f(a, b) er en lokal minimumsværdi.

Størrelse: px
Begynne med side:

Download "f(a, b) er en lokal minimumsværdi."

Transkript

1 Oversigt [S] 11.7; [LA] 13 Lokalt maksimum/minimum Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer August 2002, opgave 3 1 Definition En funktion f(, ) har et lokalt maksimum i punktet (a, b), hvis der i en lille cirkelskive herom gælder f(, ) f(a, b) f(a, b) er en lokal maksimumsværdi. En funktion f(, ) har et lokalt minimum i punktet (a, b), hvis der i en lille cirkelskive herom gælder f(, ) f(a, b) f(a, b) er en lokal minimumsværdi. Calculus Uge Calculus Uge Lokalt maksimum/minimum Lokalt maksimum/minimum 1 Definition - figur Velkendt figur lokalt maksimum lokalt maksimum 1 lokalt minimum Snit for = 0 lokalt minimum Calculus Uge Calculus Uge

2 Absolut maksimum/minimum Absolut maksimum/minimum Definition En funktion f : D R har et absolut maksimum i punktet (a, b), hvis der for alle (, ) D gælder f(, ) f(a, b) f(a, b) er en absolut maksimumsværdi i D. En funktion f : D R har et absolut minimum i punktet (a, b), hvis der for alle (, ) D gælder f(, ) f(a, b) f(a, b) er en absolut minimumsværdi i D. Eksempel Funktion f : R 2 R givet ved opflder f(, ) = f(, ) f(0, 0) = 1 Altså har f et absolut maksimum i punktet (0, 0) med en absolut maksimumsværdi på 1. Der er ikke noget absolut minimumspunkt. Calculus Uge Calculus Uge Lokalt maksimum/minimum Absolut maksimum/minimum Niveaukurver Sprogbrug For lokalt/absolut maksimum eller minimum bruges betegnelser lokalt ekstremum lokal ekstremumsværdi absolut ekstremum absolut ekstremumsværdi 1 Aflæs: lokalt maksimumspunkt i (3, 3) med maksimumsværdi 4. Calculus Uge Calculus Uge

3 Lokalt maksimum/minimum 1. ordens kriterium En variabel - figur lokalt maksimum f ( 1 ) = 0 2 Sætning Hvis f(, ) har lokalt maksimum/minimum, lokalt ekstremum, i punktet (a, b) og de partielle afledede eksisterer i (a, b) så er f (a, b) = 0 = f (a, b) Skrives også med gradienten 1 2 (a, b) lokalt maks/min f(a, b) = 0 f ( 2 ) = 0 lokalt minimum Calculus Uge Calculus Uge Kritisk punkt Kritisk punkt Definition En funktion f(, ) har et kritisk punkt, stationært punkt i punktet (a, b), hvis f(a, b) = (f (a, b), f (a, b)) = 0 Kritisk punkt Når de partielle afledede findes, er et lokalt maksimum/minimum et kritisk punkt. Når funktionen er differentiabel i et kritisk punkt (a, b), er den retningsafledede D u f(a, b) = 0 i enhver retning u. lokalt maksimum Saddelpunkt Et kritisk punkt, som hverken er lokalt maksimum eller minimum, kaldes et saddelpunkt. Calculus Uge Calculus Uge

4 Find ekstremumspunkter Absolut minimum Eksempel 1 f(, ) = har kritisk punkt f(, ) = (2 2, 2 6) = 0 (, ) = (1, 3) Omskrivningen f(, ) = ( 1) 2 + ( 3) Eksempel 1 - figur viser, at (1, 3) er et absolut minimum på D = R 2. Absolut minimum i (1, 3) Calculus Uge Calculus Uge Find ekstremumspunkter Ekstremumspunkt Eksempel 2 f(, ) = 2 2 Eksempel 2 - figur har kritisk punkt f(, ) = ( 2, 2) = 0 (, ) = (0, 0) f(, 0) < 0, f(0, ) > 0, (, ) 0 viser, at (0, 0) ikke er et lokalt ekstremum, altså er (0, 0) et saddelpunkt. Saddelpunkt i (0, 0) Calculus Uge Calculus Uge

5 2. ordens kriterium 2. ordens kriterium, lokalt maksimum Sætning - (en variabel) Antag den afledede Så gælder f (a) = 0 (a) f (a) > 0 a lokalt minimum (b) f (a) < 0 a lokalt maksimum En variabel - figur lokalt maksimum f (0)=0 f ( 1)>0 f ( 2)<0 1 2 f () er aftagende omkring = 0 : f (0) < 0 Calculus Uge Calculus Uge ordens kriterium 3 Sætning (Andenordenstest) Antag f(, ) har kritisk punkt (a, b) og lad f (a, b) = 0 = f (a, b) D = f (a, b)f (a, b) f (a, b) 2 (a) D > 0, f (a, b) > 0 (a, b) lokalt minimum (b) D > 0, f (a, b) < 0 (a, b) lokalt maksimum (c) D < 0 (a, b) saddelpunkt 2. ordens kriterium og Hessematri [LA] 14 Jacobimatri og Hessematri Eksempel Antag f(, ) har kritisk punkt (a, b), f(a, b) = 0. Hessematricen ( ) f (a, b) f (a, b) f (a, b) f (a, b) har determinant D = f (a, b)f (a, b) f (a, b) 2, som er test størrelsen for arten af kritiske punkter. Egenværdier: (a) to positive, (b) to negative, (c) en positiv og en negativ. (a) D > 0, f (a, b) > 0 (a, b) lokalt minimum (b) D > 0, f (a, b) < 0 (a, b) lokalt maksimum (c) D < 0 (a, b) saddelpunkt Calculus Uge Calculus Uge

6 Hessematri [LA] 14 Jacobimatri og Hessematri 2. ordens kriterium og Hessematri [LA] 14 Jacobimatri og Hessematri Definition Givet en to gange differentiabel funktion f( 1,..., n ). Så er Hessematricen 2 f den smmetriske n n-matri, hvis ij te 2 indgang er 2 f () i j Denne skrives også f () = 2 f 2 () Fra spektralsætningen følger, at denne kan diagonaliseres. Definition Givet f( 1,..., n ). En nødvendig betingelse for et lokalt ekstremum i et indre punkt u er f (u) = ( f 1 (u),..., f n (u)) = 0 I det kritiske punkt u betragtes Hessematricen 2 f 2 (u) (a) Hvis alle egenværdier er positive, så er u et lokalt minimum. (b) Hvis alle egenværdier er negative, så er u et lokalt maksimum. (c) Hvis der forekommer både positive og negative egenværdier, så er u et saddelpunkt. Calculus Uge Calculus Uge ordens kriterium [LA] ordens partielle afledede,... Andenordenstest - Eksempel Funktionen f(,, ) = har gradient (f) = (4, 6, 2) Lokalt maksimum/minimum To variabele - figur og kritisk punkt P = (0, 0, 0). Hesse matricen f = har egenværdier 4, 6 > 0 of 2 < 0. Andenordenstesten giver: P er et saddelpunkt. har et saddelpunkt i (0, 0). = Calculus Uge Calculus Uge

7 Ekstremumspunkters tpe Lokalt maksimum/minimum Eksempel 3 Eksempel 3 - figur f(, ) = har kritiske punkter, hvor f(, ) = (4 3 4, 4 3 4) = (0, 0) De kritiske punkter bestemmes 3 = 0, 3 = 0 3 = 0, ( 3 ) 3 = 0 (, ) = (0, 0), (1, 1), ( 1, 1) = Calculus Uge Calculus Uge Ekstremumspunkters tpe Populært skema Eksempel 3 - fortsat giver f = 4 3 4, f = f = 12 2, f = 4, f = 12 2 D = f f f 2 = D(0, 0) = 16 < 0 (0, 0) saddelpunkt 2. D(1, 1) = 128 > 0, f (1, 1) = 12 > 0 (1, 1) lokalt minimum 3. D( 1, 1) = 128 > 0, f ( 1, 1) = 12 > 0 ( 1, 1) lokalt minimum Eksempel 3 - fortsat Konklusions skema (a, b) f(a, b) f (a, b) D(a, b) Tpe (0, 0) saddel (1, 1) minimum ( 1, 1) minimum Calculus Uge Calculus Uge

8 Ekstremumspunkters tpe Konklusion Eksempel 4 f(, ) = har kritiske punkter, hvor = 0, = 0 Foruden (, ) = (0, 0) fås, = 0, = = 0, = 0... (, ) (0, 0), (±2.64, 1.90), (±0.86, 0.65) Eksempel 4 - fortsat f = , f = f = , f = 20, f = (a, b) f(a, b) f (a, b) D(a, b) Tpe (0, 0) maksimum ( 2.64, 1.90) maksimum (2.64, 1.90) maksimum ( 0.86, 0.65) saddel (0.86, 0.65) saddel Calculus Uge Calculus Uge Kassefabrikant Kassefabrikant Eksempel 6 En kasse uden låg laves af 12m 2 krdsfiner. Bestem kantlængder der giver størst rumfang. V =, = 12 Eksempel 6 - figur giver med kritiske punkter, hvor 12 V = V = 2 ( ) 2( + ) 2 = 0, V = 2 ( ) 2( + ) 2 = 0 Calculus Uge Calculus Uge

9 Kassefabrikant Kassefabrikant Eksempel 6 Relevante punkter,, > 0, fås for Altså = 0, = = 0, = = 0, = (, ) = (2, 2) (, ) = ±(2, 2) Eksempel 6 - fortsat V = 2 ( ), V 2( + ) 2 = 2 ( ) 2( + ) 2 V = 2 ( 2 2)2( + ) 2 2 ( )4( + ) 4( + ) 4 V = 2 ( 2 2)2( + ) 2 2 ( )4( + ) 4( + ) 4 V = ( )2( + ) 2 2 ( )4( + ) 4( + ) 4 Calculus Uge Calculus Uge Kassefabrikant Lukket mængde Eksempel 6 - fortsat V (2, 2) = 0, V (2, 2) = 0 V (2, 2) = 1, V (2, 2) = 1/2, V (2, 2) = 1 (a, b) V (a, b) V (a, b) D(a, b) Tpe (2, 2) 4 1 3/4 maksimum Definition Givet en delmængde D R 2. Et punkt (a, b) er et randpunkt til D, hvis enhver cirkelskive med centrum i (a, b) og positiv radius indeholder punkter fra D samt punkter, der ikke ligger i D. Delmængden D er lukket, hvis ethvert randpunkt er med. Eksempel D = {(, ) } Kantlængder for størst rumfang er (,, ) = (2, 2, 1) har randpunkter og er lukket. {(, ) = 1} Calculus Uge Calculus Uge

10 Randpunkt Absolut ekstremum Definition - figur randpunkt 8 Sætning (Ekstrem værdi) Hvis f : D R er kontinuert på en lukket og begrænset delmængde D R 2, så antager f både en absolut maksimumsværdi og en absolut minimumsværdi i punkter, der ligger i mængden D. D absolut maksimum D absolut minimum Calculus Uge Calculus Uge Køreplan Find ekstremumspunkter 9 Bemærkning Find absolut maksimum og minimum for en kontinuert funktion f på en lukket og begrænset mængde D: 1. Find værdier af f i kritiske punkter i D 2. Find ekstremværdier af f på randen af D 3. Vælg maksimum/minimum fra 1. og 2. Eksempel 7 Bestem ekstremumsværdier af på rektanglet f(, ) = D = {(, ) 0 3, 0 2} f har kritisk punkt f(, ) = (2 2, 2 + 2) = 0 (, ) = (1, 1) Calculus Uge Calculus Uge

11 Ekstremumspunkter Find ekstremumspunkter Eksempel 7 - figur Eksempel 7 - fortsat f(, ) = Randen opdeles i 4 tilfælde: 1. f(, 0) = 2, f(3, ) = 9 4, f(, 2) = , f(0, ) = 2, (3,2) Calculus Uge Calculus Uge Ekstremumspunkter Opgave Matematik Alfa 1, August 2002 Eksempel 7 - fortsat f(, ) = I alt er der 6 punkter at tabellægge (a, b) (1, 1) (0, 0) (3, 0) (3, 2) (0, 2) (2, 2) f(a, b) Absolut maksimumspunkt og -værdi: f(3, 0) = 9 Absolut minimumspunkt og -værdi: f(0, 0) = f(2, 2) = 0 Opgave 3 Betragt funktionen f(, ) givet ved f(, ) = for > 0, > 0. Det oplses, at funktionen har netop ét kritisk punkt i sit definitionsområde. 1. Angiv dette kritiske punkt. 2. Undersøg om det er et lokalt minimum, maksimum, eller saddelpunkt. Calculus Uge Calculus Uge

12 Opgave Matematik Alfa 1, August 2002 Opgave 3 - løsning har kritisk punkt f(, ) = f = (1 1 2, 1 1 ) = (0, 0) 2 2 = 1, 2 = 1 (, ) = (1, 1) Opgave Matematik Alfa 1, August 2002 Opgave 3 - løsning Dobbelt partielle afledede f = 2 3, f = 1 2, f 2 = 2 3 f (1, 1) = 2, f (1, 1) = 1, f (1, 1) = 2 Andenordenstesten giver (a, b) f(a, b) f (a, b) D(a, b) Tpe (1, 1) minimum Altså er punktet (1, 1) lokalt minimum for f på mængden > 0, > 0. Calculus Uge Calculus Uge Opgave Matematik Alfa 1, August 2002 Opgave 3 - Figur (1,1) Calculus Uge

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Her skal du lære om Lokalt og absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Eksistens af absolut maksimum og minimum Køreplan for maks/min-problemer August 2002,

Detaljer

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 0 Nøgleord og begreber Egenværdi Egenvektor Hvordan findes egenværdier Karakteristisk polynomium Egenrum Uafhængige egenvektorer Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus

Detaljer

Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum

Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Oversigt [LA] 9 Nøgleord og begreber Egenværdi Egenvektor Egenrum Hvordan findes egenværdier Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus 2-2005 Uge 44. - Vektorer skaleres Definition

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

Figur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur

Figur y. Eksempel 3 Forskriften. Grafen for en funktion f : D R. Niveaukurven(konturlinjen) af kote k for en funktion. Figur Oversigt [S] 9.6,.,.2, App. H. En generel funktion [S] 9.6 Functions and surfaces Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i

Detaljer

Figur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces.

Figur D R 2, Oversigt [S] 9.6, 11.1, 11.2, App. H.1. Calculus Uge En generel funktion. [S] 9.6 Functions and surfaces. Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater

Detaljer

Figur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2

Figur y D R 2, Definition En tilordning af et tal til et givet talpar definerer en funktion af to variable. f : D R. Mængden af talpar D R 2 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

Oversigt [S] 12.4, 12.5, 12.7

Oversigt [S] 12.4, 12.5, 12.7 Oversigt [S] 12.4, 12.5, 12.7 Nøgleord og begreber Repetition: Polære koordinater Lagkagestykker Koordinatskift Type II varianten August 22, opgave 1 Populære anvendelser Flyv højere... Koordinatskift

Detaljer

Oversigt [S] 9.6, 11.1, 11.2, App. H.1

Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Oversigt [S] 9.6, 11.1, 11.2, App. H.1 Nøgleord og begreber Funktioner af flere variable Grafen og niveaukurver Grænseovergange og grænseværdier Kontinuitet i flere variable Test kontinuitet Polære koordinater

Detaljer

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert

Detaljer

3. Grænseovergange og grænseværdier

3. Grænseovergange og grænseværdier Oversigt [S] 9.6, 11.1, 11., App. H.1 Her skal du lære om 1. Funktioner i flere variable. Grafen og niveaukurver 3. Grænseovergange og grænseværdier 4. Kontinuitet i flere variable 5. Polære koordinater

Detaljer

y(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3

y(x + y) xy(1) (x + y) 2 = x(x + y) xy(1) (x + y) 3 Løsning Øvingsoppgaver Funksjoner i ere variabler MET 1180 Matematikk April 017 Oppgave 1. (a) Vi har at f = 3 og f = +. Hessematrisen blir dermed 6 (b) Ved kvotientregelen har vi at f = f = og de andreordens

Detaljer

Inverter (vekselretter)

Inverter (vekselretter) Invertere - Optimering af belastning: Inverter (vekselretter) Maximum power point tracking (MPPT) 800 W/m2 6,9 A maximum power point Tilpasser automatisk belastningen til maximum power point 6,9 A Effekt:

Detaljer

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG 3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;

Detaljer

Fordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2)

Fordelingsfunktionen. Definition (EH 17.1) Sætning (EH 17.2) Fordelingsfunktionen Definition (EH 17.1) Hvis ν er et sandsynlighedsmål på (R, B) defineres fordelingsfunktionen for ν som funktionen ( ) F (x) = ν (, x] for x R. Sætning (EH 17.2) Et sandsynlighedsmål

Detaljer

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK B-sektorens 7. semester 30. januar 2002 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet randvρrdiprob

SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK B-sektorens 7. semester 30. januar 2002 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet randvρrdiprob SKRIFTLIG EKSAMEN I NUMERISK DYNAMIK B-sektorens 7. semester 0. januar 00 kl. 0.00-1.00 Alle hjρlpemidler er tilladt OPGAVE 1 Givet randvρrdiproblemet k @ u(r;t) @r + 1 r @u(r;t) @u(r;t) @r = @t u(c; t)

Detaljer

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1

Løsningsforslag. e n. n=0. 3 n 2 2n 1. n=1 Eksamen i BYPE2000 - Matematikk 2000 Dato: 6. juni 2014 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

SKRIFTLIG EKSAMEN I MATEMATIK B-sektorens 7. semester 17. januar 2001 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet

SKRIFTLIG EKSAMEN I MATEMATIK B-sektorens 7. semester 17. januar 2001 kl Alle hjρlpemidler er tilladt OPGAVE 1 Givet SKRIFTLIG EKSAMEN I MATEMATIK B-sektorens. semester. januar kl. 8.-. Alle hjρlpemidler er tilladt OPGAVE Givet randvρrdiproblemet @ u(r;t) @r + r @u(r;t) @r @u(r;t) @t ; r ]; [ ; t ]; [ @u(;t) @r :u(;t)

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 10 10.6.3 La f (x, y) = x 2 y 4x 2 4y der (x, y) R 2. Finn alle

Detaljer

dg = ( g P0 u)ds = ( ) = 0

dg = ( g P0 u)ds = ( ) = 0 NTNU Institutt for matematiske fag TMA4105 Matematikk 2, øving 8, vår 2011 Løsningsforslag Notasjon og merknader Som vanlig er enkelte oppgaver kopiert fra tidligere års løsningsforslag. Derfor kan notasjon,

Detaljer

MAT feb feb feb MAT Våren 2010

MAT feb feb feb MAT Våren 2010 MAT 1012 Våren 2010 Forelesning Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for

Detaljer

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A = Løsning MET 803 Matematikk for siviløkonomer Dato 8. desember 07 kl 400-900 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 7 3 y = 9 6 7

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Løsning til matematik aflevering /nm

Løsning til matematik aflevering /nm Løsning til matematik aflevering 07 0404/nm Opg.. a) Reducer ved beregning følgende udtryk mest mulig: f f f b a b a a b b a b a a a a a a b a b a b a b a b a b a a b a a b a a b a b a b a b a b a b a

Detaljer

8. Frattini undergruppen. Nilpotente grupper. Fitting undergruppen G version

8. Frattini undergruppen. Nilpotente grupper. Fitting undergruppen G version 8. Frattini undergruppen. Nilpotente grupper. Fitting undergruppen G8-2004-version Lad G være en gruppe. Undergruppen M G, M G, kaldesmaksimal i G, hvisderingen undergrupper K findes med M K G. Max(G)

Detaljer

3-FASET SYMMETRISK BELASTNING. Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger

3-FASET SYMMETRISK BELASTNING. Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger AC 3-FASET SYMMETRISK BELASTNING Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger Én definition af betingelser for symmetri: Netstrømmene er lige store i de

Detaljer

4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( =

4 ( ( ( / ) 2 ( ( ( / ) 2 ( ( / 45 % + 25 ( = 4 25 % + 35 / + 35 ( = 2 25 % + 5 / 5 ( = MA Brukerkurs i matematikk B Eksamen 8. mai 6 Løsningsforslag Oppgave a) Viser at! # $ ved å vise at #!!# ' (. Nedenfor er matrisemultiplikasjonen #! vist (du må vise at!# gir det samme). ( + + + / ( +

Detaljer

Oppgave 1. e rt = 120e. = 240 e

Oppgave 1. e rt = 120e. = 240 e Løsning MET 803 Matematikk Dato 5. desember 05 kl 0900-00 Oppgave. (a) Dersom vi selger eiendommen etter t år, med t > 0, så er nåverdien av salgssummen med r = 0,0. Da får vi N(t) = V (t)e rt = 0 e e

Detaljer

Notater nr 9: oppsummering for uke 45-46

Notater nr 9: oppsummering for uke 45-46 Notater nr 9: oppsummering for uke 45-46 Bøkene B (læreboken): Tor Gulliksen og Arne Hole, Matematikk i Praksis, 5. utgave. K (kompendium): Amir M. Hashemi, Brukerkurs i matematikk MAT, høsten. Oppsummering

Detaljer

Øvelse, eksamensoppgaver MAT 1050 mars 2018

Øvelse, eksamensoppgaver MAT 1050 mars 2018 Øvelse, eksamensoppgaver MAT 5 mars 8 Oppgave. La f være funksjonen gitt ved f (x) = x 8 x, x a) Finn alle kritiske punkter for funksjonen f. f (x) = 8 x + x 8 x ( x) = (8 8 x x x ) = (4 8 x x ) = gir

Detaljer

Løsningsforslag til eksamen i TMA4105 matematikk 2,

Løsningsforslag til eksamen i TMA4105 matematikk 2, Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av Løsningsforslag til eksamen i TMA45 matematikk, 9.5.4 Oppgave La fx, y, z) xy + arctanxz). La P være punktet,, ). a)

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 18.1.017 Kl. 14:00 Innlevering: 18.1.017 Kl. 19:00 For mer informasjon om formalia,

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Geometri, (E-opgaver 9b)

Geometri, (E-opgaver 9b) Geometri, (E-opgaver 9b) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER... 3

Detaljer

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c)

n=0 n=1 n + 1 Vi får derfor at summen er lik 1/2. c) Eksamen i BYPE2000 - Matematikk 2000 Dato: 204 Målform: Bokmål Antall oppgaver: 7 (20 deloppgaver) Antall sider: 4 Vedlegg: Noen formler Hjelpemiddel: Ingen Alle svarene skal grunngis. Alle deloppgavene

Detaljer

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A =

Oppgave 1. (a) Vi løser det lineære systemet for a = 1 ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: x A = Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi løser det lineære systemet for a = ved Gauss-eliminasjon. Vi nner først den utvidede matrisen: 0 y = 4 0 4 0 z 0 Deretter

Detaljer

1 Mandag 8. februar 2010

1 Mandag 8. februar 2010 1 Mandag 8. februar 2010 Vi er ferdig med en-variabel-teorien, og vi kan begynne å jobbe med funksjoner i flere variable. Det første vi skal gjøre er å gå gjennom de vanlige analysene vi gjør for funksjoner

Detaljer

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1

MA0002 Brukerkurs i matematikk B. Eksamen 28. mai 2016 Løsningsforslag. Oppgave 1 MA000 Brukerkurs i matematikk B Eksamen 8. mai 06 Løsningsforslag Oppgave a) Viser at B = A ved å vise at AB = BA = I. Nedenfor er matrisemultiplikasjonen AB vist (du må vise at BA gir det samme). ( )

Detaljer

UNIVERSITETET I BERGEN

UNIVERSITETET I BERGEN UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT - Grunnkurs i Matematikk II Torsdag 4. juni 05, kl. 09:00-4:00 Bokmål Tillatte hjelpemiddel: Enkel kalkulator i samsvar

Detaljer

f =< 2x + z/x, 2y, 4z + ln(x) >.

f =< 2x + z/x, 2y, 4z + ln(x) >. MA 40: Analyse Uke 48, 00 http://home.hia.no/ aasvaldl/ma40 H0 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave.5: 5. Vi har gitt funksjon f(x, y) = x + y z + z ln(x) og punkt

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2017

MA0002 Brukerkurs i matematikk B Vår 2017 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2017 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 :, 8, 12, 19, 1, (valgfritt - 9,

Detaljer

The full and long title of the presentation

The full and long title of the presentation The full and long title of the presentation Subtitle if you want Øistein Søvik Mai 207 Ø. Søvik Short title Mai 207 / 4 Innholdsfortegnelse Introduksjon Nyttige tips før eksamen Nyttige tips under eksamen

Detaljer

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100

Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Ekstremverdier Mellomverdisatsen Forelesning i Matematikk 1 TMA4100 Hans Jakob Rivertz Institutt for matematiske fag 9. september 2011 Kapittel 4.1. Funksjoners ekseremverdier fra og med lokale ekstrema

Detaljer

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler

Eksamensoppgavehefte 1. MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Eksamensoppgavehefte 1 MAT1012 Matematikk 2: Mer funksjonsteori i en og flere variabler Matematisk institutt, UiO, våren 2010 I dette heftet er det samlet et utvalg av tidligere eksamensoppgaver innenfor

Detaljer

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11

OPPGAVESETT MAT111-H16 UKE 44. Oppgaver til seminaret 4/11 OPPGAVESETT MAT111-H16 UKE 44 Avsn. 5.5: 19, 41, 47 Avsn. 5.6: 9, 17, 47 Avsn. 5.7: 15 På settet: S.1, S.2. Oppgaver til seminaret 4/11 Oppgaver til gruppene uke 45 Løs disse først så disse Mer dybde Avsn.

Detaljer

Sådan optimerer du dine. call to action-knapper

Sådan optimerer du dine. call to action-knapper Sådan optimerer du dine call to action-knapper 213,16% flere konverteringer Statistisk signifikansniveau: 99% Lille ændring på siden STOR EFFEKT på beslutningen Det kritiske punkt mellem bounce og konvertering

Detaljer

Fasit, Kap : Derivasjon 2.

Fasit, Kap : Derivasjon 2. Ukeoppgaver, uke 37, i Matematikk 10, Kap. 3.5-3.8: Derivasjon. 1 Fasit, Kap. 3.5-3.8: Derivasjon. Oppgave 1 a) f (x) =x. Denne eksisterer over alt (det er vanligvis punkter med null i nevner som kan skaffe

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Forelesning 9 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Forelesning 9 Derivasjon I dagens forelesning skal vi se på følgende: 1 Tilnærminger til små endringer. 2 Vekstfart.

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0

Oppgave 1. f(2x ) = f(0,40) = 0,60 ln(1,40) + 0,40 ln(0,60) 0,0024 < 0 Løsning MET 80 Matematikk for siviløkonomer Dato 0. mai 07 kl 0900-400 Oppgave. (a) Vi lar p = 0,60 og q = 0,40, og skriver funksjonen som f() = p ln( + ) + q ln( ) for å forenkle skrivemåten. Funksjonen

Detaljer

Vektorer. i planen. Et opläg. Udgave Karsten Juul

Vektorer. i planen. Et opläg. Udgave Karsten Juul Vektorer i planen. Et opläg. Udgave 2. 3 4 4 2 2011 Karsten Juul Til eleven FormÅlet med dette häfte er ikke at du skal få träning i at skrive besvarelser af standardopgaver. FormÅlet er at du skal få

Detaljer

Brandsikringsautomatik

Brandsikringsautomatik Brandsikringsautomatik BR-A3 Gateway, Modbus RS485 27-10-2016 07:00 Side 1/8 Indholdsfortegnelse Funktionsbeskrivelse 3 Opkobling 3 GateWay opsætning 4 DIP switch 4 LED display 4 Gateway registre 5 Kontroller

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Tirsdag 1. april 2014 kl. 12:45 Antall oppgaver: 8+2 1 Bestem den naturlige denisjonsmengden til følgende funksjoner.

Detaljer

Analysedrypp IV: Metriske rom

Analysedrypp IV: Metriske rom Analysedrypp IV: Metriske rom Vi har tidligere sett at begreper som konvergens og kontinuitet har med avstand å gjøre at f er kontinuerlig i punktet a, betyr f. eks. at det for enhver ɛ > 0, finnes en

Detaljer

Harald Michalsen og Lasse Storr-Hansen. Tplan version 28.2 Skoleåret 2006-2007 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2

Harald Michalsen og Lasse Storr-Hansen. Tplan version 28.2 Skoleåret 2006-2007 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2 1 af 9 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2 NYHEDER I WINTP...4 Import af Holdbetegnelser...5 Import af Fagregister...6 Import af Blokregister...9 2 af 9 Tplan versjon 28.2 og sommeren 2006 Til mine

Detaljer

TMA4100 Matematikk 1, høst 2013

TMA4100 Matematikk 1, høst 2013 TMA4100 Matematikk 1, høst 2013 Teknostart forelesning 6 www.ntnu.no TMA4100 Matematikk 1, høst 2013, Teknostart forelesning 6 Grenseverdier I dagens forelesning skal vi se på følgende: 1 En formell definisjon

Detaljer

Side 1. Coaching. Modeller og metoder

Side 1. Coaching. Modeller og metoder Side 1 Coaching Modeller og metoder Ramme omkring coaching Fysisk: Indledning: Et rum, der egner sig til samtale En stoleopstilling, der fungerer Sikre at man ikke bliver forstyrret Sikre at begge kender

Detaljer

Konstruktion 15. januar 2008 U-værdi i henhold til DS 418

Konstruktion 15. januar 2008 U-værdi i henhold til DS 418 Konstruktion. januar 2008 U-værdi i henhold til DS 418 Side 1/17 UDE Dette er en skitse Det antages at de bærende elementer krydser hinanden i rette vinkler. Størrelsen af områderne er beregnet som den

Detaljer

Programmering og Problemløsning, 2017

Programmering og Problemløsning, 2017 Programmering og Problemløsning, 2017 Typer og Mønstergenkendelse Part III Martin Elsman Datalogisk Institut Københavns Universitet DIKU 27. Oktober, 2017 Martin Elsman (DIKU) Programmering og Problemløsning,

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

Brandsikringsautomatik

Brandsikringsautomatik Brandsikringsautomatik BR-A3 Gateway, Modbus RTU, RS485 02-01-2018 10:27 Side 1/9 Indholdsfortegnelse Funktionsbeskrivelse 3 Opkobling 4 GateWay opsætning 5 DIP switch 5 LED display 5 Gateway registre

Detaljer

+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z.

+ (y b) F y. Bruker vi det siste på likningen z = f(x, y) i punktet (a, b, f(a, b)) kan vi velge F (x, y, z) = f(x, y) z. Vi husker fra sist Gradientvektoren F ( a) peker i den retningen u der den retningsderiverte D u F ( a) er størst, og der er D u F ( a) = u F ( a) = F ( a). Gradientvektoren er normalvektoren til (hyper)flata

Detaljer

EKSAMEN I MA0002 Brukerkurs B i matematikk

EKSAMEN I MA0002 Brukerkurs B i matematikk Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Faglig kontakt under eksamen: Achenef Tesfahun (9 84 97 5) EKSAMEN I MA2 Brukerkurs B i matematikk Lørdag 322 Tid:

Detaljer

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x

Tillatte hjelpemidler: Lærebok og kalkulator i samsvar med fakultetet sine regler Oppgave 1. 2 x UNIVERSITETET I BERGEN Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT Brukerkurs i matematikk Mandag 4. desember 9, kl. 9-4 BOKMÅL Tillatte hjelpemidler: Lærebok og kalkulator i samsvar

Detaljer

Quiz Uge 4 torsdag første time

Quiz Uge 4 torsdag første time Quiz Uge 4 torsdag første time Hotel med gæster Programmér metoden stayingforatleast. Metoden skal returnere alle de gæster, der bliver boende i mindst d dage. Udvid Guest-klassen med de nødvendige get-metoder.

Detaljer

Løsningsforslag Eksamen M100 Våren 2002

Løsningsforslag Eksamen M100 Våren 2002 Løsningsforslag Eksamen M00 Våren 00 Oppgave Evaluerer grensen cos( ) 0 ( sin( ) ) 0 6 0 6 5 0 sin( ) 0 sin( ) = Har brukt l Hôpitals regel (derivert teller og nevner hver for seg) i første og tredje overgang.

Detaljer

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems

ECON3120/4120 Mathematics 2, spring 2004 Problem solutions for the seminar on 5 May Old exam problems Department of Economics May 004 Arne Strøm ECON0/40 Mathematics, spring 004 Problem solutions for the seminar on 5 May 004 (For practical reasons (read laziness, most of the solutions this time are in

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2014 Løsningsforslag Øving 10 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2016

MA0002 Brukerkurs i matematikk B Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2016 Løsningsforslag Øving 11 Oppgaver fra boken: 10.6 : 1, 8, 9, 12, 19, 26, 29,, 4 Det

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 29.05.2019 Kl. 09:00 Innlevering: 29.05.2019 Kl. 14:00 For mer informasjon om formalia,

Detaljer

Printer, valgmulighed og Stand Compatibility Guide. Laserprintere

Printer, valgmulighed og Stand Compatibility Guide. Laserprintere Printer, valgmulighed og Stand Compatibility Guide Laserprintere August 2014 Indhold 2 Indhold Understøttede maksimale konfigurationer...3 Printer maskintype 5027...3 Printer maskintype 7527...4 Printer

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 014 Løsningsforslag Eksamen august Løsning: Oppgave 1 1 0 3 A 7, 3 4 1 x 10 A y 3 z På grunn

Detaljer

Nicolai Kristen Solheim

Nicolai Kristen Solheim Oppgave 1. 1a) 1, 0, 2, sin 5 4cos sin 54cos sin 8 sin cos cos 54cos 8 sin cos 5cos 4cos 8sin cos 5cos 4cos Dersom vi plotter grafen for vil vi se hvor vokser og avtar. 1 Fra grafen for ser vi følgende

Detaljer

Flerkonet armatur. Dimensioner

Flerkonet armatur. Dimensioner Dimensioner Vertikal Ød 8 Max. H ØU ØD Horisontal Ød Beskrivelse er et cirkulært, stilbart, flerkonet armatur, der typisk anvendes til tilluft. Armaturet er stilbart imellem horisontal og vertikal tilluft

Detaljer

Løsningsforslag MAT102 Vår 2018

Løsningsforslag MAT102 Vår 2018 Løsningsforslag MAT102 Vår 2018 Universitetet i Bergen Det matematisk-naturvitenskapelige fakultet Eksamen i emnet MAT102 Tirsdag 12 juni 2018, kl 0900-1400 Oppgavesettet har fem oppgaver Hver deloppgave

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 2 8 38 Eksamensdato: 6. juni 207 Eksamenstid (fra til): 09:00

Detaljer

MET Matematikk for siviløkonomer

MET Matematikk for siviløkonomer SENSORVEILEDNING - Skriftlig eksamen MET 11803 Matematikk for siviløkonomer Institutt for Samfunnsøkonomi Utlevering: 0.1.018 Kl. 09:00 Innlevering: 0.1.018 Kl. 14:00 For mer informasjon om formalia, se

Detaljer

Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3,

Grunnleggende notasjon ℕ = 1, 2, 3, 4, 5, 6, ℤ =, 3, 2, 1, 0, 1, 2, 3, Grunnleggende notasjon ℕ,, 3, 4, 5, 6, ℤ, 3,,, 0,,, 3, ℝ 𝑎𝑙𝑙𝑒 𝑟𝑒𝑒𝑙𝑒 𝑡𝑎𝑙𝑙 ℚ 𝑎𝑙𝑙𝑒 𝑟𝑎𝑠𝑗𝑜𝑛𝑎𝑙𝑒 𝑡𝑎𝑙𝑙 𝑎 𝑎, ℤ, 0 Induksjonsprinsippet Anta at for hver 𝑛 ℕ har vi gitt et utsagn 𝑃. Anta videre at vi vet at følgende

Detaljer

MAT1100 - Grublegruppen Uke 36

MAT1100 - Grublegruppen Uke 36 MAT - Grublegruppen Uke 36 Jørgen O. Lye Partiell derivasjon Hvis f : R 2 R er en kontinuerlig funksjon, så kaller man følgende dens partiellderiverte (gitt at de finnes!) f f(x + h, y) f(x, y) (x, y)

Detaljer

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet.

. 2+cos(x) 0 og alle biter som inngår i uttrykket er kontinuerlige. Da blir g kontinuerlig i hele planet. MA 1410: Analyse Uke 47, 001 http://home.hia.no/ aasvaldl/ma1410 H01 Høgskolen i Agder Avdeling for realfag Institutt for matematiske fag Oppgave 11.1: 7. f(x, y) = 1 16 x y. a) Definisjonsområde D: f

Detaljer

TMA4100 Matematikk1 Høst 2008

TMA4100 Matematikk1 Høst 2008 TMA400 Matematikk Høst 008 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag Øving 4 4..3 Vi skal finne absolutt maksimum og absolutt minimum verdiene for funksjonen

Detaljer

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1.

NTNU. TMA4105 Matematik 2 våren 2011. Maple-øving 1. Viktig informasjon. Institutt for matematiske fag. maple01 1. NTNU Institutt for matematiske fag TMA4105 Matematik 2 våren 2011 Maple-øving 1 Fyll inn studieprogram: Fyll inn navn: 1. 2. 3. 4. Viktig informasjon Besvarelsen kan leveres som gruppearbeid med maksimalt

Detaljer

Høgskolen i Agder Avdeling for realfag EKSAMEN

Høgskolen i Agder Avdeling for realfag EKSAMEN Høgskolen i Agder Avdeling for realfag EKSAMEN Emnekode: MA 40 Emnenavn: Analyse Dato: 9. desember 999 Varighet: 09.00-5.00 Antall sider inklusivt forside: Tillatte hjelpemidler: Merknader: 2 Alle, også

Detaljer

Innovative Business Software A/S

Innovative Business Software A/S Innovative Business Software A/S Technical Note SIA/CID Konvertering 18. december 2014 ii MEDDELELSE OM OPHAVSRET Copyright 2014 Innovative Business Software A/S. Alle rettigheder forbeholdt. Oplysningerne

Detaljer

Løsningsforslag til eksamen i MAT1110, 13/6-07

Løsningsforslag til eksamen i MAT1110, 13/6-07 Løsningsforslag til eksamen i MAT, 3/6-7 Oppgaveteksten er gjengitt i kursiv Oppgave : a) Finn de stasjonære (kritiske) punktene til f(x, ) = x + 4x Løsning: Finner først de partiellderiverte: (x, ) x

Detaljer

LYNKOBLINGER SERIE QR

LYNKOBLINGER SERIE QR LYNKOBLINER SERIE QR HYDROSCAND LIDT TÆTTERE PÅ Hydroscand tilbyder dig høj service, fra bestilling til leverance.vores produktsortiment er bredt og holder en høj kvalitet. Desuden er mange af vores produkter

Detaljer

Rotationsarmatur. Dimensioner

Rotationsarmatur. Dimensioner Dimensioner Ød 1 H 3 e ØU ØD Beskrivelse er et cirkulært rotationsarmatur. Armaturet er velegnet til horisontal tilluft af undertempereret luft. Armaturet kan med fordel monteres i trykfordelingsboks type

Detaljer

Funksjonsdrøfting MAT111, høsten 2017

Funksjonsdrøfting MAT111, høsten 2017 Funksjonsdrøfting MAT111, høsten 2017 Andreas Leopold Knutsen 11. Oktober 2017 Strengt voksende funksjon (Def. 6 i Ÿ2.8) f er strengt voksende på intervallet I dersom x 1 < x 2 i I = f (x 1 ) < f (x 2

Detaljer

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040?

1 OPPGAVE 2 OPPGAVE. a) Hva blir kontobeløpet den 2. januar 2040? b) Hvor mye penger blir det i pengeskapet den 2. januar 2040? OPPGAVE Den. januar 0 satte Ola Normann 00 tusen kroner på en bankkonto med faste renter 3% per år. Han planlegger å ta ut halvparten av rentebeløpet den. januar hvert år, og å legge kontantene til et

Detaljer

ANDREAS LEOPOLD KNUTSEN

ANDREAS LEOPOLD KNUTSEN NOTAT OM FUNKSJONER AV FLERE VARIABLE VEDLEGG TIL BRUK I KURSET MAT112 VED UNIVERSITETET I BERGEN ANDREAS LEOPOLD KNUTSEN Dette notatet inneholder ikke noe nytt pensum i kurset MAT112 i forhold til læreboken

Detaljer

MAT jan jan jan MAT Våren 2010

MAT jan jan jan MAT Våren 2010 MAT 1012 Våren 2010 Mandag 18. januar 2010 Forelesning I denne første forelesningen skal vi friske opp litt rundt funksjoner i en variabel, se på hvordan de vokser/avtar, studere kritiske punkter og beskrive

Detaljer

Optimering av funksjoner av flere variable

Optimering av funksjoner av flere variable Optimering av funksjoner av flere variable av Tom Lindstrøm Matematisk insitutt/cma Universitetet i Oslo Dette notatet gir en kortfattet innføring i maksimums- og minimumsproblemer for funksjoner av flere

Detaljer