Egenverdier og egenvektorer
Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen
DetaljerLøsningsforslag for eksamen i Matematikk 3 - TMA4115
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 - TMA4115 Vår 1 1 a) La z = x iy. Da er Re z = x og z = x y. Siden y er et reelt
DetaljerKap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
DetaljerLøsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning
Detaljera) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er
DetaljerLØSNINGSFORSLAG EKSAMEN MA1202/MA6202 VÅR 2010
LØSNINGSFORSLAG EKSAMEN MA/MA6 VÅR Oppgave. a Radredusering gir A 4 6 5 R, og siden R har to ledende variabler så får vi ranka. Siden A har re kolonner gir dimensjonsteoremet for matriser at nullitya 4
Detaljer4.2 Nullrom, kolonnerom og lineære transformasjoner
4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en
Detaljer