3-FASET SYMMETRISK BELASTNING. Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "3-FASET SYMMETRISK BELASTNING. Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger"

Transkript

1 AC 3-FASET SYMMETRISK BELASTNING Én definition Stjernekoblede symmetriske belastninger Trekantskoblede symmetriske belastninger

2 Én definition af betingelser for symmetri: Netstrømmene er lige store i de 3 faser Netstrømmene har samme faseforskydningsvinkel Side 1 3-faset symmetrisk belastning -

3 Side 2

4 Lad os antage følgende om kredsen: Side 3

5 Lad os antage følgende om kredsen: Side 4

6 Lad os antage følgende om kredsen: Side 5

7 Lad os antage følgende om kredsen: R 1 = R 2 = R 3 = 33 Ω Side 6

8 Lad os antage følgende om kredsen: R 1 = R 2 = R 3 = 33 Ω Kontakten sluttes Side 7

9 R 1 = R 2 = R 3 = 33 Ω Fasestrømmen: I f = U f R Side 8

10 R 1 = R 2 = R 3 = 33 Ω Fasestrømmen: I f = U f R I f = = 7 A Side 9

11 R 1 = R 2 = R 3 = 33 Ω Fasestrømmen: I f = U f R I f = = 7 A Netstrømmen: Ved stjerneforbundne symmetriske belastninger er I f = I n Side 10

12 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Lad os indeksere strømmene og tegne dem ind i vektordiagrammet én fase ad gangen: Side 11

13 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Lad os indeksere strømmene og tegne dem ind i vektordiagrammet én fase ad gangen: Tilsyneladende løber der en strøm i nullederen, men det skal vise sig at der faktisk ikke gør! Side 12

14 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Lad os indeksere strømmene og tegne dem ind i vektordiagrammet én fase ad gangen: Tilsyneladende løber der en strøm i nullederen, men det skal vise sig at der faktisk ikke gør! Side 13

15 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Lad os indeksere strømmene og tegne dem ind i vektordiagrammet én fase ad gangen: Som det ses er den vektorielle sum af strømmene i nullederen = 0 A (ved symmetrisk belastninger) Side 14

16 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Som det ses er den vektorielle sum af strømmene i nullederen = 0 A (ved symmetrisk belastninger) og vektordiagrammet kan derfor blot tegnes som: Side 15

17 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Da det trefasede vektordiagram jo netop er symmetrisk ved trefasede symmetriske belastninger, må man gerne blot tegne vektordiagrammet for én enkelt fase, f.eks.: Side 16

18 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Man vil endvidere typisk ikke indeksere specifikt, da vektordiagrammet ene fasevisning nu gælder alle faser: Side 17

19 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Kredsskemaet kan evt. også ændres idet der jo alligevel ikke løber nogen strøm i nullederen, kan man blot samle de tre punkter der er koblet til nullederskinnen i et punkt et stjernepunkt Side 18

20 R 1 = R 2 = R 3 = 33 Ω I f = I n = 7 A Kredsskemaet kan evt. også ændres idet der jo alligevel ikke løber nogen strøm i nullederen, kan man blot samle de tre punkter der er koblet til nullederskinnen i et punkt et stjernepunkt Side 19

21 I stedet for en resistiv belastning R, indsætter vi nu 3 impedanser med værdierne: Z 1 = Z 2 = Z 3 = 50 Ω 35 induktiv Side 20

22 Z = 50 Ω 35 Strømmen er nu: I n = I f = U f Z I = = 4, 62 A Side 21

23 Z = 50 Ω 35 Skriv ligningen her. Strømmen er nu: I n = I f = U f Z I = = 4, 62 A og vektorerne.. Side 22

24 Z = 50 Ω 35 Strømmen er nu: I n = I f = U f Z I = = 4, 62 A og vektorerne.. Som også kan illustreres tilfredsstillende med en enkelt fase vist: Side 23

25 Z = 50 Ω 35 I = 4,62 A Hvis vi nu betragtede de 3 impedanser som én samlet 3-faset symmetrisk belastning, så kunne man spørge hvilken effekt (S, P og Q) der afsættes i denne belastning! Side 24

26 Z = 50 Ω 35 I = 4,62 A Den tilsyneladende effekt (S): S = 3 U f I f Side 25

27 Z = 50 Ω 35 I = 4,62 A Den tilsyneladende effekt (S): S = 3 U f I f S = 3 U n 3 I n Side 26

28 Z = 50 Ω 35 I = 4,62 A Den tilsyneladende effekt (S): S = 3 U f I f S = 3 U n 3 I n S = 3 U n I n VA Side 27

29 Z = 50 Ω 35 I = 4,62 A Virkeeffekten (P): P = 3 U f I f cos φ Side 28

30 Z = 50 Ω 35 I = 4,62 A Virkeeffekten (P): P = 3 U f I f cos φ P = 3 U n 3 I n cos φ Side 29

31 Z = 50 Ω 35 I = 4,62 A Virkeeffekten (P): P = 3 U f I f cos φ P = 3 U n 3 I n cos φ P = 3 U n I n cos φ W Side 30

32 Z = 50 Ω 35 I = 4,62 A Den reaktive effekt (Q): Q = 3 U f I f sin φ Q = 3 U n 3 I n sin φ Q = 3 U n I n sin φ var Side 31

33 Z = 50 Ω 35 I = 4,62 A Opsummerende beregnes de samlede effekter for 3 fasede symmetriske belastninger (komponenter) som: S = 3 U n I n VA P = 3 U n I n cos φ W Q = 3 U n I n sin φ var Side 32

34 Z = 50 Ω 35 I = 4,62 A Effekterne i aktuelle eksempel: S = 3 U n I n = ,62 = 3200 VA P = 3 U n I n cos φ = ,62 cos 35 = 2620 W Q = 3 U n I n sin φ = ,62 sin 35 = 1840 var Side 33

8.4 FIRELEDERNETT - NULLEDER 8.4 FIRELEDERNETT - NULLEDER

8.4 FIRELEDERNETT - NULLEDER 8.4 FIRELEDERNETT - NULLEDER 8.4 FREEDERNETT - NEDER 8.4 FREEDERNETT - NEDER Det blir mer og mer vanlig å øke den normerte spenningen ra 0 V til 400 V. Ved å øke spenningen minker vi strømmen or å opprettholde samme eekt. Ved bruk

Detaljer

8.1 TREFASET VEKSELSTRØM I SYMMETRI 8.1 TREFASET VEKSELSTRØM I SYMMETRI

8.1 TREFASET VEKSELSTRØM I SYMMETRI 8.1 TREFASET VEKSELSTRØM I SYMMETRI 8. TREFASET VEKSELSTRØM SYMMETR 8. TREFASET VEKSELSTRØM SYMMETR Når en permanentmagnet roterer inne i en ring av vindinger blir det indusert en spenning i vindingene. Hvis ringen blir delt inn i tre like

Detaljer

8.3 TREFASET TREKANTKOPLING ASYMMETRI MED RESISTANS, SPOLE OG KONDENSATOR

8.3 TREFASET TREKANTKOPLING ASYMMETRI MED RESISTANS, SPOLE OG KONDENSATOR 8. TREKANTKOPNG ASYMMETR MED RESSTANS, SPOE OG KONDENSATOR 8. TREFASET TREKANTKOPNG ASYMMETR MED RESSTANS, SPOE OG KONDENSATOR AMBDA () METODEN for å løse asymmetrisk krets. Skjevbelastning på et «stivt

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike typer respons Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og

Detaljer

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG

i den nederste figur pi næste side har hældningen 0, fordi ^r P \ J = -2x Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG 3.Teori for lineær sammenhæng o T E O R I F O R LINEÆR SAMMENHÆNG Definition 3.1: Lineær sammenhæng Ved en W *. W ^ - s en ret linje e n sammenhæng, hvor grafen er Hældningen er det stykke a, Linjen ;

Detaljer

Inverter (vekselretter)

Inverter (vekselretter) Invertere - Optimering af belastning: Inverter (vekselretter) Maximum power point tracking (MPPT) 800 W/m2 6,9 A maximum power point Tilpasser automatisk belastningen til maximum power point 6,9 A Effekt:

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 12; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er

Detaljer

8.2 TREFASET VEKSELSTRØM MED RESISTANSER I SYMMETRI 8.2 TREFASET VEKSELSTRØM MED RESISTANSER I ASYMMETRI

8.2 TREFASET VEKSELSTRØM MED RESISTANSER I SYMMETRI 8.2 TREFASET VEKSELSTRØM MED RESISTANSER I ASYMMETRI 8. TREFASET VEKSELSTRØM MED RESSTANSER SYMMETR 8. TREFASET VEKSELSTRØM MED RESSTANSER ASYMMETR DELTA ( ) METODEN for å løse asymmetrisk krets. Resistanser i asymmetri vil si når belastningen er forskjellig

Detaljer

8.5 TREFASE ASYMMETRI MED R L C KOMPONENTER

8.5 TREFASE ASYMMETRI MED R L C KOMPONENTER 8.5 TREFASE ASYMMETR MED R L C KOMPONENTER 8.5 TREFASE ASYMMETR MED R - L - C KOMPONENTER Maria Tragonisi s metode Asymmetriske stjernekoplede kretser med forskjellig faseforskyvningsvinkel i fasene må

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi

HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi HØGSKOLEN I SØR-TRØNDELAG Avdeling for teknologi Målform: Bokmål Eksamensdato: 19. mai 2015 Varighet/eksamenstid: 9:00 14:00 Emnekode: TELE2006-A 15V Emnenavn: Klasse(r): Elektriske Maskiner ELK 13H Studiepoeng:

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser

Forelesning nr.5 INF 1411 Elektroniske systemer. RC-kretser Forelesning nr.5 INF 1411 Elektroniske systemer R-kretser Dagens temaer Ulike typer impedans og konduktans Kondensatorer i serie og parallell Bruk av kondensator R-kretser Impedans og fasevinkler Serielle

Detaljer

Forelesning nr.5 INF 1411 Elektroniske systemer

Forelesning nr.5 INF 1411 Elektroniske systemer Forelesning nr.5 INF 4 Elektroniske systemer R-kretser Dagens temaer Ulike Kondensatorer typer impedans og konduktans i serie og parallell Bruk R-kretser av kondensator Temaene Impedans og fasevinkler

Detaljer

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum

Lektion 2. Differentiable funktioner. Den afledte funktion, differentialkvotienten. Tangent og lineær approximation. Maksimum og minimum Lektion Differentiable funktioner Den afledte funktion, differentialkvotienten Tangent og lineær approimation Maksimum og minimum Taylor polynomiet Opgaver Differentiable funktioner Lad f() være en kontinuert

Detaljer

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER

7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET I KOMBINASJONER 7.3 RESISTANS - SPOLE - KONDENSATOR KOPLET TIL VEKSELSTRØM I KOMBINASJONER 78,977 7.3 ETAN - POE - KONDENATO KOPET KOMBNAJONE 7.3 ETAN - POE - KONDENATO KOPET T VEKETØM KOMBNAJONE EEKOPNG AV ETAN - POE - KONDENATO Tre komponenter er koplet i serie: ren resistans, spole med resistans-

Detaljer

En del utregninger/betraktninger fra lab 8:

En del utregninger/betraktninger fra lab 8: En del utregninger/betraktninger fra lab 8: Fra deloppgave med ukjent kondensator: Figur 1: Krets med ukjent kondensator og R=2,2 kω a) Skal vise at når man stiller vinkelfrekvensen ω på spenningskilden

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 1. juni 2015 Tid for eksamen: 4 timer Oppgavesettet er på 5 sider

Detaljer

Lektion 14. Repetition

Lektion 14. Repetition Lektion 4 Repetition Naturlige eksponentialfunktion 7 6 5 4 y y=sin().5 6 4 4 6.5 y=tan() 5.5.5 y 5 y=arcsin().5.5.5.5.8.6.4...4.6.8 Naturlige logaritmefunktion 4 6 8 Standardfunktioner (cos(), sin())

Detaljer

Oversigt [LA] 11, 12

Oversigt [LA] 11, 12 Oversigt [LA] 11, 12 Nøgleord og begreber At diagonalisere en matrix Diagonalisering og egenvektorer Matrixpotens August 2002, opgave 2 Prikprodukt Skalarprodukt Længde Pythagoras formel Cauchy-Schwarz

Detaljer

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene.

a) Bruk en passende Gaussflate og bestem feltstyrken E i rommet mellom de 2 kuleskallene. Oppgave 1 Bestem løsningen av differensialligningen Oppgave 2 dy dx + y = e x, y(1) = 1 e Du skal beregne en kulekondensator som består av 2 kuleskall av metall med samme sentrum. Det indre skallet har

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme.

En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. 7. EFFEK YER OG ARBED VEKSELSRØM 1 7. EFFEK YER OG ARBED VEKSELSRØM AKV EFFEK OG ARBED EN DEELL RESSANS En ideell resistans som tilkoples en vekselspenning utvikler arbeid i form av varme. Det er bare

Detaljer

HØGSKOLEN I AGDER Fakultet for teknologi. ENE 201 Elkraftteknikk 1, løsningsforslag eksamen Oppgave 1. a) T

HØGSKOLEN I AGDER Fakultet for teknologi. ENE 201 Elkraftteknikk 1, løsningsforslag eksamen Oppgave 1. a) T ENE 01 Elkraftteknikk 1, løsningsforslag eksamen 004 Oppgave 1 HØGKOLEN AGDER Fakultet for teknologi a) T b 1 10 10 [%] 100 % 48.9 % 6 8000 10 65 4 T b 1 10 10 [h] 6 8000 10 486 h ystemet må dimensjoneres

Detaljer

Løsningsforslag for eksamen 5. januar 2009

Løsningsforslag for eksamen 5. januar 2009 Løsningsforslag for eksamen 5. januar 2009 Oppgave 1 Figuren til høyre viser en hengebroliknende konstruksjon, med et tau mellom C og E med egen tyngde g = 0,5 kn/m og en punktlast P = 75 kn som angriper

Detaljer

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A :

For å finne amplituden kan vi f.eks. ta utgangspunkt i AB=-30 og siden vi nå kjenner B finner vi A : Ukeoppgaver INF 1410 til uke 18 (7-30 april) våren 009 Fra kapittel 10 i læreboka: Lett: 10.1, 10.3, 10. Middels: 10.9, 10.11, 10.53 Vanskelig: 10.13, 10.8, 10., 10.55 Fra kapittel 14 i læreboka: Lett:

Detaljer

Oversigt [S] 11.7; [LA] 13

Oversigt [S] 11.7; [LA] 13 Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

41255 Elektroinstallasjoner

41255 Elektroinstallasjoner Norges teknisknaturvitenskapelige universitet NTNU INST. FOR ELKRAFTTEKNIKK Faggruppe: Energiomforming og Elektriske anlegg Adresse: 7491 Trondheim Telefon: 759 4241 Telefax: 759 4279 41255 Elektroinstallasjoner

Detaljer

LF - anbefalte oppgaver fra kapittel 2

LF - anbefalte oppgaver fra kapittel 2 1 LF - anbefalte oppgaver fra kapittel 2 N2.1 Denne oppkoblingen er lovlig: Alle spenningkildene kan få en strøm på 5 A fra strømkilden. Spenningsfallet over strømkilden er også lovlig. Ved å summere alle

Detaljer

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS

7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET ENKELTVIS 7.1 RESISTANS - SPOLE - KONDENSATOR TILKOPLET VEKSELSTRØM ENKELTVIS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET ENKELTVS 7. ESSTANS - SPOLE - KONDENSATO TLKOPLET VEKSELSTØM ENKELTVS DEELL ESSTANS TLKOPLET VEKSELSTØM Når en motstandstråd blir brettet i to og de to delene av

Detaljer

Geometri, (E-opgaver 9b)

Geometri, (E-opgaver 9b) Geometri, (E-opgaver 9b) Indhold GEOMETRI, (E-OPGAVER 9B)... 1 Arealet af en er ½ højde grundlinje... 1 Vinkelsummen i en er altid 180... 1 Ensvinklede er... 1 Retvinklede er... Sinus,... FORMLER... 3

Detaljer

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7.

Mandag 7. mai. Elektromagnetisk induksjon (fortsatt) [FGT ; YF ; TM ; AF ; LHL 24.1; DJG 7. Institutt for fysikk, NTNU TFY4155/FY1003: Elektrisitet og magnetisme Vår 2007, uke19 Mandag 7. mai Elektromagnetisk induksjon (fortsatt) [FGT 30.1-30.6; YF 29.1-29.5; TM 28.2-28.3; AF 27.1-27.3; LHL 24.1;

Detaljer

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm].

Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen Q ligger i punktet ( 3, 0) [mm]. Oppgave 1 Finn løsningen til følgende 1.ordens differensialligninger: a) y = x e y, y(0) = 0 b) dy dt + a y = b, a og b er konstanter. Oppgave 2 Punktladningen Q ligger i punktet (3, 0) [mm] og punktladningen

Detaljer

Installasjonstest med Fluke 1650 tester på IT anlegg i drift

Installasjonstest med Fluke 1650 tester på IT anlegg i drift Installasjonstest med Fluke 1650 tester på IT anlegg i drift Utføring av testene Spenningsmålinger Testeren kan brukes som et multimeter hvor spenning og frekvens kan vises samtidig ved å sette rotasjonsbryteren

Detaljer

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder

1 Definition. En funktion f(x, y) har et lokalt minimum i punktet (a, b), hvis. der i en lille cirkelskive herom gælder Oversigt [S] 11.7; [LA] 13 Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum og minimum Køreplan

Detaljer

f(a, b) er en lokal minimumsværdi.

f(a, b) er en lokal minimumsværdi. Oversigt [S] 11.7; [LA] 13 Lokalt maksimum/minimum Nøgleord og begreber Lokalt maksimum og minimum Absolut maksimum og minimum Kritisk punkt Andenordenskriteriet Hessematricen Eksistens af absolut maksimum

Detaljer

$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$

$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$ $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

Detaljer

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006

Elektrisk immittans. Ørjan G. Martinsen 13.11.2006 Elektrisk immittans Ørjan G. Martinsen 3..6 Ved analyse av likestrømskretser har vi tidligere lært at hvis vi har to eller flere motstander koblet i serie, så finner vi den totale resistansen ved følgende

Detaljer

INF L4: Utfordringer ved RF kretsdesign

INF L4: Utfordringer ved RF kretsdesign INF 5490 L4: Utfordringer ved RF kretsdesign 1 Kjøreplan INF5490 L1: Introduksjon. MEMS i RF L2: Fremstilling og virkemåte L3: Modellering, design og analyse Dagens forelesning: Noen typiske trekk og utfordringer

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Tirsdag 27. mai 2008 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFORSLAG TIL EKSAMEN I FY003 ELEKTRISITET

Detaljer

Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.

Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet. 7.4 KONDUKTAN - UCEPTAN - ADMITTAN 1 7.4 KONDUKTAN - UCEPTAN - ADMITTAN Konduktans, susceptans og admittans er omregningsmetoder som kan benyttes for å løse vekselstrømskretser som er parallellkoplet.

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer

Forelesning nr.4 INF 1411 Elektroniske systemer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer 1 Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondesator Oppbygging,

Detaljer

(tel. +4799717806) Antall sider: 5 Antall vedleggssider: 10. Kandidaten må selv kontrollere at oppgavesettet er fullstendig

(tel. +4799717806) Antall sider: 5 Antall vedleggssider: 10. Kandidaten må selv kontrollere at oppgavesettet er fullstendig Eksamensoppgave. Fag: Kraftelektronikk og relévern. Lærer: Even Arntsen (tel. +4799717806) Gruppe: HiG,KaU og HiØ Dato: 2013.12.19 Tid: 4 timer Antall sider: 5 Antall vedleggssider: 10 Hjelpemidler: Egne

Detaljer

Kondensator. Symbol. Lindem 22. jan. 2012

Kondensator. Symbol. Lindem 22. jan. 2012 UKE 5 Kondensatorer, kap. 12, s. 364-382 RC kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 Spoler, kap. 10, s. 289-304 1 Kondensator Lindem 22. jan. 2012 Kondensator

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i INF 1411 Introduksjon til elektroniske systemer Eksamensdag: 30. mai 2010 Tid for eksamen: 3 timer Oppgavesettet er på

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00

LØSNINGSFORSLAG TIL EKSAMEN FY1013 ELEKTRISITET OG MAGNETISME II Fredag 8. desember 2006 kl 09:00 13:00 NOGES EKNISK- NAUVIENSKAPEIGE UNIVESIE INSIU FO FYSIKK Kontakt under eksamen: Per Erik Vullum lf: 93 45 7 ØSNINGSFOSAG I EKSAMEN FY3 EEKISIE OG MAGNEISME II Fredag 8. desember 6 kl 9: 3: Hjelpemidler:

Detaljer

Forelesning nr.12 INF 1410

Forelesning nr.12 INF 1410 Forelesning nr.12 INF 1410 Komplekse frekvenser analyse i frekvensdomenet 20.04. INF 1410 1 Oversikt dagens temaer Intro Komplekse tall Komplekse signaler Analyse i frekvensdomenet 20.04. INF 1410 2 Intro

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Tidsrespons til reaktive kretser RC-integrator/differensiator-respons

Detaljer

Tekniske krav - Plusskunde

Tekniske krav - Plusskunde 1. Krav til spenningskvalitet Innledning Den kraft som mates inn på Nettselskapets nett skal overholde de til enhver tid gjeldende krav til spenning og effektflyt som følger av Avtaleforholdet, med mindre

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen

Øving 2. a) I forelesningene har vi sett at det mekaniske svingesystemet i figur A ovenfor, med F(t) = F 0 cosωt, oppfyller bevegelsesligningen FY1002/TFY4160 Bølgefysikk. Institutt for fysikk, NTNU. Høsten 2012. Veiledning: Mandag-Tirsdag 3-4. september. Innleveringsfrist: Mandag 10. september kl 12:00. Øving 2 A k b m F B V ~ q C q L R I a)

Detaljer

Oprettelse af koblinger

Oprettelse af koblinger Oprettelse af koblinger Hvis der til en undervisning (skemabrik) skal knyttes flere lærere, klasser, fag og/eller lokaler, der skal have undervisning samtidig, benævnes det i Untis som en kobling. Koblingen

Detaljer

Lab 3: AC og filtere - Del 1

Lab 3: AC og filtere - Del 1 Lab 3: AC og filtere - Del 1 Lab 3 er på mange måter en fortsettelse av Lab 2 hvor det skal simuleres og måles på en krets bestående av motstander og kondensatorer. Vi skal se på hvordan en kondensator

Detaljer

Antall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET

Antall oppgavesider:t4 Antall vedleggsider: 1 KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET Høgskoleni Østfold 1 EKSAMENSOPPGAVE. Kontinuasjonseksamen Fag: IRE10513Elektriskekretser Lærere: Arne Johan Østenby, Even Arntsen Grupper: El E og ElEy Dato: 2015-12-17 Tid: 9-13 Antall oppgavesider:t4

Detaljer

INF5490 RF MEMS. L8: RF MEMS resonatorer II

INF5490 RF MEMS. L8: RF MEMS resonatorer II INF5490 RF MEMS L8: RF MEMS resonatorer II 1 Dagens forelesning Lateralt vibrerende resonator: Kam-resonatoren Virkemåte Detaljert modellering A) phasor-modellering B) modellering ved konvertering mellom

Detaljer

Oppgaver til kapittel 4 Elektroteknikk

Oppgaver til kapittel 4 Elektroteknikk Oppgaver til kapittel 4 Elektroteknikk Oppgavene til dette kapittelet er lag med tanke på grunnleggende forståelse av elektroteknikken. Av erfaring bør eleven få anledning til å regne elektroteknikkoppgaver

Detaljer

Analyseverktøy. Eltransport Hva trenger vi å vite

Analyseverktøy. Eltransport Hva trenger vi å vite Eltransport Hva trenger vi å vite Spenninger: for lave eller for høye? Tapene: for store? Overlast på linjer? Reaktiv effekt produsert i generatorer Konsekvenser av feil i nettet: for eksempel utfall av

Detaljer

Fourier-Transformasjoner IV

Fourier-Transformasjoner IV Fourier-Transformasjoner IV Lars Vidar Magnusson March 1, 2017 Delkapittel 4.6 Some Properties of the 2-D Discrete Fourier Transform Forholdet Mellom Spatial- og Frekvens-Intervallene Et digitalt bilde

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Øving 9; godkjenning øvingsdag veke 7 Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Mer om ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE00- H HiST-FT-EDT Øving 9; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. Berre eitt av svaralternativa er rett;

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Elektroniske systemer Eksamensdag: 4. juni 2012 Tid for eksamen: 14:30 18:30 Oppgavesettet er på 5 sider Vedlegg: Ingen

Detaljer

TEKNISKE KRAV. Produksjonsenheter(< 25kW) med inverter tilknyttet lavspent distribusjonsnett. Mal utarbeidet av: REN/Lyse Elnett

TEKNISKE KRAV. Produksjonsenheter(< 25kW) med inverter tilknyttet lavspent distribusjonsnett. Mal utarbeidet av: REN/Lyse Elnett TEKNISKE KRAV Produksjonsenheter(< 25kW) med inverter tilknyttet lavspent distribusjonsnett Mal utarbeidet av: REN/Lyse Elnett Mal godkjent av: AS(LARSHS) Utgave: 1.2 Eier Lyse Elnett AS Status: Utkast

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4155 ELEKTROMAGNETISME Fredag 11. august 2006 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I TFY4155 ELEKTOMAGNETISME

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl

EKSAMEN FY1003 ELEKTRISITET OG MAGNETISME TFY4155 ELEKTROMAGNETISME Onsdag 3. juni 2009 kl NOGES TEKNISK- NATUVITENSKAPEIGE UNIVESITET INSTITUTT FO FYSIKK Side 1 av 6 Kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 EKSAMEN FY1003 EEKTISITET OG MAGNETISME TFY4155

Detaljer

Uavhengig måling av strømforbruk med måleinstrumentet «Power and Energy Logger PEL 103» fra leverandøren «Chauvin Arnoux»

Uavhengig måling av strømforbruk med måleinstrumentet «Power and Energy Logger PEL 103» fra leverandøren «Chauvin Arnoux» Uavhengig måling av strømforbruk med måleinstrumentet «Power and Energy Logger PEL 103» fra leverandøren «Chauvin Arnoux» Undersøkelse som er utført av Kim Remy Holtet Innhold I. Innledning II. Bakgrunn

Detaljer

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester

Forelesning nr.7 INF 1411 Elektroniske systemer. Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Forelesning nr.7 INF 1411 Elektroniske systemer Tidsrespons til reaktive kretser Integrasjon og derivasjon med RC-krester Dagens temaer Nøyaktigere modeller for ledere, R, C og L Tidsrespons til reaktive

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer

Forelesning nr.6 INF 1411 Elektroniske systemer Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser 1 Dagens temaer Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel til serielle RL-kretser

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Forelesning nr.8 INF 1410

Forelesning nr.8 INF 1410 Forelesning nr.8 INF 4 C og kretser 2.3. INF 4 Oversikt dagens temaer inearitet Opampkretser i C- og -kretser med kondensatorer Naturlig respons for - og C-kretser Eksponensiell respons 2.3. INF 4 2 Node

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Generelle ac-signaler og sinussignaler Filtre Bruk av RC-kretser Induktorer (spoler) Sinusrespons

Detaljer

Harald Michalsen og Lasse Storr-Hansen. Tplan version 28.2 Skoleåret 2006-2007 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2

Harald Michalsen og Lasse Storr-Hansen. Tplan version 28.2 Skoleåret 2006-2007 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2 1 af 9 TPLAN VERSJON 28.2 OG SOMMEREN 2006...2 NYHEDER I WINTP...4 Import af Holdbetegnelser...5 Import af Fagregister...6 Import af Blokregister...9 2 af 9 Tplan versjon 28.2 og sommeren 2006 Til mine

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I FY1003 ELEKTRISITET OG MAGNETISME I Mandag 17. desember 2007 kl NOGES TEKNISK- NATUVITENSKAPELIGE UNIVESITET INSTITUTT FO FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 73 59 36 63 / 45 45 55 33 LØSNINGSFOSLAG TIL EKSAMEN I FY1003 ELEKTISITET OG

Detaljer

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk

Løsningsforslag Konte-eksamen 2. august 2003 SIF4048 Kjemisk fysikk og kvantemekanikk Konte-eksamen SIF448.aug. 3 - løsningsforslag 1 Oppgave 1 a. Hamilton-operatoren er Løsningsforslag Konte-eksamen. august 3 SIF448 Kjemisk fysikk og kvantemekanikk Ĥ = h m x + V (x), og den tidsuavhengige

Detaljer

Oppsummering om kretser med R, L og C FYS1120

Oppsummering om kretser med R, L og C FYS1120 Oppsummering om kretser med R, L og C FYS1120 Likestrømskretser med motstander Strøm og spenning er alltid i fase. Ohms lov: V = RI Effekt er gitt ved: P = VI = RI 2 = V 2 /R Kirchoffs lover: Summen av

Detaljer

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser

Forelesning nr.6 INF 1411 Elektroniske systemer. Anvendelser av RC-krester Spoler og RL-kretser Forelesning nr.6 INF 1411 Elektroniske systemer Anvendelser av RC-krester Spoler og RL-kretser Dagens temaer Regneeksempel på RC-krets Bruk av RC-kretser Sinusrespons til RL-kretser Impedans og fasevinkel

Detaljer

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005

Kraftelektronikk (Elkraft 2 høst), Løsningsforslag til øvingssett 3, høst 2005 Kraftelektronikk (Elkraft høst), Løsningsforslag til øvingssett 3, høst 005 Ole-Morten Mitgår HiA 005 Oppgave Dioelikeretter: a) Dioene er snu, strømmen går i motsatt retning. (Husk at strømmen kan bare

Detaljer

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s.

UKE 5. Kondensatorer, kap. 12, s RC kretser, kap. 13, s Frekvensfilter, kap. 15, s og kap. 16, s. UKE 5 Kondensatorer, kap. 12, s. 364-382 R kretser, kap. 13, s. 389-413 Frekvensfilter, kap. 15, s. 462-500 og kap. 16, s. 510-528 1 Kondensator Lindem 22. jan. 2012 Kondensator (apacitor) er en komponent

Detaljer

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1

Fasit og sensorveiledning eksamen INF1411 våren Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) A) B) Figur 1 Fasit og sensorveiledning eksamen INF1411 våren 2012 Oppgave 1 Strøm, spenning, kapasitans og resistans (Vekt 20 %) Oppgave 1a) (vekt 5 %) Hva er strømmen i og spenningen V out i krets A) i Figur 1? Svar

Detaljer

Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017

Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Norges teknisk naturvitenskapelige universitet Institutt for elektroniske systemer Side 1 av 6 Løsningsforslag TFE4120 Elektromagnetisme 29. mai 2017 Oppgave 1 a) Start med å tegne figur! Tegn inn en Gauss-flate

Detaljer

Strømaggregater fra Wacker Neuson som du kan stole på: Strømaggregatkompetanse ned til minste detalj. Oversikt over alle strømaggregater

Strømaggregater fra Wacker Neuson som du kan stole på: Strømaggregatkompetanse ned til minste detalj. Oversikt over alle strømaggregater Strømaggregater Strømaggregater fra Wacker Neuson som du kan stole på: Strømaggregatkompetanse ned til minste detalj 1. Full effekt hver gang En pålitelig kraftforsyning som er uunnværlig på byggeplassen.

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng)

TFE4101 Vår Løsningsforslag Øving 2. 1 Strøm- og spenningsdeling. (5 poeng) TFE4101 Vår 2016 Norges teknisk naturvitenskapelige universitet Institutt for elektronikk og telekomunikasjon Løsningsforslag Øving 2 1 Strøm- og spenningsdeling. (5 poeng) Sett opp formelen for strømdeling

Detaljer

Mandag Rom 01 Rom 21 Rom 22 Rom 23 Rom 24 Rom 31 Rom 33 Rom 34 Rom 35 Rom 36 Rom 37 Rom 41 Rom 42 Rom 43 Rom 44 Rom 45 Rom 46

Mandag Rom 01 Rom 21 Rom 22 Rom 23 Rom 24 Rom 31 Rom 33 Rom 34 Rom 35 Rom 36 Rom 37 Rom 41 Rom 42 Rom 43 Rom 44 Rom 45 Rom 46 Mandag Rom 0 Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom Rom 00 R R R S 0- F R R R S 0 F F F Kjemi AF F R 00-0 F F F Kjemi AF F R 00-0 F F S Kjemi S F AF + R 0-0 F F S S F AF + Psykologi

Detaljer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer

Forelesning nr.4 INF 1411 Elektroniske systemer. Vekselstrøm Kondensatorer Forelesning nr.4 INF 1411 Elektroniske systemer Vekselstrøm Kondensatorer Dagens temaer Sinusformede spenninger og strømmer Firkant-, puls- og sagtannsbølger Effekt i vekselstrømkretser Kondensator Presentasjon

Detaljer

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU

Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Av David Karlsen, NTNU, Erling Tønne og Jan A. Foosnæs, NTE Nett AS/NTNU Sammendrag I dag er det lite kunnskap om hva som skjer i distribusjonsnettet, men AMS kan gi et bedre beregningsgrunnlag. I dag

Detaljer

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: INF1411 Introduksjon til elektroniske systemer Eksamensdag: 6. juni 2016 Tid for eksamen: 4 timer Oppgavesettet er på 6 sider

Detaljer

SIE 1020 Elektriske kraftsystemer. Øving 6

SIE 1020 Elektriske kraftsystemer. Øving 6 Gitt: 25.02.00 Leveres: 13.03.00 SIE 1020 Elektriske kraftsystemer Øving 6 Formål: - Sette seg inn i feilanalyse ved hjelp av symmetriske komponenter. Beregningsmetodikk. - Forstå koblingen mellom +, -

Detaljer

Forskningsdesign og metode. Jeg gidder ikke mer! Teorigrunnlag; Komponenter som virker på læring. Identitet

Forskningsdesign og metode. Jeg gidder ikke mer! Teorigrunnlag; Komponenter som virker på læring. Identitet Jeg gidder ikke mer! Hvad er det, der gør, at elever, der både er glade for og gode til matematik i de yngste klasser, får problemer med faget i de ældste klasser? Mona Røsseland Doktorgradsstipendiat

Detaljer

Personaleomsætningsstatistik

Personaleomsætningsstatistik Personaleomsætningsstatistik Statistikken er baseret på månedlige indberetninger med data for ansat i den kommunale eller regionale og registreret med løn. Dette kan medføre, at i ulønnet orlov eller i

Detaljer

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT

Elektrisitetslære TELE1002-A 13H HiST-AFT-EDT Elektrisitetslære TELE002-3H HiST-FT-EDT Øving 0; løysing Oppgåve 0 Denne oppgåva er ein smakebit på den typen fleirvalsspørsmål som skal utgjera 40 % av eksamen. erre eitt av svaralternativa er rett;

Detaljer

Fysikkolympiaden Norsk finale 2017

Fysikkolympiaden Norsk finale 2017 Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!

Detaljer

Laboratorieoppgave 8: Induksjon

Laboratorieoppgave 8: Induksjon NTNU i Gjøvik Elektro Laboratorieoppgave 8: Induksjon Hensikt med oppgaven: Å forstå magnetisk induksjon og prinsipp for transformator Å forstå prinsippene for produksjon av elektrisk effekt fra en elektrisk

Detaljer

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel.

Løsningsforslag. b) Hva er den totale admittansen til parallellkoblingen i figuren over? Oppgi både modul og fasevinkel. Løsningsforslag FYS / FY / FYS Elektromagnetisme, torsag 8. esember Ve sensurering vil alle elspørsmål i utgangspunktet bli gitt samme vekt (uavhengig av oppgavenummer), men vi forbeholer oss retten til

Detaljer

Kraftelektronikk (Elkraft 2 høst), øvingssett 1, høst 2005

Kraftelektronikk (Elkraft 2 høst), øvingssett 1, høst 2005 Kraftelektronikk (Elkraft 2 øst), øvingssett, øst 2005 OleMorten Midtgård HiA 2005 Ingen innlevering. Det gis veiledning tirsdag 23. og tirsdag 30. august. Utvalgte oppgaver blir gjennomgått tirsdag 6.

Detaljer

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29

Faradays lov: Flere muligheter for induksjon: Magnetisme. Kap29 Magnetisme Magnetostatikk (ingen tidsvariasjon): Kap 27. Magnetiske krefter Kap 28: Magnetiske kilder B/ t = 0 Hvilke er rett, a,b,c eller d? Elektrodynamikk: Kap 29: Elektromagnetisk induksjon Kap 30:

Detaljer

HIST PROGRAM FOR ELEKTRO- OG DATATEKNIKK St.Øv.

HIST PROGRAM FOR ELEKTRO- OG DATATEKNIKK St.Øv. HIST PROGRAM FOR ELEKTRO- OG DATATEKNIKK St.Øv. Trådløs kommunikasjon LØSNINGSFORSLAG ØVING 4 OPPGAVE 1 Senderantenna har forsterkningen (vinninga) GT = 9 db, og sendereffekten er PT = W. Transmisjonsavstanden

Detaljer

Nøgleord og begreber

Nøgleord og begreber Oversigt [LA] 0 Nøgleord og begreber Egenværdi Egenvektor Hvordan findes egenværdier Karakteristisk polynomium Egenrum Uafhængige egenvektorer Hvordan beregnes egenvektorerne Angivelse af egenrum Calculus

Detaljer