Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84"

Transkript

1 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84

2 Innhold 1 Innstillinger 4 2 Regning Regnerekkefølge Kvadratrot Tallet π Minne Parenteser Brøk Store og små tall Potenser og n-terøtter Funksjoner Tegning av grafer for hånd Tegning av rett linje på lommeregneren Tegning av grafer på lommeregneren Utregninger på grafen Finne y når du kjenner x Finne x når du kjenner y Nullpunkter Topp- og bunnpunkter Skjæringspunkter mellom grafer Lineær regresjon Enkel regresjon uten graf Regresjon med tegning av graf Sannsynlighetsregning Simulering Økonomi 17 2

3 Innledning Dette heftet er ment som en beskrivelse av lommeregneren TI 84 som digitalt verktøy i undervisningen i faget «Matematikk Vg1P», studieforbedredende utdanningsprogram. Heftet er tilpasset læreverket Sigma matematikk, Gyldendal Undervisning, og inneholder referanser til framstillingen der. Henvisninger fra boka Følgende er en oversikt over de sidetallene i læreboka som har referanse til digitale verktøy. Lista gir deg en oversikt over hvilket avsnitt i dette heftet som omhandler det aktuelle emnet i læreboka. Henvisningene refererer til sidetall i Sigma matematikk1p, 3. utgave, Gyldendal Undervisning, I den elektroniske utgaven av heftet er referansene klikkbare. Sidetall i læreboka Emne Avsnitt i dette heftet 12 Tallregning og regnerekkefølge 2 23 Kvadratrøtter Store og små tall Tegne rett linje Skjæring av grafer Lage verditabell Tegne graf Toppunkt Lineær regresjon 4 85 Lineær regresjon Budsjett Regnskap Serielån?? 192 Annuitetslån (beløp)?? 195 Annuitetslån (år)?? 3

4 1 Innstillinger Lommeregneren som blir beskrives her er denne: Legg merke til at du trykker på 2ND for å velge det som står skrevet over kappene, på vestre side. Du trykker ALPHA for å velge det som står skrevet over knappene på høyre side. Heretter angir vi vanligvis ikke når skal trykke 2ND og ALPHA. Før du begynner å bruke lommeregneren, stiller du den inn så den passer til det du skal gjøre. Tast MODE og gjør følgende innstillinger: Hvis innstillingene dine ikke stemmer, bruker du piltastene, flytter markøren til riktig felt og trykker ENTER. Avslutt med QUIT. 4

5 2 Regning 2.1 Regnerekkefølge Regnerekkefølgen er lagt inn i lommeregneren. Så vi kan taste rett inn slik det står. Utregningen taster vi inn som det står og avslutter med ENTER. Legg merke til at lommeregneren har en egen knapp for potens, nemlig. Dersom vi skal omgå regnerekkefølgen, må vi angi ønsket rekkefølge med parenteser, som for eksempel i utregningen 7 ( ( 3)) 2, som tastes inn slik: Lommeregneren har to typer minustegn, nemlig fortegnsminus, «(-)» og regneminus,. I utregningen er det første minustegnet et fortegnsminus, «(-)». For 2 2 skal ikke trekkes fra noe tall. Det andre minustegnet, derimot, forteller at 4 skal trekkes fra resultatet av Kvadratrot Kvadratroten av et tall regner vi ut med knappen merket med, som vi finner med 2ND x 2. Når kvadratrottegnet skal gjelde mer enn bare fram til neste regneoperasjon, må vi slå parenteser om det som skal inni kvadratroten. 2.3 Tallet π Lommeregneren har egen tast for π, som vi bruker i stedet for det unøyaktige 3,14. 5

6 2.4 Minne Lommeregneren har en minnefunksjon, slik at du enkelt kan bruke tall du har kommet fram til tidligere. Alle svar lagres automatisk i det midlertidige minnet Ans, en forkorting for «answer». La oss si at du har regnet ut (4 + 5) 2 3 og fått 72. Om du så taster π og trykker på enter, vil lommeregneren multiplisere det forrige svaret du fikk, nemlig 72, med π. Om du vil bruke det siste svaret inni en utregning, taster du ANS. I tillegg til ANS, fungerer alle bokstaver på lommeregneren som minne. Du legger tall inn i minnet ved å taste STO>, deretter ALPHA og så bokstaven. Du bruker tallet i minnet ved å taste ALPHA og så bokstaven. Slik ser det ut om vi legger 2 og 71 inn i minnene A og B og så regner ut A B og får Parenteser Når vi skriver for hånd, skriver vi ofte brøker og kvadratrottegn uten parenteser, da vi er enige om hvordan de skal regnes ut. For eksempel er = 12 6 = 2 Dersom vi vil regne ut svaret uten mellomregning på lommeregneren, må vi hjelpe til med å slå parenteser om telleren og nevneren. 6

7 Mange av funksjonene på lommeregneren er slik at når vi trykker på knappen, får vi automatisk venstreparentes. Vi avslutter parentesen slik det passer. Skal vi for eksempel regne ut , taster vi (5 + 20) + 3: 2.6 Brøk Brøker taster du inn med vanlig deletegn i stedet for brøkstrek. Pass på å slå parenteser om telleren og nevneren dersom de består av flere ledd. Svaret blir oppgitt som desimaltall. Dersom du vil ha svaret i brøk, taster du MATH og velger «FRAC». Skal vi for eksempel regne ut slår vi parenteser om den første telleren og den siste nevneren og får: Ved utregning av brudden brøk er det også nødvendig å bruke parenteser. Skal vi regne ut brøken taster vi det inn med parenteser rundt telleren og nevneren i hovedbrøken. 2.7 Store og små tall Lommeregneren har plass til 10 sifre i vinduet. Når du regner med et tall hvor du trenger flere sifre, brukes standardform. Lommeregneren skriver 2E3 for Eksempel: Regn ut Vi taster rett inn på lommeregneren. Dette betyr at svaret er 1,

8 Eksempel: For å regne ut ,0002 ber du lommeregneren om 6, ved å taste 6.7E9*2E-4. Tegnet «E» får du ved å trykke på tasten «EE». 2.8 Potenser og n-terøtter Lommeregneren har en egen knapp for potens, nemlig. Vi regner ut 2 5 ved å taste 2 5. For å taste inn negative eksponenter, bruker du fortegnsminuset «(-)». Vi regner ut 2 5 ved å taste 2 ( )5. Brøkeksponenter tastes inn med parenteser om eksponenten. Vi regner ut ved å taste 2 (2/3). Lommeregneren har dessuten en egen knapp for andre potens, som er merket med x 2. For å regne ut n-terøtter, bruker vi x, som vi finner ved å trykke på MATH. Eksempel: For å beregne 5 7,34, taster vi først 5, deretter MATH og velger x og skriver inn 7,34. Når vi trykker ENTER, får vi: 8

9 3 Funksjoner 3.1 Tegning av grafer for hånd Når du tegner grafer for hånd, kan det være greit å bruke lommeregneren til å regne ut en verditabell. Først legger vi inn funksjonsuttrykket. Vi taster Y= og taster funksjonsuttrykket inn på en av y-variablene. For å taste x, trykker vi på knappen X, T, Θ, n. Om vi for eksempel skal arbeide med funksjonen f(x) = x x , ser det slik ut på lommeregneren: Nå stiller vi inn hvordan vi vil ha tabellen. Vi trykker på TBLSET. Vi skriver inn startverdien for på TblStart og hvor store sprang vi vil ha i tabellen på Tbl. Indpnt og Depend lar vi stå på Auto. Det varierer fra oppgave til oppgave hvor store sprang det er hensiktsmessig å bruke. Skal vi tegne grafen for x mellom 10 og 10, lar vi Tbl være 1. Dersom vi skal tegne grafen for x mellom 0 og , lar vi sprangene være I vårt eksempel, med f(x) = x x , passer det fint å bruke Tbl være 100. Da ser det slik ut. Til slutt trykker vi på TABLE og får opp tabellen: Når vi beveger oss i tabellen med oppover- eller nedoverpil, får se hvordan tabellen fortsetter. Ønsker du selv å bestemme hvilke x-verdier som skal inngå i verditabellen, setter du Indpnt til Ask i TBLSET. I tabellen taster du så inn de x-verdiene du ønsker. Her har vi tastet inn x lik 100, 150, 200 og

10 Når vi så har laget verditabellen, merker vi av punktene i et koordinatsystem og tegner en glatt kurve gjennom dem y x 3.2 Tegning av rett linje på lommeregneren Vi skal tegne grafen til en rett linje y = ax + b på lommeregneren. Først legger vi funksjonsuttrykket for linja inn på «Y=»-knappen. Deretter lager vi verditabell slik det er beskrevet i avsnitt 3.1 på side 9. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. Verditabellen bruker vi til å stille vinduet riktig. Eksempel: Vi skal tegne linja K = 2x Vi går på «Y=». Der taster vi inn 2x Da ser det slik ut: Så lager vi verditabell for x [0, 3000]: Altså må vi la x gå fra 0 til 3000 og y fra 0 til Da blir vindusinnstillingene disse: 10

11 Grafen blir slik: 3.3 Tegning av grafer på lommeregneren Vi skal tegne grafen til en funksjon f(x) på lommeregneren. Ut fra funksjonens definisjonsmengde lager vi verditabell slik det er beskrevet i avsnitt 3.1 på side 9. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. Som eksempel, skal vi nå tegne grafen til f(x) = 0,0001x 2 + 0,45x 200. Først legger vi inn funksjonsuttrykket. Vi taster Y= og taster funksjonsuttrykket inn på en av y-variablene. For å taste x, trykker vi på knappen X, T, Θ, n. Vi trykker på TBLSET og lar tabellen gå fra 0 og øke med Om vi trykker på TABLE, får vi opp verditabellen. Vi ser av tabellen at om vi lar x gå fra 0 til 5000, må y være mellom 500 og 350. Vi trykker på WINDOW og taster inn minste og største verdi for x og y. 11

12 Nå trykker vi på GRAPH og får tegnet grafen. Dersom du vil forstørre eller forminske grafen, kan du trykke på WINDOW og endre vindusinstillingene. Det er også mulig å trykke på ZOOM og bruke en av funksjonene der. 3.4 Utregninger på grafen For instruksjonene nedenfor antar vi at vi har tegnet grafen til funksjonen vi undersøker på lommeregneren Finne y når du kjenner x Om vi skal finne funksjonsverdien av en bestemt verdi av x, kan vi trykke CALC, velge value og taste inn x-verdien. Eksempel: Vi har tegnet grafen til funksjonen f(x) = 0,001x 3 + 0,09x med x mellom 0 og 60. Vi regner ut f(10) ved å trykke på CALC, velge value og taste inn 10. Grafen viser at f(10) = Finne x når du kjenner y Om vi skal finne hvilken x-verdi som svarer til en bestemt y-verdi, legger vi y- verdien inn på Y= og finner skjæringspunktet. 12

13 Eksempel: Vi har tegnet grafen til funksjonen f(x) = 0,0025x 3 + 0,075x Vi skal finne når f(x) oppnår verdien 4,1. Da trykker vi på Y= og legger inn 4,1 på Y 2. Om vi nå trykker på GRAPH, får vi: Deretter trykker vi CALC og velger intersect. Vi godtar den første kurven med EN- TER. Vi godtar den andre kurven med ENTER. Vi flytter markøren med piltastene slik at den er like ved skjæringspunktet. Så godtar vi Guess med ENTER. Lommeregneren oppgir her at funksjonen har verdien 4,1 når x er ca. 7,4. Dersom det er flere punkter på grafen med denne y-verdien, gjentar du prosessen Nullpunkter For å finne nullpunktet til en funksjon vi har tegnet på lommeregneren, trykker vi CALC og velger zero. Eksempel: La f(x) = 0,5x 3 + 2x 2 + 3x 6. Vi skal finne nullpunktene. Vi har tegnet grafen til f for x [ 4, 7]. Vi trykker CALC og velger zero. Så bruker vi piltastene og flytter markøren litt til venstre for et mullpunkt. Vi godtar left bound med ENTER. Så flytter vi markøren litt til høyre for nullpunktet. Vi godtar right bound med ENTER. Vi flytter markøren til litt nærmere nullpunktet og godtar guess med ENTER. Lommeregneren oppgir her at grafen har nullpunkt når x er 2. Når det er flere nullpunkter, gjentar du prosessen. 13

14 3.4.4 Topp- og bunnpunkter Vi finner toppunkter og minimumspunkter ved å trykke CALC og velge maximum for toppunkt eller minimum for bunnpunkt. Eksempel: La O(x) = x x Vi har tegnet grafen til O(x) for x [0, 750] med y [ , ]. Vi skal finne toppunktet. Vi trykker CALC og velger maximum. Vi bruker piltastene og flytter markøren litt til venstre for toppunktet. Vi godtar left bound med ENTER. Så flytter vi markøren litt til høyre for toppunktet. Vi godtar right bound med ENTER. Tilslutt godtar vi guess med ENTER. Da ser det slik ut: Her oppgir lommeregneren at bunnpunktet er omtrent (390, 97100) Dersom det er flere toppunkter, gjentar du prosessen. For å finne bunnpunkter, gjør du som for toppunkter, men trykker CALC og velger minimum i stedet for maximum Skjæringspunkter mellom grafer Skjæringspunkter mellom to grafer finner vi ved å trykke CALC og velge intersect. Eksempel: Vi skal finne skjæringspunktene mellom K = 2x og I = 6x. Vi legger funksjonsuttrykkene inn i Y 1 og Y 2. Vi lar x gå fra 0 til 3000 og y fra 0 til og tegner grafen: Så trykker vi CALC og velger intersect. Vi godtar den første kurven med ENTER. Vi godtar den andre kurven med ENTER. Vi flytter markøren med piltastene slik at den er like ved et skjæringspunkt. Så godtar vi Guess med ENTER. Da ser det slik ut: 14

15 Lommeregneren oppgir her at det venstre skjæringspunktet for de to grafene er (2000, ). Dersom det er flere skjæringspunkter, gjentar du prosessen. 4 Lineær regresjon 4.1 Enkel regresjon uten graf For å legge inn en tabell til regresjon, taster du STAT og velger Edit. Legg inn x-verdiene i L 1 og y-verdiene i L 2. Eksempel: Denne verditabellen x y ser slik ut på lommeregneren: For å slette en enkelt oppføring, setter du markøren over den og trykker på DEL. For å slette hele lista, går du til tittelfeltet, taster ENTER, CLEAR og ENTER. Når vi har lagt inn begge listene, taster vi STAT, velger CALC og velger LinReg(ax+ b). Da får vi denne: Dette betyr at regresjonslinja er y = 27,9x + 868,3. Verdien av r og r 2 er et mål på hvor god regresjonen er. Jo nærmere 1 eller 1 verdiene er, jo bedre er regresjonen. 4.2 Regresjon med tegning av graf Lommeregneren kan også legge punktene inn i et koordinatsystem og tegne regresjonslinja i samme koordinatsystem. Først legger du inn verditabellen, jfr. avsnitt 4.1 på side 15. Deretter trykker du STAT PLOT og velger nummer 1. Velg On. Da skal det se slik ut: 15

16 Deretter stiller du vinduet så det passer med datasettet. Det kan være lurt å velge litt større område enn verditabellen omfatter, slik at vi tydelig får se alle punktene. I vårt eksempel passer det å la x gå fra 1 til 20 og y fra 0 til 900. Hvis vi ønsker det, kan vi også sette skalaen på aksene litt større, slik at det passer med dataene. Her har vi satt skalaen på y-aksen til å gi merke for hver 100. WINDOW ser da slik ut: Når vi nå trykker på GRAPH, blir tallparene lagt inn i koordinatsystemet. Nå trykker vi på STAT, velger CALC og velger LinReg(ax + b). Deretter taster vi inn «L 1, L 2, Y 1» og trykker ENTER. L 1, L 2 finner vi med 2nd på 1- og 2-tallet. Y 1 får vi å trykke VARS, velge Y-VARS, Function og så Y 1. Lommeregneren viser resultatet av regresjonen. Funksjonen er nå lagt inn i Y 1. Trykker vi nå på GRAPH, får vi tegnet regresjonslinja i samme koordinatsystem. Advarsel! Når du er ferdig, trykker du på STAT PLOT, velger 1 og så Off. Hvis du glemmer dette, kan du få feilmeldinger når du tegner grafer seinere. 16

17 5 Sannsynlighetsregning 5.1 Simulering Ved å trykke MATH og gå til PRB-menyen, finner du funksjonene rand og randint. Funksjonen rand gir et tilfeldig tall mellom 0 og 1. Funksjonen randint(x, y) gir deg et tilfeldig heltall som er større eller lik x og mindre enn eller lik y. Det er mulig å bruke dette til å simulere enkle uniforme modeller. Eksempel: Vi skal simulere terningkast. Trykk MATH, gå til PRB og velg randint. Tast inn 1, så et komma, nemlig det som ligger til venstre for venstre parentes og så 6. Hvert nytt trykk på ENTER gir oss et tilfeldig tall mellom 1 og 6. På TI-84 Plus finner du i tillegg programmet «Prob Sim» når du har trykket på APPS. Dette kan brukes til å simulere myntkast, terningkast, rulett, trekking av kort og trekking av kuler fra pose. 6 Økonomi En Casio fx-9860 egner seg ikke veldig godt til å arbeide med regneark på. Vi anbefaler at du i stedet bruker et regnearkprogram på en datamaskin. 17

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger.

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger. ON Lommeregnerstoff Texas 4.1 Rette linjer Her viser vi hvordan vi går fram for å få tegnet linja med likningen y = 2x 3 Vi trykker på Y= og legger inn likningen som vist nedenfor. Nå må vi velge vindu.

Detaljer

Graftegning på lommeregneren

Graftegning på lommeregneren Graftegning på lommeregneren Vi starter med å tegne grafen til fx ( )= 05, x 3 2x 2 +2på lommeregneren for x-verdier mellom 2 og 5. Kontroller grunninnstillingene Før du starter, er det lurt å kontrollere

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 4 1.1 Tilleggspakker................................. 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet e......................................

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 5 1.1 Tilleggspakker................................. 5 2 Regning 6 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Potenser.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen.

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen. Kapittel 13: Tabeller 13 Oversikt over tabeller... 222 Oversikt over fremgangsmåten for å generere en en tabell... 223 Velge tabellparametre... 224 Vise en automatisk tabell... 226 Bygge en manuell tabell

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MX etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK av samme forfatter. Mål og hovedmomenter 1 2 Mål 3:

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Funksjoner og grafiske løsninger

Funksjoner og grafiske løsninger 8 1 Funksjoner og grafiske løsninger Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma S1. TI-Nspire CAS

Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma S1. TI-Nspire CAS Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

GeoGebra-opplæring i Matematikk 2P

GeoGebra-opplæring i Matematikk 2P GeoGebra-opplæring i Matematikk 2P Emne Underkapittel Graftegning 2.1 Linje gjennom to punkter 2.1 Å finne y- og x-verdier 2.1 Lineær regresjon 2.3 Andregradsfunksjoner 2.4 Polynomregresjon 2.4 Eksponential-

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator... 1 Enkel kalkulator... 2 Regneuttrykk uten parenteser... 2 Bruker kalkulatoren riktig regnerekkefølge?... 2 Negative tall... 3 Regneuttrykk

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

GEOGEBRA (Versjon 5.0.150.12.september 2015)

GEOGEBRA (Versjon 5.0.150.12.september 2015) 1 INNFØRING GEOGEBRA (Versjon 5.0.150.12.september 2015) Østerås 12. september 2015 Odd Heir 2 Innhold Side 3-10 Innføring i GeoGebra 10-12 Utskrift 12-13 Overføring til Word 13-15 Nyttige tips 15-16 Stolpediagram

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Koordinatene til origo er (0, 0). b Vi leser av førstekoordinaten langs x-aksen og andrekoordinaten langs y-aksen for

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Grafer og funksjoner

Grafer og funksjoner Grafer og funksjoner Fredrik Meyer Sammendrag Vi går raskt igjennom definisjonen på hva en funksjon er. Vi innfører også begrepet førstegradsfunksjon. Det forutsettes at du husker hva et koordinatsystem

Detaljer

Tall og formler MÅL. for opplæringen er at eleven skal kunne

Tall og formler MÅL. for opplæringen er at eleven skal kunne 8 1 Tall og formler MÅL for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene tolke, bearbeide, vurdere

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal

Veiledning og oppgaver til OpenOffice Calc. Regneark 1. Grunnskolen i Nittedal Veiledning og oppgaver til OpenOffice Calc Regneark 1 Grunnskolen i Nittedal Regneark 1 Når du er ferdig med heftet skal du kunne: Vite hva et regneark er. Oppstart og avslutning av OpenOffice Calc. Flytting

Detaljer

Kapittel 8. Potensregning og tall på standardform

Kapittel 8. Potensregning og tall på standardform Kapittel 8. Potensregning og tall på standardform I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Standardform er en metode som er nyttig for raskt å kunne skrive

Detaljer

Tema. Beskrivelse. Husk!

Tema. Beskrivelse. Husk! Dette er ment som en hjelpeoversikt når du bruker boka til å repetisjon. Bruk Sammendrag etter hvert kapittel som hjelp. Verktøykassen fra side 272 i boka er og til stor hjelp for repetisjon til terminprøve.

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka

S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka S1 kapittel 5 Funksjoner Løsninger til oppgavene i boka 5.1 a f( x) = 4x+ 0 I GeoGebra skriver vi f(x)=funksjon[-4x+0,-5,5]. Grafen viser at [ 0, 40] V =. f b gx ( ) =,5x+ 10 I GeoGebra skriver vi f(x)=funksjon[,5x+10,-10,4].

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Kapittel 1. Tallregning

Kapittel 1. Tallregning Kapittel 1. Tallregning Regning med tall er grunnlaget for mer avansert matematikk. I dette kapitlet repeteres følgende fra grunnskolen: Brøkregning Desimaltall Regning med positive og negative tall Potenser

Detaljer

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte.

Del 2 skal leveres inn etter 5 timer. verktøy som tillater kommunikasjon. framgangsmåte. Eksamen.05.009 REA306 Matematikk S1 Nynorsk/Bokmål Bokmål Eksamensinformasjon Eksamenstid: Hjelpemidler på Del 1: Hjelpemidler på Del : Bruk av kilder: Vedlegg: Framgangsmåte: Veiledning om vurderingen:

Detaljer

S1 Eksamen høst 2009 Løsning

S1 Eksamen høst 2009 Løsning S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Eksempelsett 2P, Høsten 2010

Eksempelsett 2P, Høsten 2010 Eksempelsett 2P, Høsten 2010 Del 1 Tid: 2 timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 (4 poeng) Grete og Per fyller etanol i et beger.

Detaljer

Oppsummering om hva som kreves ved bruk av digitale verktøy

Oppsummering om hva som kreves ved bruk av digitale verktøy 1 Oppsummering om hva som kreves ved bruk av digitale verktøy Graftegner Det skal gå klart fram av den grafiske framstillingen hvilken skala og hvilken enhet som er brukt, på hver av aksene. Det er en

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning.

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning. 01.05.98 TEXAS INSTRUMENTS Eystein Raude, EMC eraude@c2i.net MATEMATIKK MED TI-83 GrunnKurs på AF/ØK/ADstudieretning. Eystein Raude Texas Instruments Kjære bruker av TI-83. Matematikk er både en vitenskap

Detaljer

Det digitale verktøyet. Matematikk 1T. Kristen Nastad

Det digitale verktøyet. Matematikk 1T. Kristen Nastad Det digitale verktøyet og Matematikk 1T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2409 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows og Aschehougs

Detaljer

Matematikk 2P. det digitale verktøyet. Kristen Nastad

Matematikk 2P. det digitale verktøyet. Kristen Nastad Matematikk 2P og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9

Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016. Side 1 av 9 Sandefjordskolen BREIDABLIKK UNGDOMSSKOLE ÅRSPLAN FOR FORESATTE I MATEMATIKK 9.TRINN SKOLEÅR 2015-2016 Side 1 av 9 Periode 1: UKE 34-UKE 39 Tema: Statistikk gjennomføre undersøkelser og bruke databaser

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2 4 oppgave. a..i) 3 x = 7 x ln 3 = ln 7 ln 7 x = ln 3 x = 3. a..ii) 0 x = 0 x log(0 x ) = log(0 x ) x = x x(x )=0 x = 0 x =.3 a..i) Kvadrerer x +3= x +3= x = Setterikkeprøve,forjegseratsvareterriktig,menhuskåsetteprøvepå

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

Kapittel 1. Potensregning

Kapittel 1. Potensregning Kapittel. Potensregning I potensregning skriver vi tall som potenser og forenkler uttrykk som inneholder potenser. Dette kapitlet handler blant annet om: Betydningen av potenser som har negativ eksponent

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

12 Vekst. Areal under grafer

12 Vekst. Areal under grafer MATEMATIKK: 2 Vekst. Areal under grafer 2 Vekst. Areal under grafer 2. Stigningstall og gjennomsnittlig vekst I kapitlene 8 og 0 viste vi hvordan vi kunne regne ut stigningen til en rett linje eller lineær

Detaljer