Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 2006
|
|
- Solbjørg Christensen
- 7 måneder siden
- Visninger:
Transkript
1 Obligatorisk innleveringsoppgave, løsning Lineær algebra, Våren 006 Oppgave I hele oppgaven bruker vi I = a) Matrisen A har størrelse og B har størrelse slik at matriseproduktet A B er en -matrise. Vi lar produktet A B = [c ij ] der i og j. Som eksempel vises uttregningen av noen av tallene c ij. c = ( ) = 0 c = ( ) + + ( ) ( ) = 6 c = ( ) + + ( ) = Dette er med på å gi 0 6 A B =. 8 b) Inversen til A kan nnes på ere måter. Et alternativ er å bruke determinanter og kofaktorer, se teorem side 0. Her vises metoden med bruk av Gauss-Jordan eliminasjon. Det er mange korrekte måter å utføre denne eliminasjonen på. Her vises et (forhåpentligvis) korrekt eksempel. Vi setter opp en stor matrise med matrisen A til venstre og I til høyre Vi beholder rad I, men erstatter rad II med II + I og rad III med III I Vi beholder rad I og II, men erstatter rad III med III + 9 II
2 Vi fortsetter med å ordne til 'ere på diagonalen i matrisen til venstre Legg merke til at matrisen til venstre er øvre triangulær mens matrisen til høyre er nedre triangulær. Vi skal nå fjerne tallene over diagonalen i matrisen til venstre. Vi beholder rad III og erstatter rad I med I + III og rad II med II + 6 III I siste steget beholder vi radene II og III. For å fjerne tallet i matrisen til venstre erstatter vi rad I med I II Nå har vi I til venstre og vi leser av den inverse matrisen til høyre. 7 A = = c) For å nne matrisen X utnytter vi at produktene A A = I og I X = X. Husk at for matriser må vi passe på rekkefølgen når vi multipliserer. Vi begynner med å multiplisere ligningen AX = B med A fra venstre A AX = A B I X = A B X = A B. 6 Vi utfører matrisemultiplikasjonen A B og får Legg merke til X = A B = 6 8 Fordi inversen A er unik, er det kun én matrise X som oppfyller ligningen AX = B. Det er viktig at vi ganger med A fra venstre. Om vi ganger fra høyre får vi AXA = BA som ikke bringer oss videre.
3 Oppgave a) Det er mange måter å regne ut en determinant på, avhengig av situasjonen vil noen måter peker seg ut som enklere enn andre. I dette tilfellet velger jeg ut utvikle determinanten langs den andre raden. Pass på fortegnene, se side det(m) = = = = ( ( ) ( ) ) = 0. Et alternativ er å utvikle langs tredje kolonne. 0 0 det(m) = = = Denne determinanten nner vi ved å utvikle langs andre rad. Når vi har gjort det får vi determinater og kan bruke formelen for determinanter på side 98 i læreboken = = ( ( ) ( ) ) = ( ) = 0 b) Merk at siden det(m) = 0 så har ikke matrisen M en invers og vi kan ikke regne med én unik løsning av det homogene ligningssystemet Mx = 0. Som over er det mange riktige måter å gjøre Gauss eliminasjon på. Her presenterers én måte. Vi begynner med å fjerne tallene under diagonalen i M. 0 0 M = = N Fordi vi startet med et homogent system, har ligningsystemet N x = 0 har samme løsning som Mx = 0 og vi skriver 0 0 x x 0 0 x = Ordet homogent betyr at høyresiden i ligningsystemet er nullvektoren 0 = (0, 0, 0, 0). x
4 Det er en fri variabel x = s og vi får x x = 0 x = s, x + 0x = 0 x = 0, x x = 0 x = s. På vektorform har vi løsningen x = (x, x, x, x ) = (s, 0, s, s) = s(, 0,, ). Oppgave Her får vi bruk for noen regneregler med potenser. En liten repetisjon kan være nyttig. La A og B være n n-matriser og la p og q være (reelle) tall.. A p+q = A p A q.. A pq = (A p ) q = (A q ) p.. A p = (A ) p.. For matriser er det INGEN sammenheng mellom (AB) p og A p B p. a) Vi nner først E = E E = Dette er en diagonalmatrise 0 0 Vi bruker reglene over og skriver E = E + = E E = = 0 0 = I b) Før vi setter i gang å lete etter E bør vi forsikre oss om at E faktisk har en invers. Det gjør vi ved å ta determinanten på begge side av ligningen E = I. Husk at det(i) = og det(e ) = (det E). det(e ) = det(i) (det E) = det(e) = ± 0. Siden det(e) 0 har E en inversmatrise E, se teorem side 06. For å nne inversen tar vi utgangspunkt i ligningen I = E, men skriver E = E E. I = E E E I = E EE E = E. Vi nner E = E = E E = = Alternativt kunne vi brukt Gauss-Jordan eliminasjon som i b, men det hadde vært langt mer arbeidskrevende. Diagonalmatriser er matriser der bare diagonalen har elementer ulik 0. Diagonalmatriser multipliseres ved å gange sammen diagonalelementene punktvis.
5 c) Det kan umulig være slik at den som har laget oppgaven mener du skal sitte og regne ut E 00 for hånd, så her må det være et knep som reduserer regnearbeidet. E 00 = E 0+ = (E ) 0 E = I 0 E = E = Oppgave a) Vi setter opp ligningssystemet på matriseform Ax = b der a a A = a a og b = a + a 6 0 Vi har nøyaktig én løsning når det(a) 0. Vi går dermed løs på oppgaven med å nne det(a). Vi får bruk for samtlige regler vi har lært om utregning av determinanter. Det er mange riktige måter og rekkefølger å bruke de reglene på. Her følger ett mulig forslag. Tallet over likhetstegnet antyder hvilken egenskap (property) som er brukt, med henvisning til bokens kapitel.6. a a det(a) = a a a 6 = a + 0 a a 0 a a 6 = a a a a 0 a a a a 6 Vi ser på determinantene hver for seg. Den første gir, utviklet etter andre kolonne a a a 0 0 a = a a a ( = ) ( a + a ) a a a = ( ) ( a + 6a + 0 a + a ) = a.
6 Den andre determinanten gir a 0 a a a 0 = a a 0 = a a a a 0 6 = a ( 0 + ) ( 6 0 a 0 + a ) = a ( ) + a (0 + a + 0) = a a. Vi setter dette inn i uttrykket for det(a) overfor. det(a) = a + ( a a ) = a 0a = a (a + ). Vi ser at det(a) = 0 når a = 0 og a =. Systemet har nøyaktig en løsning (gitt ved x = A b) når det(a) 0, noe som inntreer når a 0 og a. I resten av punkt a antar vi at a har en verdi slik at det(a) 0 for at vi kan bruke Cramers regel. Vi setter opp de nødvendige matrisene og determinantene. Merk at for hver matrise er en av kolonnene erstattet med b. a A = a + a og det(a ) = a(a 9a ) 0 a 6 a a A = a a + og det(a ) = 8a 0 6 a A = a a a + og det(a ) = a(a a + ) a 0 Jeg går ikke gjennom detaljene i hvordan determinantene regnes ut, men det foregår i all hovedsak som for det(a). Spesielt nyttig er egenskap i kap.6, Ved Cramers regel får vi x = det(a ) det(a) = a(a 9a ) a = a 9a (a + ) a(a + ) y = det(a ) det(a) = 8a a (a + ) = 9 (a + ) z = det(a ) det(a) = a(a a + ) a = a a + (a + ) a(a + ) b) Det er ingen enkel måte å besvare punktene b og c. Det vi må gjøre er å sette både a = 0 og a = inn i Ax = b og løse systemene med Gauss 6
7 eliminasjon (Siden det(a) = 0 i disse tilfellene kan vi ikke bruke Cramers regel). Først da kan vi besvare b og c. Vi begynner med a =. Det gir den utvidede koesientmatrisen [A b] = For radene til venstre for den stiplede linjen observerer vi at 8III = 6I +0II, så om vi erstatter III med 6I + 0II 8III får vi Dermed gir den tredje ligningen 0x + 0y + 0z = 90 som er en selvmotsigelse som innebærer at systemet ikke har noen løsninger. Svaret på b er: Systemet har ingen løsninger når a =. c) Vi fortsetter med a = 0. Det gir den utvidede koesientmatrisen [A b] = Legg merke til at III = I + II og når vi erstatter III med III I II får vi Den nederste ligningen gir 0x + 0y + 0z = 0 og vi har uendelig mange løsninger. Den frie variabelen er z = s og vi har ligningene x z = x = + s, y + 0z = y =. Skrevet på vektorform gir dette løsningene x = ( + s,, s) = s(, 0, ) + (,, 0), der s R. Svaret på c er: Systemet har uendelig mange løsninger når a = 0. 7
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!
Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.
Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning
Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable
Lineære likningssystemer og matriser
Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger
Determinanter til 2 2 og 3 3 matriser
Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A = er c d det(a) = a b c d = ad bc. 1 Determinanter til 2 2 og 3 3 matriser [ ] a b Determinanten til en 2 2-matrise A =
Øving 3 Determinanter
Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er
Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.
Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre
Repetisjon: Om avsn og kap. 3 i Lay
Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert
Lineær algebra-oppsummering
Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:
Repetisjon: om avsn og kap. 3 i Lay
Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet
Homogene lineære ligningssystem, Matriseoperasjoner
Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har
Mer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
Mer om kvadratiske matriser
Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi
1 Gauss-Jordan metode
Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller
Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009
Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b
Pensum i lineæralgebra inneholder disse punktene.
Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise
Forelesning 10 Cramers regel med anvendelser
Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er
Lineær algebra. 0.1 Vektorrom
Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene
Gauss-eliminasjon og matrisemultiplikasjon
DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,
Oppgave 1 (25 %) - Flervalgsoppgaver
Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består
Elementær Matriseteori
Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start
MAT1120 Repetisjon Kap. 1
MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer
Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler
Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1
Egenverdier for 2 2 matriser
Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier
Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009
Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen
Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015
Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c
DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3
Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert
Oppgave 1. e rt = 120e. = 240 e
Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e
Lineære likningssett.
Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,
Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2
Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe
Lineære ligningssystem og matriser
Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan
MAT 1110: Bruk av redusert trappeform
Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,
UNIVERSITET I BERGEN
UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte
Numerisk lineær algebra
Numerisk lineær algebra Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 29. Oktober 2007 Problem og framgangsmåte Vi vil løse A x = b, b, x R N,
Øving 4 Egenverdier og egenvektorer
Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise
Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med
Øving 2 Matrisealgebra
Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=
MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +
A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:
5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.
DAFE BYFE Matematikk 1000 HIOA Obligatorisk innlevering 1 Innleveringsfrist Fredag 22. januar :00 Antall oppgaver: 5.
Innlevering DAFE BYFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Fredag. januar 06 4:00 Antall oppgaver: 5 Vi anbefaler at dere regner oppgaver fra boken først. Det er en liste med
Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.
Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen
LO118D Forelesning 5 (DM)
LO118D Forelesning 5 (DM) Relasjoner 03.09.2007 1 Relasjoner 2 Ekvivalensrelasjoner 3 Matriser av relasjoner 4 Relasjonsdatabaser Relasjon Relasjoner er en generalisering av funksjoner En relasjon er en
Prøve i Matte 1000 BYFE DAFE 1000 Dato: 03. mars 2016 Hjelpemiddel: Kalkulator og formelark. Alle svar skal grunngis. Alle deloppgaver har lik vekt.
Prøve i Matte 1 BYFE DAFE 1 Dato: 3. mars 216 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. LØSNINGSFORSLAG Oppgave 1 Gitt matrisene A = [ 8 3 6 2 ] [ og
R: 0, , = 6000 D : 0, , = 4000 La v n = angi fordelingen etter n år (dvs. a b n stemmer for R og
EGENVERDIER FOR MATRISER a Motiverende eksempel En by i USA har 0000 innbyggere som stemmer ved valget hvert år. I dag stemmer 8000 for R og 000 for D. Hvert år går 30% fra R til D og 0% fra D til R. Hva
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles elementer. En matrise har rader (vannrett, horisontalt)
Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3
Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2
Øving 5 Diagonalisering
Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte
(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3
NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis
I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.
Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner
Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.
4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet
Kap. 7 Symmetriske matriser og kvadratiske former
Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.
Lineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge
Lineær algebra Kurskompendium, Utøya, MAT1000 Inger Christin Borge 2006 Forord Dette er et kompendium skrevet til bruk i MAT1000-varianten av Utøyaseminarene, arrangert av Matematisk fagutvalg ved Matematisk
MAT-1004 Vårsemester 2017 Obligatorisk øving 2
MAT-1004 Vårsemester 2017 Obligatorisk øving 2 Contents 1 OPPGAVE 2 2 OPPGAVE 2 Eksempler 4.1 Oppgave 1............................... 4.2 Oppgave 2............................... 5 4 Formatering av svarene
Obligatorisk innlevering 3 - MA 109, Fasit
Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert
Forelesning 14 Systemer av dierensiallikninger
Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som
RF5100 Lineær algebra Leksjon 2
RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på
Løsningsforslag. a) i. b) (1 i) 2. e) 1 i 3 + i LF: a) Tallet er allerede på kartesisk form. På polar form er tallet gitt ved
Innlevering ELFE KJFE MAFE Matematikk 000 HIOA Obligatorisk innlevering Innleveringsfrist Mandag 3. august 05 før forelesningen :30 Antall oppgaver: 5 Løsningsforslag Uttrykk følgende komplekse tall både
6.4 Gram-Schmidt prosessen
6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig
EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER
Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG
MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile
MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for
En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x).
Funksjoner En (reell) funksjon f fra en (reell) mengde D er en regel som til hvert element x D tilordner en unik verdi y = f (x). Mengden D kalles definisjonsmengden (eng.: domain) til f. Merknad Dersom
7.4 Singulærverdi dekomposisjonen
7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon
a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er matrisen inverterbar når v T u 1.
Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Oppgave 1 a) Matrisen I uv T har egenverdier 1, med multiplisitet n 1 og 1 v T u, med multiplisitet 1. Derfor er
Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra
Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets
MAT UiO. 10. mai Våren 2010 MAT 1012
MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer
Obligatorisk oppgavesett 1 MAT1120 H16
Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har
TMA4100 Matematikk 1, høst 2013
TMA4100 Matematikk 1, høst 2013 Teknostart Forelesning 3 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart Forelesning 3 Tema Logikk Definisjoner og Teoremer Mengder og Egenskaper ved de Reelle Tall
MAT-1004 Vårsemester 2017 Prøveeksamen
MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................
Oppfriskningskurs dag 1
Oppfriskningskurs dag 1 og ligninger Steffen Junge Oppfriskningskurs i matematikk 3.-8. august 2009 Outline 1 Outline 1 Typiske problem Ranger følgende brøker etter størrelse: 1 2, 7 12, 2 3, 5 8, 17 24
Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)
Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler:
Matriser En matrise er en rektangulær oppstilling av tall og betegnes med en stor bokstav, f.eks. A, B, C,.. Eksempler: Tallene i en matrise kalles matriseelementer eller bare elementer. En matrise har
EMNE 4. Determinanter
EMNE 4. Determinanter Gitt en kvadratisk matrise, A = ( n n ). determinant som angis som: Til alle kvadratiske matriser kan vi knytte en det Determinanten er i utgangspunktet bare en tallstørrelse (skalar),
Hvorfor er lineær algebra viktig? Linear
Lineær Algebra Hvorfor er lineær algebra viktig? Linear y = ax + b linje y = f(x) funksjon Taylor utvikling f(x) =f(x 0 )+f 0 (x 0 )(x x 0 )+ 1 2 f 00 (x 0 )(x x 0 ) 2 + f(x) f(x 0 )+f 0 (x 0 )(x x 0 )
3.9 Teori og praksis for Minste kvadraters metode.
3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1
LP. Leksjon 8: Kapittel 13: Nettverk strøm problemer, forts.1 Vi fortsetter studiet av (MKS): minimum kost nettverk strøm problemet. Har nå en algoritme for beregning av x for gitt spenntre T Skal forklare
Matriser og matriseregning
og matriseregning Halvor Aarnes, UiO, 2014 Matriser Innhold Matriser... 1 Determinant... 6 Ligningsystemer... 8 Matriseaddisjon og matrisesubtraksjon... 11 Matrisemultiplisering... 11 Egenverdier og egenvektorer...
MA1201/MA6201 Høsten 2016
MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Løsningsforslag Øving Med forebehold om feil. Hvis du finner en, ta kontakt med Karin. Kapittel 6. a) Stemmer. Anta
MAT1120 Notat 2 Tillegg til avsnitt 5.4
MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik
Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på
Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske
Diagonalizering. En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1
Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med en diagonalmatrise D. A = PDP 1 1 Diagonalizering En n n matrise A sies å være diagonaliserbar hvis den er similær med
MAT 1120: Obligatorisk oppgave 1, H-09
MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,
MAT-1004 Vårsemester 2017 Obligatorisk øving 6
MAT-4 Vårsemester 7 Obligatorisk øving Contents OPPGAVE Hvordan å løse oppgaven? 4 Formatering av svarene 9. Rasjonale tall............................. 9. Matriser og vektorer.........................
Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som
b) 17 går ikke opp i 84 siden vi får en rest på 16 når 84 deles med 17 c) 17 går opp i 357 siden
Avsnitt. Oppgave Diskret matematikk - Høgskolen i Oslo Løsningsforslag for en del oppgaver fra boken Discrete Mathematics and Its Applications Forfatter: Kenneth H. Rosen a) 7 går opp i 68 siden 68 7 b)
Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort
Emne 9. Egenverdier og egenvektorer
Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller
100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)
ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med
Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge
Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.
Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer
EKSAMEN BOKMÅL STEMMER. DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember :00-13: FAGKODE: IR Matematikk 1
EKSAMEN BOKMÅL DATO: TID: OPPG. SIDER: VEDLEGG: 3 desember 15 9:-13: FAGKODE: FAGNAVN: IR151 Matematikk 1 HJELPEMIDLER: Del 1: kl 9.-11. Ingen Del : kl 11.-13. Lommeregner Lærebok etter fritt valg Matematisk
MAT1120 Plenumsregningen torsdag 26/8
MAT1120 Plenumsregningen torsdag 26/8 Øyvind Ryan (oyvindry@i.uio.no) August 2010 Innføring i Matlab for dere som ikke har brukt det før Vi skal lære følgende ting i Matlab: Elementære operasjoner Denere
Heldagsprøve i matematikk. Svar og løsningsforslag
Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være
MA1410: Analyse - Notat om differensiallikninger
Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde
7.1 forts. Schur triangularisering og spektralteoremet
7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt
Matematikk for økonomer Del 2
Matematikk for økonomer Del 2 Formelark Dokument type: Formelark Antall kapitler: 10 kapitler Antall sider: 17 Sider Forfatter: Studiekvartalets kursholdere rett til bruk av materialet. Det innebærer at
Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.
Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk
MAT1120 Oppgaver til plenumsregningen torsdag 25/9
MAT1120 Oppgaver til plenumsregningen torsdag 25/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 5.1 Denisjon av egenverdier, egenvektorer, egenrom. Teorem 1 s. 306: Egenverdiene til en triangulær
MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430
MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil
Minste kvadraters løsning, Symmetriske matriser
Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).
Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.
Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig