Matematikk med TI-83

Størrelse: px
Begynne med side:

Download "Matematikk med TI-83"

Transkript

1 Matematikk med TI-83 3MX/Y Brukerveiledning knyttet til eksempler av Eystein Raude Arbeidet bygger på Matematikk med TI-83 på GK og VKI Eksemplene oppfyller læreplanens mål Læreplanens mål 1

2 Mål 3 Funksjonslære Elevene skal kunne [ eksponential- og logaritmefunksjoner ] analysere funksjoner og løse praktiske problemer Hovedmomenter Elevene skal 3d kunne bruke grafiske, regnetekniske og eksperimentelle verktøy basert på IT i funksjonslæren Eksempel 1 Tangenter. Velg RectGC, CoordOn, GridOff, AxesOn, LabelOn og EXprOn fra [2nd] FORMAT: x Funksjonen f ( x) = ln x er gitt. Finn likningen for tangenten i tangeringspunktet (2, f(2)). Vi skriver inn f i Y=:, velger WINDOW: trykker på GRAPH, og får opp dette bildet: 2

3 . Vi går rett på [2nd] DRAW 5: Tangent (. Da kommer dette bildet opp:. Vi velger verdien x = 2 og trykker ENTER: Nederst står tangentlikningen.. Eksempel 2 ln x 1 Funksjonen f har uttrykket f ( x) =. 2 ln x Bestem monotoniegenskapene til f. 3

4 Vi skriver funksjonsuttrykket inn i Y=:. Den deriverte av f skriver vi inn i Y2: MATH 8: nderive ( og ENTER:. Her skriver vi på TI-83 VARS Y - VARS 1: Function... 1: Y1. Deretter, X, X ). Vi deaktiverer Y1 ved å flytte markøren over = og trykke ENTER:.ZOOM =: ZoomFit gir bildet f er en strengt voksende funksjon. Trykker vi på TRACE kan vi lese av verdier for stigningstallet: 4

5 . Vi skal bestemme lim f ( x). Først aktiviserer vi Y1. Deretter bestemmer vi x 0 + verdiområdet for x ved å bruke [2nd] TBLSET: går vi inn i [2nd] TABLE:. Så. La oss se på grafen. I WINDOW velger vi disseverdiene. Trykker vi nå på ZOOM 0: ZoomFit og TRACE, får vi. Grensen er

6 Parametrisk graftegning Eksempel 3 a) To toglinjer krysser hverandre i O og står vinkelrett på hverandre. Vi tenker oss et koordinatsystem med origo O og aksene langs toglinjene. To lokomotiv kjører på hvert sitt spor og har posisjonene A og B gitt ved: * 1 OA = t & 1 ( ), og OB = t 040, ( ) 4. t er tiden målt i timer etter klokken 1200 (t = 0 svarer til kl.1200, t = 1 60 svarer til kl osv.). Avstandene OA og OB er målt i kilometer. Vi går inn i MODE og velger Par og Simul: Deretter skriver vi vektorkoordinatene inn i Y = : I WINDOW velger vi verdier for tiden og koordinater: og 6

7 GRAPH og TRACE gir. Ved tidspunktet kl.1206 er tiden t = 1/10. Vi flytter markøren til tiden viser 1/10:. Det samme for det andre lokomotivet: På denne måten kan vi finne svar på hvilket lokomotiv som kommer først til origo og hvor lang tid det går mellom passeringene av origo. b) Bestem den minste avstand mellom lokomotivene Avstanden mellom dem er d = 20 ( t 1/ 6) + 40 ( t 1/ 4) Denne avstanden deriverer vi og finner minimum:. I Y2 skriver vi ved hjelp av MATH 8: nderive ( VARS Y - VARS 1: Function 1: Y1, X, X ): 7

8 at vi i. Vi deaktiverer Y1 og bruker ZOOM 0: ZoomFit etter [2nd] FORMAT har aktivisert AxesOn, LabelOn og ExprOn: spørsmålene: Vi bruker nå [2nd] CALC 2: zero og besvarer Ved tidspunktet t = er avstanden minst, og den finner vi ved f.eks. [2nd] CALC 1: value ENTER gir. Newton`s metode Eksempel Løs likningen x 3x + 1= 0 ved hjelp av Newton`s metode og begrunn ditt førstevalg av tilnærmingsverdi for x. 8

9 Vi tegner grafen: ENTER og TRACE: skjæringspunktene.. Vi kan starte med -0.6 som er i nærheten av et av Teorien gir løsningen til likningen ved iterasjonsformelen x = + x 1 Vi legger inn følgende uttrykk i Y= n n f ( xn) f ( x ). ' n. Vi legger inn startverdien: og 9

10 ENTER:. Deretter trykker vi, et tilstrekkelig antall ganger, På tilsvarende måte velger vi og Løsningene er x = 0532., x = ogx = Mål 4 Integrasjon Elevene skal [ ] kunne beregne integraler [ ] numerisk og kunne løse praktiske problemer ved hjelp av integrasjon Hovedmomenter Elevene skal 4f [ ] kunne bruke IT - teknologi til å evaluere integraler numerisk Eksempel 1 x Bruk lommeregneren til å finne e dx

11 Vi benytter MATH 9: FnInt ( og skriver: Vi kunne også lagre uttrykket i Y = : og skrive Y1). (Her har vi benyttet VARS Y - VARS 1: Function 1: 11

12 La oss velge i WINDOW: og [2nd] CALC 7 : grense.. Her har vi svart på spørsmålene om nedre og øvre Eksempel 2 Grafen til funksjonen f gitt ved f ( x) = x 2 følger ytterkanten til deler av en bred gangvei. [2nd] FORMAT: og MODE: gjør at vi bl.a. vil se funksjonsuttrykket på skjermen, LabelOn Vi legger inn uttrykket i Y = 12

13 . I WINDOW setter vi grensene: GRAPH og TRACE gir:. Innerkanten av gangveien er gitt ved 2 2 x y + = Bruk integralregning til å finne arealet av gangveien. Løsningen av likningen gir y =± ( x). Vi får nå uttrykkene: 3. Vi kan bruke ZOOM 5: ZSquare: ENTER: Vi skraverer området mellom grafene ved 13

14 [2nd] DRAW 7: Shade ENTER må skrive underste funksjon først:. Legg merke til at vi. Arealet mellom grafene finner vi enten ved a) MATH 9: fnint ( eller b) [2nd] CALC 7: 14

15 Vi setter inn grensene og får: og ENTER: Fra dette tallet trekker vi: og ENTER: 15

16 . Svar: 2513m 2. 16

17 17

18 Mål 6 Statistikk og sannsynlighetsregning Elevene skal kjenne de grunnleggende statistiske begreper og kunne utføre hypotesetesting Hovedmomenter Elevene skal 6c kjenne begrepet stokastisk variabel og kunne beregne forventning og varians 18

19 Eksempel 1 Tabellen viser karakterfordelingen på en prøve: Karakter Hyppighet Vi skal bestemme forventningsverdien E(x) og variansenvar(x). Vi legger tallene inn i lommeregneren under STAT 1: Edit ENTER I L3 regner vi ut sannsylighetene for de ulike utfall, P(X=x). Vi flytter markøren opp i «hodet» på L3 og skriver:. ENTER gir Forventningsverdien er. Vi har benyttet [2nd] LIST MATH 5: sum (. 2 Variansen er gitt vedvar( X ) = ( x E( X )) P( X = x) 19

20 Vi skriver derfor. Standardavviket er σ = VAR( X ). Det blir derfor:, hvor vi har brukt [2nd] ANS, som angir siste svaret. Stokastiske variabler. Sannsynlighetsfordelinger. La oss se et øyeblikk på de fordelinger som er aktuelle etter læreplanen og som fins på TI-83. I. Normalfordelingen. Eksempel. En stokastisk variabel X er normalfordelt med middelverdi µ = 0 og standardavvik σ = 1. Finn sannsynligheten P( 15. < x < 15. ). 20

21 Vi skal bruke [2nd] DISTR 1: normalpdf (. Dette er normalfordelingen. For å beregne sannsynligheten benytter vi oss av Dette gir oss og skriver inn i Y =.. ENTER:. Vi kunne ha tegnet grafen til normalfordelingen via ZOOM 0: ZoomFit: f ( x) dx:, og [2nd] CALC 7:, og. 21

22 II. Binomialfordelingen. Eksempel. Snøfryd er matematikklærer. Hun lager flervalgsoppgaver for å forenkle rettearbeidet. Hun lager 20 spørsmål med fem svaralternativer til hvert spørsmål. Det er kun tillatt å sette ett kryss som svar på hvert spørsmål. a) Hvor stor er sannsynligheten 1. for å få riktig svar på ett av spørsmålene ved tilfeldig avkryssing? Vi finner den binomiske sannsynlighetsfordelingen under [2nd] DISTR 0: binompdf (.. 22

23 Vi skriver inn antall forsøk, som her er 20, sannsynligheten for å gjette rett på hvert spørsmål, p = 1/5, og antall suksesser, som er 1: 2. for å få riktig svar på alle 20 ved tilfeldig avkryssing? Da må vi skrive: 3. for ikke å få noen rette svar ved tilfeldig avkryssing? Da får vi: b) En elev har svart rett på de 18 første oppgavene, men «har ikke peiling» på de to siste. Hvor stor sannsynlighet er det for å få 1. nøyaktig 19 riktige svar? Eleven kan få rett enten på det 19. eller det 20. spørsmålet. Derfor blir sannsynligheten (vi har nå to forsøk!) 23

24 2. minst 19 rette svar? Det blir 19 eller 20 rette svar. Vi benytter [2nd] DISTR A: binomcdf (. Av to forsøk skal vi ha differensen mellom sannsynligheten for alt og intet: c) For å oppnå ståkarakter må eleven ha minst sju rette svar. Hva er sannsynligheten for å få ståkarakter «uten å ha peiling»? P(X 7) = 1 PX ( < 7). Vi benytter [2nd] DISTR A: binomcdf ( hvor vi summerer sannsynlighetene: Vi «plotter» den binomiale fordeling. ( Husk å sette TI-83 i [2nd] STAT PLOT 1: On ) Vi går inn i STAT 1: Edit. I L! skriver vi 24

25 I L2 skriver vi: ENTER: Nå velger vi i «STAT PLOT»:. Vi trykker på ZOOM 9: ZoomStat:. Interessant å sammenlikne med normalfordelingen, med E(X) =np og σ = np( 1 p) : 25

26 . Vi trykker GRAPH:!!! 6d kjenne begrepene estimator og signifikans Eksempel 26

27 En kjøpmann mottar 50-kilos sekker med poteter fra en grossist. Standardavviket for vekten av sekkene setter vi til σ = 1.0kg. Kjøpmennen får en mistanke om at sekkene inneholder for lite, og han veier fem av dem som en kontroll. Vektene er 48, 46, 51, 49 og 50kg. Vi skal lage et 95% konfidensintervall for forventet vekt µ av alle sekkene fra grossisten. Vi laster vektene inn i en liste, L1, ved å skrive følgende på TI-83: og ENTER: STAT CALC 1: 1 - Var Stats gir: Nå benytter vi STAT TESTS 7: ZInterval.... Her har vi valgt Stats og skrevet inn det kjente standardavviket, σ = 1.0kg, de fem vektenes gjennomsnitsverdi, antall prøver og konfidensintervallets størrelse. Ved valg av Calculate får vi: Et 95% konfidensintervall tilsvarer 47.9<µ<49.7 6f kunne anvende binomisk fordeling til å utføre hypotesetesting 27

28 Eksempel Ved en landsomfattende teknisk kontroll av biler viste det seg at 10% hadde tekniske mangler. Vi plukker ut 90 av de kontrollerte bilene på en tilfeldig måte. a) Hva er sannsynligheten for at nøyaktig 9 av de 90 bilene vil ha tekniske mangler? Den binomiske fordelingen finner vi i [2nd] DISTR 0: binompdf(. Vi trykker ENTER og skriver inn ( antall forsøk, sannsynligheten for å finne tekniske mangler, antall med tekniske mangler ). ENTER nok en gang gir svaret:, 13.9%. b) Hva er sannsynligheten for at minst 10 biler vil ha tekniske mangler? Vi må nå benytte [2nd] DISTR A: binomcdf ( som regner ut den kumulative sannsynligheten. Da vi skal finne sannsynligheten for at minst 10 biler vil ha tekniske mangler, må vi trekke den kumulative sannsynlighet for at 9 biler har det fra 1 ( 100% ). Vi skriver:. ENTER gir: Biltilsynet i en by har mistanke om at bilene i denne byen er i dårligere teknisk stand enn bilene ellers i landet. De vil derfor gjennomføre en teknisk kontroll av 90 tilfeldig utvalgte biler i denne byen. Biltilsynet lar p være sannsynligheten for at en tilfeldig utvalgt bil fra byen har tekniske mangler, og de stiller opp hypotesen: H : p= 01. mot alternativet H 0 1 : p>

29 Signifikansnivået blir satt til 5%. Da kontrollen ble gjennomført, viste det seg at 13 av de 90 bilene hadde tekniske mangler. c) Gir dette grunnlag for å forkaste nullhypotesen H 0? Forventningsverdien for biler med tekniske mangler er i dette tilfellet E(X=90) = = 9. Sannsynligheten for at x biler har tekniske mangler er gitt ved x ( x) PX ( = x) = 90nCrx Dette er det samme som uttrykket Vi skal utføre testen på to måter, 1) ved å benytte den kumulative binomiske fordelingen,. og 2) ved å benytte den statistiske testen STAT TESTS A: 1 - PropZInt... 1) Vi går inn i STAT EDIT og skriver [2nd] LIST OPS 5: seq( 29

30 . Vi skriver deretter, dvs. uttrykket for tallfølgen, som er X, den variable, som er X, 0 som startverdi, 90 som sluttverdi og 1 som er økningen. ENTER gir:. I liste 2 skriver vi deretter. Vi fyller inn for antall forsøk, sannsynligheten og tallene fra L1:. ENTER:. Vi går ned til 13 biler og leser av: Da signifikansnivået er 5%, kan vi ikke ut fra testen forkaste nullhypotesen. 30

31 2) Vi skriver inn STAT TESTS A:. Vi skal her beregne et kofidensintervall. Vi bygger nå på en normalfordeling, og det kan vi gjøre da n p= = 9 som er større enn 5, og n(1-p) = 81, som også er større enn 5. Etter ENTER får vi: vi. Dersom vi markerer Calculate og trykker ENTER får konfidensintervallet. Vårt resultat, , ligger godt innenfor Vi kan altså ikke slutte av testresultatet at bilene i denne byen er i dårligere stand enn i resten av landet. 6g kunne utføre hypotesetesting og konstruere konfidensintervall i Gauss modeller når er kjent. Eksempel 1 Venstresidig test En leverandør av potetsekker sier at han leverer sekker på 25 kg og med et standardavvik på = 0.5 kg. Materialet er normalfordelt. Vi tar en stikkprøve på 12 sekker og finner at gjennomsnitsvekten av disse tolv sekkene er x = kg. Avgjør om gjennomsnittet for populasjonen kan sies å være mindre enn 25 kg, slik at vi kan klage til leverandøren. Sett signifikansnivået til 5%. 31

32 Vi benytter STAT TESTS 1: Z - Test... Vi velger Stats Calculate og ENTER gir følgende bilde: Denne z - verdien er større enn den teoretiske på ( Denne finner vi ved [2nd] DISTR 3: invnorm ( 0.95, 0, 1 ): klage på leveransen! Vi kan altså ikke Eksempel 2 Tosidig test Gjennomsnittlig levealder i Russland var i år. Standardavviket settes til σ = 11 år. I 1995 tar vi ut en stikkprøve på oppnådd levealder for 150 avdøde personer, og vi finner blant dem et gjennomsnitt på 63.8 år. Avgjør om vi ut fra disse observasjonene kan påstå at den gjennomsnitlige levealderen har endret seg. Sett signifikansnivået til 10%. 32

33 Vi benytter STAT TESTS 1: Z - Test : tallene: og skriver inn. Legg merke til at vi nå velger µ µ 0. ENTER gir resultatet Den z - verdien som svarer til et areal under den standardiserte normalfordelingen lik 0.95 finner vi ved hjelp av [2nd] DISTR 3: invnorm ( 0.95, 0, 1 ): Da > må vi konkludere med at vi ikke kan slutte at levealderen har endret seg. Vi kunne også ha regnet ut et konfidensintervall på 90% ved STAT TESTS 7: ZInterval... og fått. 33

34 3MY Læreplanen for 3MY skiller seg fra 3MX på noen områder, og ett område som er med i 3MY fins ikke i læreplan for 3MX. Det gjelder Mål 5 Lineær optimering ; det er imidlertid ikke noe i det emnet som ikke er dekket av det gjennomgåtte. I stedet for å gå gjennom Læreplan for 3MY som vi har gjort med de andre emnene, vil vi ta for oss oppgaver som oppfyller målene i Læreplan for 3MY. Ω Oppgave 1 a) Regn ut grenseverdiene 1) lim x 2 4 x 2 x 2 Vi skriver uttrykket i parentesen som en funksjon: Vi setter opp tabellen med [2nd] TBLSET: og ser på tabellen 34

35 Ved å rulle i tabellen ser vi at grensen er 4 2) lim ln 2 x 3 + e x 2 x 1 x Vi lagrer på nytt uttrykket i Y =, men denne gangen benytter vi TABLE SETUP Ask Vi går inn i tabellen og setter inn en stor verdi for x: 35

36 . ENTER gir Oppgave 2 En del av en takkonstruksjon beskrives ved x ( x y = 6 e e ), y 0 Bruk lommeregneren til å beregne arealet avgrenset av kurven og x - aksen 36

37 Vi finner nullpunktene først. [2nd] CALC 2: zero gir og. Vi bruker nå [2nd] CALC 7: f ( x) dx ENTER: og ENTER gir Vi skal lage et vindu med størst mulig areal i denne konstruksjonen. Symmetrisk om y - aksen oppreiser vi to normaler i hhv -a og a. Arealet av dette vinduet blir da a a Fa ( ) = 2a( 6 e e ) Bruk lommeregneren til å bestemme det størst mulige vindusareal. 37

38 Vi får funksjonen. Vi bruker MATH 7: fmax ( Bestem vinduets mål. Vi har funnet grunnlinjen, som er Høyden finner vi ved å sette inn i Målene runder vi av til 2.2 og 2.7. Oppgave 3 En grossist mottar 1200 kartomger sjokolade fra sjokoladefabrikken hver 30. dag. Han kjører ut 40 kartonger per dag. Lagerbeholdningen ved slutten av hver dag kan uttrykkes ved funksjonen L gitt ved 38

39 [ ] Lx ( ) = xx, 0,30 der x er antall dager etter leveransen fra fabrikken. Den gjennomsnitlige lagerbeholdningen i 30 - dagersperioden kan tilnærmet uttrykkes ved 1 30 Lsnitt = L ( x ) dx 30 0 a) Bestem ved regning L snitt ved hjelp av denne formelen. Vi benytter og funksjonen slik den er gitt av formelen: En annen grossist mottar 9000 enheter av et vareslag hver 30.dag. For dette vareslaget kan lagerbeholdningen ved slutten av hver dag tilnærmet beskrives av funksjonen B gitt ved [ ] Bx ( ) = x 10x 300xx, 0,30 3 der x er antall dager etter leveranse. b) Hva er den gjennomsnitlige lagerbeholdningen for dette vareslaget i 30 - dagersperioden? 39

40 Som i a) bruker vi og Dette gir svaret: c) Hvilken dag kjører grossisten ut flest enheter av dette vareslaget, og hvor mye kjøres ut denne dagen? 1 2 Han må kjøre ut x x enheter hver dag. Ved hjelp av denne funksjonen og 3 får vi, den 15. dagen. Det kjøres ut, altså 5625 enheter. 40

41 41

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MX etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK av samme forfatter. Mål og hovedmomenter 1 2 Mål 3:

Detaljer

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MY etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MY etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MY etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK og 2MX av samme forfatter. Mål og hovedmomenter. 1

Detaljer

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger.

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger. ON Lommeregnerstoff Texas 4.1 Rette linjer Her viser vi hvordan vi går fram for å få tegnet linja med likningen y = 2x 3 Vi trykker på Y= og legger inn likningen som vist nedenfor. Nå må vi velge vindu.

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Eksamen vår 2009 Løsning Del 1

Eksamen vår 2009 Løsning Del 1 S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.

Detaljer

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning

HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning HØGSKOLEN I SØR-TRØNDELAG Avdeling for lærer- og tolkeutdanning Emnekode(r): LGU52003 Emnenavn: Matematikk 2 (5-10), emne 2 Studiepoeng: 15 Eksamensdato: 11. mai 2015 Varighet/Timer: Målform: Kontaktperson/faglærer:

Detaljer

Sensurveiledning for eksamen i lgu52003 våren 2015

Sensurveiledning for eksamen i lgu52003 våren 2015 Sensurveiledning for eksamen i lgu5200 våren 205 Oppgave a) Gjennomsnittsfart fra 0-0 minutt: tilbakelagt strekning etter 0 min tilbakelagt strekning ved start tid = Gjennomsnittsfart fra 5-0 minutt: (5

Detaljer

Bokmål. Eksamensinformasjon

Bokmål. Eksamensinformasjon Eksamen 05.12.2008 AA6524/AA6526 Matematikk 3MX Elevar og privatistar / Elever og privatister Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler: Vedlegg: Andre opplysninger: Framgangsmåte

Detaljer

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål

Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres

Detaljer

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette?

0, 12. 1) Sett opp ei uendelig rekke som viser hvor stor del av bløtkaka som er spist av gjestene. Hva slags rekke er dette? OPPGAVE 1 a) Deriver funksjonen f( x) = 5x tanx b) Deriver funksjonen ( ) 3 g( x) = x + cosx c) Bestem integralet (sin x cos x) dx d) Løs ligningen ved regning π,4,6cos x = 1,8, 1 4 x e) I et selskap blir

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved

DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f ( ) e b) g ( ) 1 c) h( ) (3 1) e Oppgave (3 poeng) På figuren har vi tegnet grafen til en funksjon f gitt ved 3 f( ) k k, D f f a) Faktoriser

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Medisinsk statistikk Del I høsten 2009:

Medisinsk statistikk Del I høsten 2009: Medisinsk statistikk Del I høsten 2009: Kontinuerlige sannsynlighetsfordelinger Pål Romundstad Beregning av sannsynlighet i en binomisk forsøksrekke generelt Sannsynligheten for at suksess intreffer X

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003

Matematikk 3MX AA6524 og AA6526 Elever og privatister 8. desember 2003 E K S A M E N LÆRINGSSENTERET Matematikk 3MX AA6524 og AA6526 Elever og privatister Bokmål 8. desember 2003 Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Les opplysningene

Detaljer

Eksamen REA3028 S2, Høsten 2011

Eksamen REA3028 S2, Høsten 2011 Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h

Detaljer

Graftegning på lommeregneren

Graftegning på lommeregneren Graftegning på lommeregneren Vi starter med å tegne grafen til fx ( )= 05, x 3 2x 2 +2på lommeregneren for x-verdier mellom 2 og 5. Kontroller grunninnstillingene Før du starter, er det lurt å kontrollere

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n

DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.

Detaljer

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1.

Geogebra hjelp - S2. Funksjonsanalyse. Innhold. Kommando. Funksjonsanalyse 1. Undersøke om dataene er normalfordelt 1. Geogebra hjelp - 4. mai 2012 Innhold Funksjonsanalyse 1 Komandoer 1 Undersøke om dataene er normalfordelt 1 Finne sannsynlighetsfordeling 2 Binomisk fordeling...........................................

Detaljer

Løsningsskisse eksamen 3MX

Løsningsskisse eksamen 3MX Løsningsskisse eksamen 3MX.6.6 Ikke sjekket, kan være feil. a) f 5tan 5 sincos 5 cos cos Eller: f 5tan 5tan 5 tan 5tan 5 (Produktregel) b) g u 3, u cos g 3u sin 3 cos sin (Kjerneregel. Kan multipliseres

Detaljer

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org

Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004. eksamensoppgaver.org Løsningsforslag AA6526 Matematikk 3MX - 5. mai 2004 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem

MAT4010 PROSJEKTOPPGAVE: Statistikk i S2. Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem MAT400 PROSJEKTOPPGAVE: Statistikk i S2 Olai Sveine Johannessen, Vegar Klem Hafnor & Torstein Mellem 20. mai 205 Innhold. Stokastisk Variabel.. Stokastiske variable som funksjoner 3 2. Forventningsverdi

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1. La x være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning.

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning. 01.05.98 TEXAS INSTRUMENTS Eystein Raude, EMC eraude@c2i.net MATEMATIKK MED TI-83 GrunnKurs på AF/ØK/ADstudieretning. Eystein Raude Texas Instruments Kjære bruker av TI-83. Matematikk er både en vitenskap

Detaljer

GeoGebra-opplæring i Matematikk S2

GeoGebra-opplæring i Matematikk S2 GeoGebra-opplæring i Matematikk S Emne Underkapittel Faktorisering.1 Grafisk løsning av likningssett I.3 Størst mulig overskudd 3. Vendepunkter 3.4 Den naturlige eksponentialfunksjonen 3.5 3.6 Den naturlige

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering

Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering Kapittel 8: Tilfeldige utvalg, databeskrivelse og fordeling til observatorar, Kapittel 9: Estimering TMA4245 Statistikk Kapittel 8.1-8.5. Kapittel 9.1-9.3+9.15 Turid.Follestad@math.ntnu.no p.1/21 Har sett

Detaljer

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program

Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Læreplan i matematikk for samfunnsfag - programfag i studiespesialiserende program Fastsatt som forskrift av Utdanningsdirektoratet 27. mars 2006 etter delegasjon i brev 26. september 2005 fra Utdannings-

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Eksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524 Matematikk 3MX. Eksamensdato: 4. juni 2007. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA6524 Matematikk 3MX Eksamensdato: 4. juni 2007 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Oppgåva ligg føre på begge

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp.

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting, innledning. Kp. ÅMA Sannsynlighetsregning med statistikk, våren 8 Kp. 6 Hypotesetesting Hypotesetesting (kp. 6) Tre deler av faget/kurset:. Beskrivende statistikk. Sannsynlighetsteori, sannsynlighetsregning 3. Statistisk

Detaljer

HELDAGSPRØVE. Fredag 9 Mai Løsningsskisse (versjon )

HELDAGSPRØVE. Fredag 9 Mai Løsningsskisse (versjon ) HELDAGSPRØVE Oppgave Fredag 9 Mai 4 Løsningsskisse (versjon 4.5.8) a) Deriver funksjonen fx cosx Kjerneregel: fu cosu, u x f x sinu x x sinx b) Bestem integralet x lnx dx Delvis integrasjon: u x u x 4

Detaljer

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode

QED 1 7. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 4 Statistikk og kvantitativ metode QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 2 Fasit kapittel 4 Statistikk og kvantitativ metode Kapittel 4 Oppgave 1 La være antall øyne på terningen. a) Vi får følgende sannsynlighetsfordeling

Detaljer

Eksamen i. MAT110 Statistikk 1

Eksamen i. MAT110 Statistikk 1 Avdeling for logistikk Eksamen i MAT110 Statistikk 1 Eksamensdag : Torsdag 28. mai 2015 Tid : 09:00 13:00 (4 timer) Faglærer/telefonnummer : Molde: Per Kristian Rekdal / 924 97 051 Kristiansund: Terje

Detaljer

i x i

i x i TMA4245 Statistikk Vår 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalte oppgaver 11, blokk II Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale

Detaljer

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ...

ÅMA110 Sannsynlighetsregning med statistikk, våren Hypotesetesting (kp. 6) Hypotesetesting. Kp. 6 Hypotesetesting ... ÅMA Sannsynlighetsregning med statistikk, våren 6 Kp. 6 (kp. 6)... Begrep: nullhypotese alternativhypotese ensidig, tosidig teststørrelse (testobservator) nullfordeling kritisk verdi, forkastningsområde

Detaljer

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002

Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Løsningsforslag Eksamen i Statistikk SIF5060 Aug 2002 Oppgave 1 a) En god estimator er forventningsrett og har liten varians. Vi tester forventningsretthet: E[ˆµ] E[Y ] µ E[ µ] E[ 1 2 X + 1 2 Y ] 1 2 E[X]

Detaljer

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252

Oppgaver fra 8.3, 8.4, , 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 Oppgaver fra 8.3, 8.4, 8.5 8.41, 8.51, 8.52, 8.231, 8.232, 8.250, 8.252 8.41 Populasjon: Tilfeldig variabel X : Trekke en tilfeldig flaske og måle volumet Ukjent sannsynlighetsfordeling, men forventning

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen

ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen ST0202 Statistikk for samfunnsvitere Kapittel 6: Normalfordelingen Bo Lindqvist Institutt for matematiske fag 2 Kap. 6: Normalfordelingen Normalfordelingen regnes som den viktigste statistiske fordelingen!

Detaljer

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013

Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 2013. Skrevet av Stian Lydersen 16 januar 2013 1 Supplement til power-point presentasjonen i medisinsk statistikk, forelesning 7 januar 013. Skrevet av Stian Lydersen 16 januar 013 Vi antar at vårt utvalg er et tilfeldig og representativt utvalg for

Detaljer

Eksamen REA3028 S2, Høsten 2012

Eksamen REA3028 S2, Høsten 2012 Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x

Detaljer

Eksempelsett R2, 2008

Eksempelsett R2, 2008 Eksempelsett R, 008 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonen f x x cosx f x cosx x s x f x cosx 6x sinx

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 11 Oppgavene i denne øvingen dreier seg om hypotesetesting og sentrale begreper

Detaljer

Eksamen S1, Høsten 2013

Eksamen S1, Høsten 2013 Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f

Detaljer

E K S A M E N. Matematikk 3MX LÆRINGSSENTERET. Elevar / Elever. AA juni 2004

E K S A M E N. Matematikk 3MX LÆRINGSSENTERET. Elevar / Elever. AA juni 2004 E K S A M E N LÆRINGSSENTERET Matematikk 3MX Elevar / Elever AA654 7. juni 004 Vidaregåande kurs II / Videregående kurs II Studieretning for allmenne, økonomiske og administrative fag Oppgåva ligg føre

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: Statistikk. FAGNUMMER: Rea 1082 EKSAMENSDATO: 14. mai 2009. KLASSE: Ing. TID: kl. 9.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 3 (innkl. forside) TILLATTE

Detaljer

Kapittel 9 og 10: Hypotesetesting

Kapittel 9 og 10: Hypotesetesting Kapittel 9 og 1: ypotesetesting ypotesetesting er en standard vitenskapelig fremgangsmåte for å sjekke påstander. Generell problemstilling: Basert på informasjonen i data fra et tilfeldig utvalg ønsker

Detaljer

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B

Løsning på Dårlige egg med bruk av Tabell 2 i Appendix B Situasjonen er som i quiz-eksempelet: n = 4, p = 1/3 ( suksess betyr å gjette riktig alternativ), q = 2/3. Oppgave: Finn P(x), x=0,1,2,3,4 fra den generelle formelen for binomisk sannsynlighetsfordeling

Detaljer

Løsningsforslag til obligatorisk innlevering 3.

Løsningsforslag til obligatorisk innlevering 3. svar3.nb 1 Løsningsforslag til obligatorisk innlevering 3. Oppgave 1 * Vi skal sammenlikne to sensoere A og B. Begge har rettet den samme oppgaven. Hvis populasjonen er eksamensoppgavene, har vi altså

Detaljer

Studieplan 2009/2010. Matematikk 2. Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå. Innledning.

Studieplan 2009/2010. Matematikk 2. Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå. Innledning. Studieplan 2009/2010 Matematikk 2 Studiepoeng: Arbeidsmengde i studiepoeng er: 30. Studiets varighet, omfang og nivå Studiet gir 30 studiepoeng og går over et semester. Innledning Matematikk 2 skal forberede

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling

Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Forelesning 23 og 24 Wilcoxon test, Bivariate Normal fordeling Wilcoxon Signed-Rank Test I uke, bruker vi Z test eller t-test for hypotesen H:, og begge tester er basert på forutsetningen om normalfordeling

Detaljer

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00

EKSAMEN I FAG 75510/75515 STATISTIKK 1 Tirsdag 20. mai 1997 Tid: 09:00 14:00 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 5 Faglig kontakt under eksamen: Håvard Rue 73 59 35 20 Håkon Tjelmeland 73 59 35 20 Bjørn Kåre Hegstad 73 59 35 20

Detaljer

Kort overblikk over kurset sålangt

Kort overblikk over kurset sålangt Kort overblikk over kurset sålangt Kapittel 1: Deskriptiv statististikk for en variabel Kapittel 2: Deskriptiv statistikk for samvariasjon mellom to variable (regresjon) Kapittel 3: Metoder for å innhente

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1

Oppgaven består av 10 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom <<. >>. Oppgave 1 ECON 0 EKSAMEN 004 VÅR SENSORVEILEDNING Oppgaven består av 0 delspørsmål som anbefales å veie like mye. Kommentarer og tallsvar er skrevet inn mellom

Detaljer

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010

Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Andre sett med obligatoriske oppgaver i STK1110 høsten 2010 Dette er det andre settet med obligatoriske oppgaver i STK1110 høsten 2010. Oppgavesettet består av fire oppgaver. Det er valgfritt om du vil

Detaljer

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling

1 Section 6-2: Standard normalfordelingen. 2 Section 6-3: Anvendelser av normalfordelingen. 3 Section 6-4: Observator fordeling 1 Section 6-2: Standard normalfordelingen 2 Section 6-3: Anvendelser av normalfordelingen 3 Section 6-4: Observator fordeling 4 Section 6-5: Sentralgrenseteoremet Oversikt Kapittel 6 Kontinuerlige tilfeldige

Detaljer

Funksjoner og grafiske løsninger

Funksjoner og grafiske løsninger 8 1 Funksjoner og grafiske løsninger Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Eksamensoppgave i TMA4245 Statistikk

Eksamensoppgave i TMA4245 Statistikk Institutt for matematiske fag Eksamensoppgave i TMA4245 Statistikk Faglig kontakt under eksamen: Håkon Tjelmeland Tlf: 48 22 18 96 Eksamensdato:??. august 2014 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Matematikk 3MZ AA6544 / AA6546 Elever / privatister Oktober 2002

Matematikk 3MZ AA6544 / AA6546 Elever / privatister Oktober 2002 E K S A M E N LÆRINGSSENTERET Matematikk 3MZ AA6544 / AA6546 Elever / privatister Bokmål Eksempeloppgave etter læreplan godkjent juli 000 Videregående kurs II Studieretning for allmenne, økonomiske og

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister. Nynorsk/Bokmål Eksamen 05.12.2007 AA6524 Matematikk 3MX Elevar/Elever AA6526 Matematikk 3MX Privatistar/Privatister Nynorsk/Bokmål Oppgave 1 a) Deriver funksjonen: f x 2 ( ) = cos( x + 1) b) Løs likningen og oppgi svaret

Detaljer

Eksamen REA3026 S1, Høsten 2010

Eksamen REA3026 S1, Høsten 2010 Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x

Detaljer

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser

Statistikk. Mål. for opplæringen er at eleven skal kunne. planlegge, gjennomføre og vurdere statistiske undersøkelser 48 3 Statistikk Mål for opplæringen er at eleven skal kunne planlegge, gjennomføre og vurdere statistiske undersøkelser beregne kumulativ hyppighet, finne og drøfte sentralmål og spredningsmål representere

Detaljer

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK

EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 12 Faglig kontakt under eksamen: Bo Lindqvist Tlf. 975 89 418 EKSAMEN I FAG TMA4260 INDUSTRIELL STATISTIKK Onsdag

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Statistikkberegninger i regnearket... 5 Nye muligheter for funksjonsanalyse... 8 Nullpunkt og ekstremalpunkt...

Detaljer

Funksjoner 1T, Prøve 2 løsning

Funksjoner 1T, Prøve 2 løsning Funksjoner 1T, Prøve løsning Del 1 Tid: 60 min Hjelpemidler: Skrivesaker Oppgave 1 I koordinatsystemet ovenfor er det tegnet fire rette linjer, j, k, m og n. Finn likningen for hver av de fire linjene.

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

TMA4240 Statistikk Høst 2016

TMA4240 Statistikk Høst 2016 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Anbefalt øving 9 Løsningsskisse Oppgave 1 a) Vi lar her Y være antall fugler som kolliderer med vindmølla i løpet av den gitte

Detaljer

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere

Kap. 10: Inferens om to populasjoner. Eksempel. ST0202 Statistikk for samfunnsvitere Kap. 10: Inferens om to populasjoner Situasjon: Vi ønsker å sammenligne to populasjoner med populasjonsgjennomsnitt henholdsvis μ 1 og μ. Vi trekker da ett utvalg fra hver populasjon. ST00 Statistikk for

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00.

EKSAMEN KANDIDATNUMMER: EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 26. mai 2006. SENSURFRIST: 16. juni 2006. KLASSE: HIS 04 07. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER

Detaljer

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8].

GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. 413 GeoGebra i S2 Grafer Nullpunkter GeoGebra finner nullpunktene til en innlagt polynomfunksjon f. Topp- og bunnpunkter GeoGebra finner nullpunktene til en innlagt funksjon f i intervallet [1, 8]. GeoGebra

Detaljer

TMA4240 Statistikk Høst 2015

TMA4240 Statistikk Høst 2015 TMA4240 Statistikk Høst 2015 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 11, blokk II I denne øvingen skal vi fokusere på hypotesetesting. Vi ønsker å gi dere

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015

RAMMER FOR MUNTLIG EKSAMEN I MATEMATIKK ELEVER 2015 RAMMER FOR MUNIG EKSAMEN I MAEMAIKK EEVER 2015 Fagkoder: MA1012, MA1014, MA1016, MA1018, MA1101,MA1105, MA1106, MA1110, REA3021, REA3023, REA3025, REA3027, REA3029 Årstrinn: Vg1, Vg2 og Vg3 Gjelder for

Detaljer

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT

UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Utsatt eksamen i: ECON2130 - Statistikk 1 Eksamensdag: 19.06.2014 Tid for eksamen: kl. 09:00 12:00 Oppgavesettet er på 4 sider UNIVERSITETET I OSLO ØKONOMISK INSTITUTT Tillatte hjelpemidler: Alle trykte

Detaljer

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk

Tilfeldige variabler. MAT0100V Sannsynlighetsregning og kombinatorikk MAT0100V Sannsynlighetsregning og kombinatorikk Forventning, varians og standardavvik Tilnærming av binomiske sannsynligheter Konfidensintervall Ørnulf Borgan Matematisk institutt Universitetet i Oslo

Detaljer

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon

ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon ST0202 Statistikk for samfunnsvitere Kapittel 9: Inferens om én populasjon Bo Lindqvist Institutt for matematiske fag 2 Kap. 9: Inferens om én populasjon Statistisk inferens har som mål å tolke/analysere

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Gammafordelingen og χ 2 -fordelingen

Gammafordelingen og χ 2 -fordelingen Gammafordelingen og χ 2 -fordelingen Gammafunksjonen Gammafunksjonen er en funksjon som brukes ofte i sannsynlighetsregning. I mange fordelinger dukker den opp i konstantleddet. Hvis man plotter n-fakultet

Detaljer

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m

1.1.1 Rekke med konstante ledd. En rekke med konstante ledd er gitt som. a n (1) n=m Formelsamling og tabeller FO020E Matte 2000 for elektroprogrammet 1 Matematikk 1.1 Denisjoner av ulike typer polynomer og rekker 1.1.1 Rekke med konstante ledd En rekke med konstante ledd er gitt som a

Detaljer

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org

Løsningsforslag AA6524/AA6526 Matematikk 3MX Elever/Privatister - 7. desember eksamensoppgaver.org Løsningsforslag AA654/AA656 Matematikk 3MX Elever/Privatister - 7. desember 005 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 3MX er gratis,

Detaljer

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG

Løsningsforlag statistikk, FO242N, AMMT, HiST 2.årskurs, 7. desember 2006 side 1 ( av 8) LØSNINGSFORSLAG Løsningsforlag statistikk, FO4N, AMMT, HiST.årskurs, 7. desember 006 side 1 ( av 8) LØSNINGSFORSLAG HØGSKOLEN I SØR-TRØNDELAG AVDELING FOR MAT- OG MEDISINSK TEKNOLOGI Matteknologisk utdanning Kandidatnr:

Detaljer

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org

Løsningsforslag AA6524 Matematikk 3MX Elever 7. juni eksamensoppgaver.org Løsningsforslag AA654 Matematikk MX Elever 7. juni 004 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

Løsning eksamen S1 våren 2010

Løsning eksamen S1 våren 2010 Løsning eksamen S1 våren 010 Oppgave 1 a) 1) f ( x) x x f (1) 1 1 1 1 f ( x) 6x x f (1) 6 1 1 6 4 ) Grafen går gjennom punktet (1, 1) og har vekstfarten 4. Det betyr at tangenten i punktet har stigningstallet

Detaljer

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler

STK1000 Uke 36, Studentene forventes å lese Ch 1.4 ( ) i læreboka (MMC). Tetthetskurver. Eksempel: Drivstofforbruk hos 32 biler STK1000 Uke 36, 2016. Studentene forventes å lese Ch 1.4 (+ 3.1-3.3 + 3.5) i læreboka (MMC). Tetthetskurver Eksempel: Drivstofforbruk hos 32 biler Fra histogram til tetthetskurver Anta at vi har kontinuerlige

Detaljer

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål

Eksamen AA6524 Matematikk 3MX Elevar/Elever. Nynorsk/Bokmål Eksamen 9.05.008 AA654 Matematikk 3MX Elevar/Elever Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel: Vedlegg: Andre opplysningar: Framgangsmåte og forklaring: 5 timar Sjå gjeldande

Detaljer

Regneregler for forventning og varians

Regneregler for forventning og varians Regneregler for forventning og varians Det fins regneregler som er til hjelp når du skal finne forventningsverdier og varianser. Vi skal her se nærmere på disse reglene. Vi viser deg også hvordan reglene

Detaljer

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller.

EKSAMEN. TILLATTE HJELPEMIDLER: Kalkulator. Hornæs: Formelsamling statistikk HiG. John Haugan: Formler og tabeller. KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Statistikk. BtG207 EKSAMENSDATO: 11. juni 2007. KLASSE: HIS 05 08. TID: kl. 8.00 13.00. FAGLÆRER: Hans Petter Hornæs ANTALL SIDER UTLEVERT: 5 (innkl. forside)

Detaljer

SINUS R1, kapittel 5-8

SINUS R1, kapittel 5-8 Løsning av noen oppgaver i SINUS R1, kapittel 5-8 Digital pakke B TI-Nspire Enkel kalkulator (Sharp EL-506, TI 30XIIB eller Casio fx-82es) Oppgaver og sidetall i læreboka: 5.43 c side 168 5.52 side 173

Detaljer

TMA4240 Statistikk 2014

TMA4240 Statistikk 2014 TMA4240 Statistikk 2014 Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag Øving nummer 12, blokk II Oppgave 1 På ein av vegane inn til Trondheim er UP interessert i å måle effekten

Detaljer

I Katalog velger du: Ny eksamensordning i matematikk våren 2015

I Katalog velger du: Ny eksamensordning i matematikk våren 2015 CAS teknikker H-P Ulven 10.12.2014 Innledning Våren 2015 gjelder nye regler for bruk av digitale hjelpemidler: Når det står "Bruk CAS", så må kandidaten bruke CAS, og når det står "Bruk graftegner", så

Detaljer

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015

MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 MATEMATIKK 1 (for 8. 10. trinn) Emnebeskrivelser for studieåret 2014/2015 Emnenavn Grunnleggende matematikk Precalculus MA6001 Undervisningssemester Høst 2014 Professor Petter Bergh petter.bergh@math.ntnu.no

Detaljer