Eksamen S2 høsten 2014
|
|
- Hilde Dahl
- 6 år siden
- Visninger:
Transkript
1 Eksamen S2 høsten 2014 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f x 3ln x 2 b) gx x ln3x Oppgave 2 (2 poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortningen. 3 2 x 2x 3x x 3 Forkort brøken. Oppgave 3 (3 poeng) a a a a) Bestem et uttrykk for summen a n a a a En uendelig geometrisk rekke er gitt ved a b) Begrunn hvorfor rekken konvergerer. c) Bestem a slik at summen av rekken blir 10. Eksamen REA3028 Matematikk S2 høsten 2014 Side 1
2 Oppgave 4 (5 poeng) En funksjon f er gitt ved 3 2 f x x 6x 9 x, Df a) Bestem ved regning nullpunktene til f. b) Bestem ved regning eventuelle topp- og bunnpunkter på grafen til f. c) Bestem ved regning vendepunktet på grafen til f. d) Lag en skisse av grafen til f. Oppgave 5 (5 poeng) I koordinatsystemet nedenfor ser du grafen til en kostnadsfunksjon K, markert med rødt på figuren. Det er også tegnet inn tre rette linjer. Disse har likningene y 4,46x, y 3,43x og y2,06x 960 To av linjene tangerer grafen til funksjonen y K x i henholdsvis A og B. Enhetskostnaden ved produksjon av x enheter er Kx x. a) Bestem enhetskostnaden ved produksjon av 400 enheter. b) Forklar at grensekostnaden ved produksjon av 400 enheter er 2,06 kroner per enhet. c) Bestem den minste enhetskostnaden. Eksamen REA3028 Matematikk S2 høsten 2014 Side 2
3 Oppgave 6 (4 poeng) En stokastisk variabel X har følgende sannsynlighetsfordeling: x P X x a b c Vi får oppgitt at forventningsverdien er E X og at variansen er a) Vis at disse opplysningene gir oss ligningssystemet a b c 1 1 a c 2 27a 3b 3c 7 b) Bestem verdiene av a, b og c Var X. 12 Oppgave 7 (2 poeng) Funksjonen f er gitt ved 3 2 f x x 3x 2x 2, Df Bestem hvilke punkter på grafen til f som har tangent med stigningstall lik 2. Eksamen REA3028 Matematikk S2 høsten 2014 Side 3
4 Tid: 3 timer Hjelpemidler: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Oppgave 1 (7 poeng) La x være antall produserte og solgte enheter fra en bedrift. Sammenhengen mellom x og prisen per enhet er 500 0,1 p x a) Bestem et uttrykk for inntekten Ix. x Tabellen nedenfor viser kostnaden ved produksjon av x enheter for en del verdier av x b) Bruk tabellen til å lage en modell for kostnadsfunksjonen K. c) Bestem et uttrykk for overskuddet Ox. Bruk O x til å bestemme den produksjonsmengden som gir størst overskudd. d) Forklar hvorfor løsningen av likningen Kx Ix gir samme resultat som i oppgave c). Eksamen REA3028 Matematikk S2 høsten 2014 Side 4
5 Oppgave 2 (5 poeng) En bonde skal gjerde inn kuene sine på et rektangelformet område. Området skal være på 625 m 2. Bonden skal bruke en 15 m lang steinmur som en del av inngjerdingen. Se skissen nedenfor. a) Vis at en funksjon G som beskriver lengden av gjerdet kan skrives som 2 2x 15x1250 når x 15 G x x b) Bestem hvor langt gjerde bonden må bruke dersom han skal bruke kortest mulig gjerde. Hvilken form har da området til bonden? Oppgave 3 (4 poeng) Katrine satte inn kroner på konto hvert år, første gang 1. januar 2007 og siste gang 1. januar Innskuddsrenten var hele tiden 3,5 % per år. Alle innskuddene sto urørt. a) Hvor mye hadde Katrine på sparekontoen i banken 31. desember 2010? 1. januar 2011 ble innskuddsrenten satt ned til 3,0 % per år. b) Katrine satte ikke flere penger i banken, men tok i stedet ut kroner hvert år, første gang 1. januar 2011 og siste gang 1. januar Hvor mye hadde Katrine på sparekontoen 31. desember 2014? Eksamen REA3028 Matematikk S2 høsten 2014 Side 5
6 Oppgave 4 (6 poeng) Den amerikanske geofysikeren Marion King Hubbert lanserte i 1956 følgende modell for verdens årlige oljeforbruk: V t Her er 3400e 156e 0,051t 0,051t 2 Vt antall milliarder fat olje som produseres i år t etter For eksempel er V 5 antall milliarder fat som ble produsert i 1935 a) Tegn grafen til V. b) Når vil produksjonen være 10 milliarder fat per år ifølge modellen? c) Hvilket år vil produksjonen være størst? d) Hva vil den totale produksjonen av olje være i årene fra og med 1930 til og med 2014? Eksamen REA3028 Matematikk S2 høsten 2014 Side 6
7 Oppgave 5 (6 poeng) Båt-tallene B n er antall prikker i figurene nedenfor. Vi ser at B1 8 og B2 15. a) Bestem B 4 Mathias ser at han kan dele hver figur i to biter slik at han får en trekant og en del av en større trekant. Ut fra dette ser han at Bn Tn Tn 3 3, der Tn 123 n. b) Bruk dette til å bestemme B 5. c) Bestem en formel for B n uttrykt ved n. Eksamen REA3028 Matematikk S2 høsten 2014 Side 7
8 Oppgave 6 (8 poeng) En fabrikk produserer juice i kartonger. Hver kartong skal inneholde ca. 0,33 L juice. I denne oppgaven tenker vi at innholdet i boksene er normalfordelt med forventningsverdi 0,33 L og standardavvik på 0,03 L. a) Hva er sannsynligheten for at en tilfeldig valgt kartong inneholder mer enn 0,36 L? b) Hvor mange prosent av kartongene vil inneholde mellom 0,32 L og 0,34 L? Eksamen REA3028 Matematikk S2 høsten 2014 Side 8
9 I en kvalitetskontroll inneholdt 25 tilfeldige kartonger gjennomsnittlig 0,292 L juice. c) Sett opp hypoteser og vurder om bedriften i snitt tapper for lite juice på kartongene. Bruk et signifikansnivå på 5 %. Bedriften synes det er uheldig at så mange kunder får for lite juice i kartongene: De kan ikke gjøre noe med standardavviket, siden det er bestemt av produksjonsutstyret. Likevel ønsker de at ca. 90 % av alle kartongene skal inneholde mer enn 0,32 L juice. Dette kan de få til ved å i snitt tappe mer juice på hver kartong d) Hva må forventningsverdien være for å få dette til? Kilder Oppgavetekst med grafiske framstillinger: Utdanningsdirektoratet Eksamen REA3028 Matematikk S2 høsten 2014 Side 9
DEL 1. Uten hjelpemidler. Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen. 2 2 2 n
DEL 1 Uten hjelpemidler Oppgave 1 (3 poeng) Deriver funksjonene a) f( x) 3ln( x ) b) g( x) x ln(3 x ) Oppgave ( poeng) Forklar hvordan vi kan avgjøre om brøken nedenfor kan forkortes, uten å utføre forkortingen.
Eksamen S2 høsten 2014 løsning
Eksamen S høsten 014 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene a) f 3ln 1 3 f 3 1 b) g ln3 1 ln3 g 1
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 28.11.2014 REA3028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal
Eksamen REA3028 S2, Våren 2013
Eksamen REA308 S, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene x a) f x x e b) gx x 1 x 3 Oppgave
Eksamen S2 va ren 2016
Eksamen S2 va ren 2016 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 2x a) f x e b) gx x 3 x 4 c) h x x x 3 6
DEL 1 Uten hjelpemidler. Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt.
S2 eksamen vår 2018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 3 f x = 2x
Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: 5 timer: Del 1 skal leveres inn etter 2 timer. Del 2 skal leveres
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Vedlegg: Framgangsmåte: Veiledning om vurderingen: 5 timer: Del
Eksamen S2 va ren 2015 løsning
Eksamen S va ren 05 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (5 poeng) Deriver funksjonene. a) x f x e x f x e e x b) gx x x x x x
Eksamen S2 høsten 2016
Eksamen S høsten 016 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f x x 5x b) g x 5x 1 7 c) h x x e x e 1
Eksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 b) hxlnx
Eksamen S2 va ren 2016 løsning
Eksamen S va ren 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene x a) f x e f x e b) gx x x 3 x 4 1 x
Eksamen S2 va r 2017 løsning
Eksamen S va r 017 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f 1 f b) g ln 1 g h 1 e c) h e e e Oppgave
S2 eksamen våren 2018 løsningsforslag
S eksamen våren 08 løsningsforslag DEL Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x =
Eksamen S2, Va ren 2013
Eksamen S, Va ren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave ( poeng) Deriver funksjonene f x x e a) x x x f x x e x e x x e x e e x x
Eksamen S2 høsten 2016 løsning
Eksamen S høsten 016 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 3 a) f 5 f 3 5 b) g 5 1 7 5 7 1 70 1
Eksamen S2, Va ren 2014
Eksamen S, Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Deriver funksjonene f x 3 x a) b) 4x g x x e Oppgave (3 poeng) Funksjonen
Del 1 skal leveres inn etter 3 timer. Del 2 skal leveres inn senest etter 5 timer.
Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på del 1: Hjelpemidler på del : Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 3 timer. Del skal leveres inn senest etter 5 timer. Vanlige skrivesaker,
DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (8 poeng) Deriver funksjonene. f x. ( ) e x. Polynomet P er gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x 2 ( ) e x b) g( x) x 3 x 4 c) h( x) x( x 3) 6 Oppgave 2 (8 poeng) Polynomet P er gitt ved P x x x 3 2 ( ) 6 32 a) Vis at P( x ) er
Eksamen REA3028 S2, Høsten 2011
Eksamen REA308 S, Høsten 011 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f x x x 1 ) gx
Eksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df Oppgave
DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (4 poeng) Deriver funksjonene. b) g( x) Løs likningssystemet.
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 3 ( ) 2 4 1 b) g( x) x e x c) h x x x 2 ( ) ln( 4 ) Oppgave 2 (2 poeng) Løs likningssystemet 5x y 2z 0 2x 3y z 3 3x 2y z 3 Oppgave
Eksamen S2 va r Oppgave 1 (5 poeng) Oppgave 2 (2 poeng) Oppgave 3 (6 poeng)
Eksamen S va r 017 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x b) g x lnx 1 h x x e c) x Oppgave (
Eksamen REA3028 S2, Høsten 2012
Eksamen REA308 S, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (6 poeng) Deriver funksjonene 3x x a) gx 3 3x x 3x
R1 eksamen høsten 2015
R1 eksamen høsten 2015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f x x x 2 ( ) 3 5 2 b) g( x)
Eksamen S1 Va ren 2014
Eksamen S1 Va ren 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x b) x lg lg x Oppgave ( poeng)
Eksamen S2, Høsten 2013
Eksamen S, Høsten 0 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (4 poeng) Deriver funksjonene x a) fx f x x x x b) 5 g x 5 x 5 5 5 4 4 g x x x
DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (3 poeng) Deriver funksjonene. x x. På figuren har vi tegnet grafen til en funksjon f gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f ( ) e b) g ( ) 1 c) h( ) (3 1) e Oppgave (3 poeng) På figuren har vi tegnet grafen til en funksjon f gitt ved 3 f( ) k k, D f f a) Faktoriser
Eksamen S2 høsten 2017
Eksamen S2 høsten 2017 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene 2 3 f x 2x 4x g x x e b) 2 x c) hx lnx 3
Eksamen S2 høsten 2015
Eksamen S2 høsten 2015 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (4 poeng) Deriver funksjonene f x x 2x a) 3 g x 3 e 2x 1 b) 2 x c) h x
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 6.05.010 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på del 1: Hjelpemiddel på del : Vedlegg: Framgangsmåte: Rettleiing om vurderinga: 5 timar: Del
Eksamen R2 høsten 2014
Eksamen R høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Deriver funksjonene a) f x cos3x b) gx 5e x sinx Oppgave
Eksamen S2 høsten 2015 løsning
Eksamen S høsten 015 løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (4 poeng) Deriver funksjonene f x x x a) 3 f x 3x g x 3 e x 1 b) 1
Eksamen S1, Høsten 2013
Eksamen S1, Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Funksjonen f er gitt ved Bestem f. f x 3x 3x 1, Df f
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del : Hjelpemidler på Del : Framgangsmåte: 5 timer: Del skal leveres inn etter timer. Del skal
Eksamen R1, Våren 2015
Eksamen R1, Våren 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f( ) 3 3 b) g( ) ln( ) c) h
Eksamen R2 Høsten 2013
Eksamen R2 Høsten 203 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos b) g sin 2 Oppgave 2 (3
Eksamen REA3028 S2, Høsten 2011
Eksamen REA08 S, Høsten 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) a) Deriver funksjonene ) f f 4 ) g e g e 6e ) h
Eksamen S2 va ren 2016
Eksamen S2 va ren 2016 Tid: 2 timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar. Oppgåve 1 (5 poeng) Deriver funksjonane 2x a) f x e b) gx x 3 x 4 h x x x 3 c) 6
Eksamen S2 høsten 2017 løsninger
Eksamen S høsten 017 løsninger Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (5 poeng) Deriver funksjonene a) 3 f x x 4x 4 1 f x x x g x x e b)
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Eksamen S1 Va ren 2014 Løsning
Eksamen S1 Va ren 014 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (3 poeng) Løs likningene a) x 3x 3 3 x x x x 3 3 3 0 x
Eksamen R2, Høst 2012
Eksamen R, Høst 01 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene a) x cos f x e x b) 3 g x 5 1 sinx Oppgave
Eksamen REA3026 S1, Høsten 2012
Eksamen REA3026 S1, Høsten 2012 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) x 2 2x 8 x b) 33
1T eksamen våren 2017
1T eksamen våren 2017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (2 poeng) Regn ut og skriv svaret på standardform 0,72 10 60 10 8 8 Oppgave
Eksamen S2. Va ren 2014 Løsning
Eksamen S. Va ren 04 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave (3 poeng) Deriver funksjonene f 3 a) f 3 3 3 6 3 b) 4 g e 4 4 4 4 4 g
Eksamen 30.11.2010. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.2010 REA3028 Matematikk S2 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Framgangsmåte: 5 timer: Del 1 skal leveres inn etter 2 timer.
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 lg x 3 5 lg x
Eksempeloppgave REA3028 Matematikk S2. Bokmål
Eksempeloppgave 2008 REA3028 Matematikk S2 Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del 2: Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:
x + y z = 0 2x + y z = 2 4x + y 2z = 1 b) Vis at summen av de n første leddene kan skrives som S n = 3 n(n + 1)
Eksamen S2, våren 2017 Laget av Tommy O. Sist oppdatert: 17. september 2017 Kommentar: Dette er en innskriving av S2 eksamen, basert på scan av dokumentet lastet opp av matematikk.net-bruker Viks. Det
S1 eksamen våren 2016
S1 eksamen våren 016 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x 3x 0 b) lg(4x 3) lg 7 Oppgave (4 poeng)
Eksamen 30.11.2012. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 30.11.01 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : 5 timar: Del 1 skal leverast inn etter timar. Del skal leverast
Eksamen 1T våren 2015
Eksamen T våren 05 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) Regn ut og skriv svaret på standardform 5 7,5 0 0,003 Oppgave
Eksamen 31.05.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 1.05.2011 REA028 Matematikk S2 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: 5 timar: Del 1 skal leverast inn etter 2 timar. Del 2 skal leverast
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) g x x x ( ) ln( x 1) h x ( ) x e x Oppgave ( poeng) Løs likningssystemet x y z 0 x y z 4x y z 1 Oppgave 3 (6 poeng) I en aritmetisk
Eksamen REA3026 S1, Våren 2012
Eksamen REA306 S1, Våren 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (16 poeng) a) 1) Skriv så enkelt som mulig a b a b
Eksamen S1 høsten 2014
Eksamen S1 høsten 2014 Tid: 2 timer Hjelpemiddel: vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler. Oppgave 1 (3 poeng) Løs likningene a) 2x 10 xx 5 b) x lg 3 5 2 Oppgave 2 (1 poeng)
Eksamen R1, Va ren 2014, løsning
Eksamen R1, Va ren 014, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Deriver funksjonene a) f x lnx x Vi bruker
Eksamen 29.11.2011. REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 9.11.011 REA308 Matematikk S Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : 5 timer: Del 1 skal leveres inn etter timer. Del skal leveres inn
R1 eksamen høsten 2015 løsning
R1 eksamen høsten 15 løsning Løsninger laget av Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) f
R1-eksamen høsten 2017
R1-eksamen høsten 017 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x 3x x 1 a) b) g( x) x x e 3 c) hx lnx
Eksamen R2, Høsten 2015, løsning
Eksamen R, Høsten 05, løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) f( ) 5cos( ) f 5 sin 0sin
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen R2 Høsten 2013 Løsning
Eksamen R Høsten 03 Løsning Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f 5cos Vi bruker produktregelen
Eksamen R2, Va ren 2014
Eksamen R2, Va ren 204 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (3 poeng) Deriver funksjonene a) f sin3 b) 2 g e cos Oppgave 2
Eksamen REA3026 S1, Høsten 2010
Eksamen REA6 S, Høsten Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (8 poeng) a) Løs likningene ) x 7 x 6 6 x6 x 6 7 6 6 6 x 7 x
DEL 1 Uten hjelpemidler
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) f( x) 3sin x cos x b) c) g( x) x cosx cos x h( x). Skriv svaret så enkelt som mulig. 1 sin x Oppgave (4 poeng) Bestem integralene a) b)
Eksamen R1 høsten 2014
Eksamen R1 høsten 014 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Deriver funksjonene 3 a) f x x x x b) gxx e 5 5 Oppgave
Eksamen 1T høsten 2015
Eksamen 1T høsten 015 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005
Eksamen 1T, Høsten 2012
Eksamen 1T, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (1 poeng) En rett linje har stigningstall. Linjen skjærer
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen REA3026 S1, Høsten 2012
Eksamen REA306 S1, Høsten 01 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Løs likningene a) 8 8 0 1 1 4 1 8 4 3 6
Eksamen REA3026 S1, Våren 2013
Eksamen REA306 S1, Våren 013 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Løs likningene a) lg x 3 5 b) x x 1 Oppgave
Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål
Eksamen 30..00 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : Framgangsmåte: 5 timar: Del skal leverast inn etter timar. Del skal
R1 eksamen våren 2018
R1 eksamen våren 018 DEL 1 Uten hjelpemidler Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene a) ( ) 4
Eksamen REA3026 Matematikk S1
Eksamen REA306 Matematikk S1 Oppgave 1 (3 poeng) Løs likningene a) x 6x 4 0 b) lg xlg lg4 x Oppgave (3 poeng) ABC er rettvinklet. Et punkt P på AC er plassert slik at PA AB PC CB. Vi setter PC x og CB
DEL 1. Uten hjelpemidler. Oppgave 1 (5 poeng) Oppgave 2 (4 poeng) Oppgave 3 (2 poeng) Oppgave 4 (2 poeng) Deriver funksjonene a) ( ) x e x
DEL 1 Uten hjelpemidler Oppgave 1 (5 poeng) Deriver funksjonene a) b) c) f( x) 2x 4x g x 2 ( ) x e x 2 3 h x x x 3 ( ) ln( 3 1) Oppgave 2 (4 poeng) a) Utfør divisjonen 3 2 ( x 5x 4x 20) : ( x 5) b) Bestem
Eksamen S1 Va ren 2014
Eksamen S1 Va ren 014 Tid: timar Hjelpemiddel: Vanlege skrivesaker, passar, linjal med centimetermål og vinkelmålar er tillate. Oppgåve 1 (3 poeng) Løys likningane a) x 3x 3 3 x b) x lg lg x Oppgåve (
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
DEL 1. Uten hjelpemidler. Oppgave 1 (24 poeng) a) Deriver funksjonene 1) 2. 3e x. e x. b) Vi har gitt rekken. Bestem a. c) Løs likningen.
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) a) Deriver funksjonene 1) f( x) x x 4 1 ) g x 3e x 3) h x x e x 4) i x ln x 4 b) Vi har gitt rekken 4 7 10 13 Bestem a n og S n c) Løs likningen x x x x 3 4
DEL 1. Uten hjelpemidler. Oppgave 1 (4 poeng) Oppgave 2 (5 poeng) Oppgave 3 (3 poeng) Deriver funksjonene. g( x ) 3 e x. Funksjonen f er gitt ved
DEL 1 Uten hjelpemidler Oppgave 1 (4 poeng) Deriver funksjonene 3 a) f( x) x 2x b) g( x ) 3 e x 2 1 2 c) h( x) x e x Oppgave 2 (5 poeng) Funksjonen f er gitt ved f( x) x 3 3x 2 9x, Df a) Bestem eventuelle
Eksamen 19.05.2010. MAT1013 Matematikk 1T. Nynorsk/Bokmål
Eksamen 19.05.010 MAT1013 Matematikk 1T Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Framgangsmåte: Veiledning om vurderingen: 5 timer: Del 1 skal
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen REA3022 R1, Våren 2009
Eksamen REA0 R, Våren 009 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave a) Deriver funksjonene ) f x x 4 4 8 f x x x x x ) g x x
Eksamen 28.11.2011. REA3022 Matematikk R1. Nynorsk/Bokmål
Eksamen 28.11.2011 REA3022 Matematikk R1 Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Vedlegg: 5 timar: Del 1 skal leverast inn etter 2 timar. Del
Eksamen REA3028 Matematikk S2. Nynorsk/Bokmål
Eksamen 03.1.009 REA308 Matematikk S Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del : Bruk av kjelder: Vedlegg: Framgangsmåte: Rettleiing om vurderinga:
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Eksamen REA3022 R1, Våren 2012
Eksamen REA30 R, Våren 0 Del Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave ( poeng) a) Deriver funksjonene gitt ved ) f 3 5 4 f 5 ) 3
Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.
Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. og setter f u ln
Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (4 poeng) Deriver funksjonene a) 3 f( ) 3 f 3 4 3 b) g( ) ln( ) Vi bruker kjerneregelen
Eksamen vår 2009 Løsning Del 1
S Eksamen, våren 009 Løsning Eksamen vår 009 Løsning Del Oppgave a) Deriver funksjonene: ) f f f 3 3 f f 4 ) g e 3 g e g e e g e b) ) Gitt rekka 468 Finn ledd nummer 0 og summen av de 0 første leddene.
S1 eksamen våren 2016 løsningsforslag
S1 eksamen våren 016 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Løs likningene a) x x 0 4 1 x 1 9 8 x 1 x x 1
Eksempeloppgave 1T, Høsten 2009
Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne
R1 eksamen høsten 2016
R eksamen høsten 06 Tid: 3 timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave (5 poeng) Deriver funksjonene f x x 5x 6 a) b) g( x) xlnx c) h x x e x 3
Del 1. Oppgave 1. a) Deriver funksjonene. 2) g( x) b) 1) Finn summen av den uendelige rekka: 9 + 0,9+
Del Oppgave a) Deriver funksjonene 3 2 ) f ( x) = 4x 5x + 3x+ 3 2) g( x) = 2 x e 3x b) ) Finn summen av den uendelige rekka: 9 + 0,9+ 0,09+ 0, 009+ L 2) Finn summen av de 9 første naturlige tallene. c)
Eksamen REA3028 Matematikk S2. Ny eksamensordning. Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler)
Eksamen 0.05.015 REA308 Matematikk S Ny eksamensordning Del 1: 3 timar (utan hjelpemiddel) / 3 timer (uten hjelpemidler) Del : timar (med hjelpemiddel) / timer (med hjelpemidler) Minstekrav til digitale
R2 eksamen våren 2017 løsningsforslag
R eksamen våren 07 løsningsforslag DEL Uten hjelpemidler Oppgave (5 poeng) Deriver funksjonene a) f 3sin cos f 3cos sin 3cos sin b) g cos uv uv uv der u og v cos Vi bruker produktregelen for derivasjon
1T eksamen våren 2017 løsningsforslag
1T eksamen våren 017 løsningsforslag Tid: timer Hjelpemidler: Vanlige skrivesaker, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) Regn ut og skriv svaret på standardform 0,710 6010
Eksamen R1 Høsten 2013
Eksamen R1 Høsten 013 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (5 poeng) Deriver funksjonene f x e a) 3 x b) gx x ln3x c) hx x