Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T TI-84"

Transkript

1 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84

2 Innhold 1 Innstillinger 4 2 Regning Regnerekkefølge Tallet π Minne Parenteser Brøk Store og små tall Sinus, cosinus og tangens Potenser og n-terøtter Logaritmer Funksjoner Tegning av grafer for hånd Tegning av grafer på lommeregneren Finne minste avstand Utregninger på grafen Finne y når du kjenner x Finne x når du kjenner y Nullpunkter Topp- og bunnpunkter Skjæringspunkter mellom grafer Derivert Tangent Lineær regresjon Enkel regresjon uten graf Regresjon med tegning av graf Likninger Andregradslikninger Tredjegradslikninger Lineære likningssett med to ukjente Lineære likningssett med tre ukjente Sannsynlighetsregning Simulering

3 Innledning Dette heftet er ment som en beskrivelse av lommeregneren TI 84 som digitalt verktøy i undervisningen i faget «Matematikk Vg1T», studieforbedredende utdanningsprogram. Heftet er tilpasset læreverket Sigma matematikk, Gyldendal Undervisning, og inneholder referanser til framstillingen der. Henvisninger fra boka Følgende er en oversikt over de sidetallene i læreboka som har referanse til digitale verktøy. Lista gir deg en oversikt over hvilket avsnitt i dette heftet som omhandler det aktuelle emnet i læreboka. Henvisningene refererer til sidetall i Sigma matematikk1t, 3. utgave, Gyldendal Undervisning, I den elektroniske utgaven av heftet er referansene klikkbare. Sidetall i læreboka Emne Avsnitt i dette heftet Side 10 Tallregning 2 Side 14 Regnerekkefølge 2.1 Side 68 Likningssett 5.3 Side 72 Regresjon 4 Side 90 Potenser 2.8 Side 92 Negative potenser 2.8 Side 94 Lese standardform 2.6 Side 95 Taste inn standardform 2.6 Side 96 N-terot 2.8 Side 98 Brøkeksponent 2.8 Side 99 Lage verditabell 3.1 Side 100 Logaritmer 2.9 Side 175 Andregradslikning 5.1 Side 208 Sinus, cosinus, tangens 2.7 Side 212 Inversfunksjonene 2.7 Side 253 Tegne graf 3.2 Side 256 Minste avstand 3.3 Side 276 Informasjon fra grafer 3.4 Side 279 Regne ut funksjonsverdi Side 280 Regne ut den deriverte Side 285 Finne tangent 3.5 3

4 1 Innstillinger Lommeregneren som blir beskrives her er denne: Legg merke til at du trykker på 2ND for å velge det som står skrevet over kappene, på vestre side. Du trykker ALPHA for å velge det som står skrevet over knappene på høyre side. Heretter angir vi vanligvis ikke når skal trykke 2ND og ALPHA. Før du begynner å bruke lommeregneren, stiller du den inn så den passer til det du skal gjøre. Tast MODE og gjør følgende innstillinger: Hvis innstillingene dine ikke stemmer, bruker du piltastene, flytter markøren til riktig felt og trykker ENTER. Avslutt med QUIT. 4

5 2 Regning 2.1 Regnerekkefølge Regnerekkefølgen er lagt inn i lommeregneren. Så vi kan taste rett inn slik det står. Utregningen taster vi inn som det står og avslutter med ENTER. Legg merke til at lommeregneren har en egen knapp for potens, nemlig. Dersom vi skal omgå regnerekkefølgen, må vi angi ønsket rekkefølge med parenteser, som for eksempel i utregningen 7 ( ( 3)) 2, som tastes inn slik: Lommeregneren har to typer minustegn, nemlig fortegnsminus, «(-)» og regneminus,. I utregningen er det første minustegnet et fortegnsminus, «(-)». For 2 2 skal ikke trekkes fra noe tall. Det andre minustegnet, derimot, forteller at 4 skal trekkes fra resultatet av Tallet π Lommeregneren har egen tast for π, som vi bruker i stedet for det unøyaktige 3, Minne Lommeregneren har en minnefunksjon, slik at du enkelt kan bruke tall du har kommet fram til tidligere. Alle svar lagres automatisk i det midlertidige minnet Ans, en forkorting for «answer». La oss si at du har regnet ut (4 + 5) 2 3 og fått 72. Om du så taster π og trykker på enter, vil lommeregneren multiplisere det forrige svaret du fikk, nemlig 72, med π. 5

6 Om du vil bruke det siste svaret inni en utregning, taster du ANS. I tillegg til ANS, fungerer alle bokstaver på lommeregneren som minne. Du legger tall inn i minnet ved å taste STO>, deretter ALPHA og så bokstaven. Du bruker tallet i minnet ved å taste ALPHA og så bokstaven. Slik ser det ut om vi legger 2 og 71 inn i minnene A og B og så regner ut A B og får Parenteser Når vi skriver for hånd, skriver vi ofte brøker og kvadratrottegn uten parenteser, da vi er enige om hvordan de skal regnes ut. For eksempel er = 12 6 = 2 Dersom vi vil regne ut svaret uten mellomregning på lommeregneren, må vi hjelpe til med å slå parenteser om telleren og nevneren. Mange av funksjonene på lommeregneren er slik at når vi trykker på knappen, får vi automatisk venstreparentes. Vi avslutter parentesen slik det passer. Skal vi for eksempel regne ut , taster vi (5 + 20) + 3: 2.5 Brøk Brøker taster du inn med vanlig deletegn i stedet for brøkstrek. Pass på å slå parenteser om telleren og nevneren dersom de består av flere ledd. Svaret blir oppgitt som desimaltall. Dersom du vil ha svaret i brøk, taster du MATH og velger «FRAC». 6

7 Skal vi for eksempel regne ut slår vi parenteser om den første telleren og den siste nevneren og får: Ved utregning av brudden brøk er det også nødvendig å bruke parenteser. Skal vi regne ut brøken taster vi det inn med parenteser rundt telleren og nevneren i hovedbrøken. 2.6 Store og små tall Lommeregneren har plass til 10 sifre i vinduet. Når du regner med et tall hvor du trenger flere sifre, brukes standardform. Lommeregneren skriver 2E3 for For å regne ut ,0002 ber du lommeregneren om 6, ved å taste 6.7E9*2E-4. Tegnet «E» får du ved å trykke på tasten «EE». 2.7 Sinus, cosinus og tangens De trigonometriske funksjonene har egne knapper, SIN, COS og TAN, For å finne sin 45, taster du rett inn SIN 45. Altså er sin 45 = For å finne hvilken vinkel som har cosinus-verdi 1 2, taster vi cos 1 (1/2). 7

8 Altså vet vi at cos 60 = 1 2. Når vi arbeider med sinus, cosinus og tangens, er det viktig at lommeregneren er stilt inn på grader («Degree»), se avsnitt 1 på side Potenser og n-terøtter For å regne ut n-terøtter, bruker vi x, som vi finner ved å trykke på MATH. Eksempel: For å beregne 5 7,34, taster vi først 5, deretter MATH og velger x og skriver inn 7,34. Når vi trykker ENTER, får vi: Lommeregneren har en egen knapp for potens, nemlig. Vi regner ut 2 5 ved å taste 2 5. For å taste inn negative eksponenter, bruker du fortegnsminuset «(-)». Vi regner ut 2 5 ved å taste 2 ( )5. Brøkeksponenter tastes inn med parenteser om eksponenten. Vi regner ut ved å taste 2 (2/3). Lommeregneren har dessuten en egen knapp for andre potens, som er merket med x Logaritmer Logaritmer med grunntall 10 har en egen knapp, nemlig LOG. Så vi finner lg 25 ved å taste LOG 25. 8

9 3 Funksjoner 3.1 Tegning av grafer for hånd Når du tegner grafer for hånd, kan det være greit å bruke lommeregneren til å regne ut en verditabell. Først legger vi inn funksjonsuttrykket. Vi taster Y= og taster funksjonsuttrykket inn på en av y-variablene. For å taste x, trykker vi på knappen X, T, Θ, n. Om vi for eksempel skal arbeide med funksjonen f(x) = 0,023 x 1,7, ser det slik ut på lommeregneren: Nå stiller vi inn hvordan vi vil ha tabellen. Vi trykker på TBLSET. Vi skriver inn startverdien for på TblStart og hvor store sprang vi vil ha i tabellen på Tbl. Indpnt og Depend lar vi stå på Auto. Det varierer fra oppgave til oppgave hvor store sprang det er hensiktsmessig å bruke. Skal vi tegne grafen for x mellom 10 og 10, lar vi Tbl være 1. Dersom vi skal tegne grafen for x mellom 0 og , lar vi sprangene være I vårt eksempel, med f(x) = 0,023 x 1,7, passer det fint å bruke Tbl være 5. Da ser det slik ut. Til slutt trykker vi på TABLE og får opp tabellen: Når vi beveger oss i tabellen med oppover- eller nedoverpil, får se hvordan tabellen fortsetter. Ønsker du selv å bestemme hvilke x-verdier som skal inngå i verditabellen, setter du Indpnt til Ask i TBLSET. I tabellen taster du så inn de x-verdiene du ønsker. Her har vi tastet inn x lik 0, 2, 8 og 15. Når vi så har laget verditabellen, merker vi av punktene i et koordinatsystem og tegner en glatt kurve gjennom dem. 9

10 Tegning av grafer på lommeregneren Vi skal tegne grafen til en funksjon f(x) på lommeregneren. Ut fra funksjonens definisjonsmengde lager vi verditabell slik det er beskrevet i avsnitt 3.1 på side 9. Det hender oppgaven ber oss om et spesifikt intervall for x. I så fall bruker vi det. Som eksempel, skal vi nå tegne grafen til f(x) = 15. Først legger vi inn funksjonsuttrykket. Vi taster Y= og taster funksjonsuttrykket inn på en av y-variablene. For x å taste x, trykker vi på knappen X, T, Θ, n. Vi trykker på TBLSET og lar tabellen øke med 2. Om vi trykker på TABLE, får vi opp verditabellen. Siden x = 0 gir null i nevneren, får vi ERROR for den x-verdien. Vi ser av tabellen at om vi lar x gå fra 0 til 15, må y være mellom 0 og 15. Vi trykker på WINDOW og taster inn minste og største verdi for x og y. 10

11 Nå trykker vi på GRAPH og får tegnet grafen. Dersom du vil forstørre eller forminske grafen, kan du trykke på WINDOW og endre vindusinstillingene. Det er også mulig å trykke på ZOOM og bruke en av funksjonene der. Dersom vi i eksempelet ovenfor ønsker å se nærmere på den delen av grafen hvor y er mindre enn 7 og x er mindre enn 5, endrer vi vinduet tilsvarende og får: 3.3 Finne minste avstand Den minste avstanden mellom to punkter kan vi finne ved å lage en funksjon f(x) som regner avstanden mellom punktene og så finne den minste verdien til denne funksjonen. I eksempel 13 på side 256 i læreboka har vi funnet avstanden fra A til B innom P som funksjonen f(x) = x (400 x) Vi finner minste funksjonsverdi ved å finne bunnpunktet som beskrevet i avsnitt nedenfor. 3.4 Utregninger på grafen For instruksjonene nedenfor antar vi at vi har tegnet grafen til funksjonen vi undersøker på lommeregneren. 11

12 3.4.1 Finne y når du kjenner x Om vi skal finne funksjonsverdien av en bestemt verdi av x, kan vi trykke CALC, velge value og taste inn x-verdien. Eksempel: Vi har tegnet grafen til funksjonen f(x) = 0,001x 3 + 0,09x med x mellom 0 og 60. Vi regner ut f(10) ved å trykke på CALC, velge value og taste inn 10. Grafen viser at f(10) = Finne x når du kjenner y Om vi skal finne hvilken x-verdi som svarer til en bestemt y-verdi, legger vi y- verdien inn på Y= og finner skjæringspunktet. Eksempel: Vi har tegnet grafen til funksjonen f(x) = 0,0025x 3 + 0,075x Vi skal finne når f(x) oppnår verdien 4,1. Da trykker vi på Y= og legger inn 4,1 på Y 2. Om vi nå trykker på GRAPH, får vi: Deretter trykker vi CALC og velger intersect. Vi godtar den første kurven med EN- TER. Vi godtar den andre kurven med ENTER. Vi flytter markøren med piltastene slik at den er like ved skjæringspunktet. Så godtar vi Guess med ENTER. Lommeregneren oppgir her at funksjonen har verdien 4,1 når x er ca. 7,4. Dersom det er flere punkter på grafen med denne y-verdien, gjentar du prosessen. 12

13 3.4.3 Nullpunkter For å finne nullpunktet til en funksjon vi har tegnet på lommeregneren, trykker vi CALC og velger zero. Eksempel: La f(x) = 0,5x 3 + 2x 2 + 3x 6. Vi skal finne nullpunktene. Vi har tegnet grafen til f for x [ 4, 7]. Vi trykker CALC og velger zero. Så bruker vi piltastene og flytter markøren litt til venstre for et mullpunkt. Vi godtar left bound med ENTER. Så flytter vi markøren litt til høyre for nullpunktet. Vi godtar right bound med ENTER. Vi flytter markøren til litt nærmere nullpunktet og godtar guess med ENTER. Lommeregneren oppgir her at grafen har nullpunkt når x er 2. Når det er flere nullpunkter, gjentar du prosessen Topp- og bunnpunkter Vi finner toppunkter og minimumspunkter ved å trykke CALC og velge maximum for toppunkt eller minimum for bunnpunkt. Eksempel: La f(x) = 0,5x 3 + 2x 2 + 3x 6. Vi har tegnet grafen til f for x [ 4, 7]. Vi skal finne topp- og bunnpunkter. Vi trykker CALC og velger minimum for å finne bunnpunktet. Vi bruker piltastene og flytter markøren litt til venstre for bunnpunktet. Vi godtar left bound med ENTER. Så flytter vi markøren litt til høyre for bunnpunktet. Vi godtar right bound med ENTER. Tilslutt godtar vi guess med ENTER. Da ser det slik ut: Her oppgir lommeregneren at bunnpunktet er omtrent ( 0,61, 6,97). Dersom det er flere bunnpunkter, gjentar du prosessen. For å finne toppunkter, gjør du som for bunnpunkter, men trykker CALC og velger maximum i stedet for minimum. Da får vi 13

14 Her oppgir lommeregneren at toppunktet er omtrent (3,28, 7,71) Skjæringspunkter mellom grafer Skjæringspunkter mellom to grafer finner vi ved å trykke CALC og velge intersect. Eksempel: Vi skal finne skjæringspunktene mellom f(x) = 0,5x 3 + 2x 2 + 3x 6 og g(x) = x + 2. Vi legger funksjonsuttrykkene inn i Y 1 og Y 2. Så trykker vi CALC og velger intersect. Vi godtar den første kurven med ENTER. Vi godtar den andre kurven med ENTER. Vi flytter markøren med piltastene slik at den er like ved et skjæringspunkt. Så godtar vi Guess med ENTER. Da ser det slik ut: Lommeregneren oppgir her at det venstre skjæringspunktet for de to grafene er ( 2, 0). Dersom det er flere skjæringspunkter, gjentar du prosessen Derivert Om du har tegnet grafen til en funksjon og så skal finne den deriverte i et punkt, kan du taste CALC, velge dy/dx og taste inn x-verdien. Eksempel: Vi har tegnet grafen til funksjonen f(x) = 0,001x 3 + 0,09x for x [0, 60]. Vi skal finne den deriverte når x = 10, altså f (10). Vi trykker på CALC, velger dy/dx og taster 10. Da ser det slik ut: Dette betyr at f (10) = 1,5. 14

15 Det går også an å regne ut den deriverte til en funksjon uten å tegne grafen. Du må være i regnevinduet. Tast MATH og velg nderiv. Tast først funksjonsuttrykket, så et komma, nemlig det som ligger til venstre for venstre parentes, deretter X, nytt komma og så x-verdien. Eksempelet over, f (10), blir da slik: Resultatet i dette eksempelet blir det samme, nemlig f (10) = 1, Tangent For å tegne og finne likningen til en tangent til en funksjon, tegner vi funksjonen, trykker DRAW, velger Tangent og taster inn x-verdien. Eksempel: La f være funksjonen f(x) = x 2 4x+5. Vi tegner grafen til f på lommeregneren med x [0, 4]. For å finne tangenten til f når x = 1, trykker vi på DRAW. Så velger vi Tangent, taster 1 og trykker ENTER. Da får vi dette: Lommeregneren tegner tangenten og viser at likningen til tangenten er y = 2x+4. Legg merke til at lommeregneren alltid skriver + foran konstantleddet, slik at negative konstantledd skrives med først et plusstegn, så et minustegn. 4 Lineær regresjon 4.1 Enkel regresjon uten graf For å legge inn en tabell til regresjon, taster du STAT og velger Edit. Legg inn x-verdiene i L 1 og y-verdiene i L 2. Denne verditabellen: ser slik ut på lommeregneren: x y

16 For å slette en enkelt oppføring, setter du markøren over den og trykker på DEL. For å slette hele lista, går du til tittelfeltet, taster ENTER, CLEAR og ENTER. Når vi har lagt inn begge listene, taster vi STAT, velger CALC og velger LinReg(ax+ b). Da får vi denne: Dette betyr at regresjonslinja er y = 28,6x + 582,8. Verdien av r og r 2 er et mål på hvor god regresjonen er. Jo nærmere 1 eller 1 verdiene er, jo bedre er regresjonen. 4.2 Regresjon med tegning av graf Lommeregneren kan også legge punktene inn i et koordinatsystem og tegne regresjonslinja i samme koordinatsystem. Først legger du inn verditabellen, jfr. avsnitt 4.1 på side 15. Deretter trykker du STAT PLOT og velger nummer 1. Velg On. Da skal det se slik ut: Deretter stiller du vinduet så det passer med datasettet. Det kan være lurt å velge litt større område enn verditabellen omfatter, slik at vi tydelig får se alle punktene. I vårt eksempel passer det å la x gå fra 15 til 10 og y fra 0 til 900. Hvis vi ønsker det, kan vi også sette skalaen på aksene litt større, slik at det passer med dataene. Her har vi satt skalaen på y-aksen til å gi merke for hver 100. WINDOW ser da slik ut: Når vi nå trykker på GRAPH, blir tallparene lagt inn i koordinatsystemet. 16

17 Nå trykker vi på STAT, velger CALC og velger LinReg(ax + b). Deretter taster vi inn «L 1, L 2, Y 1» og trykker ENTER. L 1, L 2 finner vi med 2nd på 1- og 2-tallet. Y 1 får vi å trykke VARS, velge Y-VARS, Function og så Y 1. Lommeregneren viser resultatet av regresjonen. Funksjonen er nå lagt inn i Y 1. Trykker vi nå på GRAPH, får vi tegnet regresjonslinja i samme koordinatsystem. Advarsel! Når du er ferdig, trykker du på STAT PLOT, velger 1 og så Off. Hvis du glemmer dette, kan du få feilmeldinger når du tegner grafer seinere. 5 Likninger Programmer til nedlasting Lommeregnerens funksjoner kan utvides ved å installere flere programmer. Aktuelle programmer kan lastes ned blant annet fra s nettsider ( og Texas Instruments ( ti.com/). Programmer installeres på lommeregneren fra en datamaskin med egnet programvare. Programvaren kan lastes ned fra Texas Instruments. Datamaskin og lommeregner kobles sammen med en vanlig USB-kabel (USB A til USB mini-b). 5.1 Andregradslikninger Fra s nettsider kan du laste ned programmet ANDREGRL, som løser andregradslikninger. 17

18 For å løse andregradslikninger, skriver du dem på formen ax 2 + bx + c = 0 og taster inn koeffisientene a, b og c. Eksempel: Vi løser likningen 1,2388x 2 + 3,423x 4 3 = 0 Trykk på PRGRM og velg ANDREGRL. Tast inn a = 1,2388, b = 3,423 og c = 4 3. Når du så trykker ENTER, får du løsningen. Altså er løsningen x = 0,47 eller x = 2, Tredjegradslikninger Fra s nettsider kan du laste ned programmet TREDJEGR, som løser tredjegradslikninger. Programmet virker på samme måte som programmet for andregradslikninger. Først skriver du om likningen på formen ax 3 + bx 2 + cx + d = 0 Deretter taster du koeffisientene a, b, c og d inn i programmet. Eksempel: Vi løser tredjegradslikningen 3x 3 x 2 12x + 4 = 0 Trykk på PRGM og velg TREDJEGR. Tast inn a = 3, b = 1, c = 12 og d = 4. 18

19 Når du trykker ENTER, får du løsningen. 5.3 Lineære likningssett med to ukjente Fra s nettsider kan du laste ned programmet LINSETT2, som løser lineære likningssett med to ukjente. Lineære likningssett med to ukjente løses ved å omforme likningene til de har formen ax + by = c dx + ey = f Så trykker du på PRGRM og velger LINSETT2. Der taster du inn koeffisientene a, b, c, d, e og f. Eksempel: La oss løse likningssettet 3x 2y = 4 x + 2y = 4 Vi taster inn koeffisientene i programmet: Når vi trykker ENTER, får vi: Altså er løsningen x = 2 og y = Lineære likningssett med tre ukjente Fra s nettsider kan du laste ned programmet LINSETT3, som løser lineære likningssett med tre ukjente. 19

20 Lineære likningssett med tre ukjente løses ved å omforme likningene til de har formen ax + by + cz = d ex + fy + gz = h ix + jy + kz = l Så trykker du på PRGRM og velger LINSETT3. Der taster du inn koeffisientene a, b, c, d, e, f, g, h, i, k og l. Eksempel: La oss løse likningssettet 3x + 4y z = 21 x + 5y + 3z = 32 2x + y + 5z = 9 Vi taster inn koeffisientene i programmet: Når vi trykker ENTER, får vi: Altså er løsningen x = 3, y = 7 og z = 2. 6 Sannsynlighetsregning 6.1 Simulering Ved å trykke MATH og gå til PRB-menyen, finner du funksjonene rand og randint. Funksjonen rand gir et tilfeldig tall mellom 0 og 1. Funksjonen randint(x, y) gir deg et tilfeldig heltall som er større eller lik x og mindre enn eller lik y. Det er mulig å bruke dette til å simulere enkle uniforme modeller. Eksempel: Vi skal simulere terningkast. Trykk MATH, gå til PRB og velg randint. Tast inn 1, så et komma, nemlig det som ligger til venstre for venstre parentes og så 6. 20

21 Hvert nytt trykk på ENTER gir oss et tilfeldig tall mellom 1 og 6. På TI-84 Plus finner du i tillegg programmet «Prob Sim» når du har trykket på APPS. Dette kan brukes til å simulere myntkast, terningkast, rulett, trekking av kort og trekking av kuler fra pose. 21

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P TI-84 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-84 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Tallet π.....................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Casio fx 9860 Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Casio fx 9860 Innhold 1 Innstillinger 4 2 Regning 5 2.1 Regnerekkefølge................................ 5 2.2 Kvadratrot....................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Innstillinger................................... 5 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maple Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maple Innhold 1 Om Maple 4 1.1 Tillegg til Maple................................ 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Texas Instruments TI-84

Texas Instruments TI-84 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Texas Instruments TI-84 Innhold 1 Regning 4 1.1 Tallet e...................................... 4 2 Sannsynlighetsregning

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. TI-NspireCAS Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for TI-NspireCAS Innhold 1 Om TI-NspireCAS 4 1.1 Applikasjonene................................. 4 1.2 Dokumenter...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Geogebra Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 1.1 Menyer..................................... 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om lommeregneren 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Geogebra for Sigma matematikk 1P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 4 1.1 Tilleggspakker................................. 4 2 Regning 5 2.1 Tallregning...................................

Detaljer

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger.

Texas. Så trykker vi på zoom og velger 0:ZoomFit. Vi får fram det valget enten ved å trykke på tasten 0 eller ved å trykke på tasten noen ganger. ON Lommeregnerstoff Texas 4.1 Rette linjer Her viser vi hvordan vi går fram for å få tegnet linja med likningen y = 2x 3 Vi trykker på Y= og legger inn likningen som vist nedenfor. Nå må vi velge vindu.

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1T. Maxima Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Maxima Innhold 1 Om wxmaxima 5 1.1 Tilleggspakker................................. 5 2 Regning 6 2.1 Tallregning...................................

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 4 110 Funksjoner og andregradsuttrykk Studentene skal kunne benytte begrepet funksjoner og angi definisjonsmengde og verdimengde til funksjoner regne med lineære funksjoner og andregradsfunksjoner og bestemme

Detaljer

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 1P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 1.1 Utvide området kopiere celler....................... 4 1.2 Vise formler i regnearket...........................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Casio fx-9860 Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Casio fx-9860 Innhold 1 Om Casio fx-9860 4 2 Regning 4 2.1 Tallet e......................................

Detaljer

Graftegning på lommeregneren

Graftegning på lommeregneren Graftegning på lommeregneren Vi starter med å tegne grafen til fx ( )= 05, x 3 2x 2 +2på lommeregneren for x-verdier mellom 2 og 5. Kontroller grunninnstillingene Før du starter, er det lurt å kontrollere

Detaljer

Funksjoner og andregradsuttrykk

Funksjoner og andregradsuttrykk 88 4 Funksjoner og andregradsuttrykk Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder løse likninger, ulikheter

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma R2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet e......................................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Digitalt verktøy for Geogebra 1 Geogebra for Sigma matematikk 2P Innledning Denne bruksanvisningen er ment som en beskrivelse av dataprogrammet

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

"Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94"

Matematikk med TI-83 på AF/ØKAD/VKI Eksempler som oppfyller målene i Læreplan for 2MX etter R`94 1 "Matematikk med TI-83 på AF/ØKAD/VKI" Eksempler som oppfyller målene i "Læreplan for 2MX etter R`94" Arbeidet bygger på Matematikk med TI-83 for GK av samme forfatter. Mål og hovedmomenter 1 2 Mål 3:

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. Microsoft Excel Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Microsoft Excel Innhold 1 Om Excel 4 2 Regning 4 2.1 Tallregning................................... 4 2.2

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. TI-Nspire CAS Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Noen forhåndsdefinerte variabler......................

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma R1. Geogebra Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallet e...................................... 4 3 Sannsynlighetsregning

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire

Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma 2P. TI-Nspire Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Potenser.....................................

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 1P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 1P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

Regelbok i matematikk 1MX og 1MY

Regelbok i matematikk 1MX og 1MY Regelbok i matematikk 1MX og 1MY Utgave 1.4 Skrevet av Bjørnar Tollaksen. Hele regelboka er et sammendrag av læreboka. Dette er ment som et supplement til formelheftet, ikke en erstatning. Skrivefeil kan

Detaljer

Funksjoner og grafiske løsninger

Funksjoner og grafiske løsninger 8 1 Funksjoner og grafiske løsninger Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma S1. TI-Nspire CAS

Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen. Digitalt verktøy for Sigma S1. TI-Nspire CAS Sandvold Øgrim Bakken Pettersen Skrindo Dypbukt Mustaparta Thorstensen Thorstensen Digitalt verktøy for TI-Nspire CAS Innhold 1 Om TI-Nspire 4 2 Regning 4 2.1 Tallregning...................................

Detaljer

Funksjoner 1T Quiz. Test, 4 Funksjoner

Funksjoner 1T Quiz. Test, 4 Funksjoner Test, 4 Funksjoner Innhold 4.1 Funksjonsbegrepet... 4. Lineære funksjoner... 6 4.3 Andre funksjonstyper... 14 4.4 Vekstfart og derivasjon... 0 4.5 Drøfting av funksjoner på grunnlag av egenskaper hos den

Detaljer

Regning med tall og bokstaver

Regning med tall og bokstaver Regning med tall og bokstaver M L N r du har lest dette kapitlet, skal du kunne ^ bruke reglene for br kregning ^ trekke sammen, faktorisere og forenkle bokstavuttrykk ^ regne med potenser ^ l se likninger

Detaljer

Heldagsprøve i matematikk. Svar og løsningsforslag

Heldagsprøve i matematikk. Svar og løsningsforslag Heldagsprøve i matematikk Svar og løsningsforslag Mandag 19. desember 005 Forkurset, Høgskolen i Oslo Tillatte hjelpemidler: Lommeregner. Formelsamling i matematikk. Tid: 5 klokketimer Alle svar må være

Detaljer

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra

Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland. Digitalt verktøy for Sigma S2. Geogebra Sandvold Øgrim Bakken Pettersen Skrindo Thorstensen Thorstensen Hylland Digitalt verktøy for Geogebra Innhold 1 Om Geogebra 4 2 Regning 4 2.1 Tallregning................................... 4 2.2 Tallet

Detaljer

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål

Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Spørsmål og svar om GeoGebra, versjon 2.7 bokmål Jeg har lastet ned en installasjonsfil fra www.geogebra.org og installert programmet, men får det ikke til å fungere. Hva kan dette skyldes? Den vanligste

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammenhenger gjøre rede

Detaljer

Potenser og tallsystemer

Potenser og tallsystemer 8 1 Potenser og tallsystemer Mål for opplæringen er at eleven skal kunne regne med potenser og tall på standardform med positive og negative eksponenter og bruke dette i praktiske sammen henger gjøre rede

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

Lær å bruke GeoGebra 4.0

Lær å bruke GeoGebra 4.0 Lær å bruke GeoGebra 4.0 av Sigbjørn Hals Innhold: Generelt om GeoGebra... 2 Innstillinger... 2 Likninger og ulikheter... 5 Implisitte likninger... 5 Ulikheter... 9 Statistikkberegninger i regnearket...

Detaljer

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål

Eksempel på løsning. Sentralt gitt skriftlig eksamen MAT1008 Matematikk 2T Eksamen 30.11.2009. Bokmål Eksempel på løsning 010 Sentralt gitt skriftlig eksamen MAT1008 Matematikk T Eksamen 30.11.009 Bokmål MAT1008 Matematikk T HØSTEN 009 Eksempel på løsning med vekt på bruk av digitale verktøy Hva er en

Detaljer

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen.

Tabellen viser en serie med verdier for den uavhengige variabelen, og viser den tilhørende verdien til den avhengige variabelen. Kapittel 13: Tabeller 13 Oversikt over tabeller... 222 Oversikt over fremgangsmåten for å generere en en tabell... 223 Velge tabellparametre... 224 Vise en automatisk tabell... 226 Bygge en manuell tabell

Detaljer

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning.

MATEMATIKK MED TI-83. GrunnKurs på AF/ØK/ADstudieretning. 01.05.98 TEXAS INSTRUMENTS Eystein Raude, EMC eraude@c2i.net MATEMATIKK MED TI-83 GrunnKurs på AF/ØK/ADstudieretning. Eystein Raude Texas Instruments Kjære bruker av TI-83. Matematikk er både en vitenskap

Detaljer

Mer om likninger og ulikheter

Mer om likninger og ulikheter Mer om likninger og ulikheter Studentene skal kunne utføre polynomdivisjon anvende nullpunktsetningen og polynomdivisjon til faktorisering av polynomer benytte polynomdivisjon til å løse likninger av høyere

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

Grafer og funksjoner

Grafer og funksjoner 14 4 Grafer og funksjoner Mål for opplæringen er at eleven skal kunne bruke matematiske metoder og hjelpemidler til å løse problemer fra ulike fag og samfunnsområder omforme en praktisk problemstilling

Detaljer

Matematikk 1T. det digitale verktøyet. Kristen Nastad

Matematikk 1T. det digitale verktøyet. Kristen Nastad Matematikk 1T og det digitale verktøyet Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2394 2007 08 25 av operativsystemet til programmet TI-nspire TM CAS Operating System Software

Detaljer

Eksempeloppgave 1T, Høsten 2009

Eksempeloppgave 1T, Høsten 2009 Eksempeloppgave 1T, Høsten 009 Del 1 Tid: timer Hjelpemidler: Vanlige skrivesaker, passer, linjal med centimetermål og vinkelmåler er tillatt. Oppgave 1 ( poeng) a) Bruk opplysningene nedenfor til å finne

Detaljer

KORT INNFØRING I GEOGEBRA

KORT INNFØRING I GEOGEBRA Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER... 9 ØVELSE 2. TEGNE GRAFER TIL RASJONALE FUNKSJONER... 11 ØVELSE 3. LIKNINGSLØSNING... 15 ØVELSE 4. TANGENTER OG MAKS OG MIN

Detaljer

Verktøyopplæring i kalkulator for elever

Verktøyopplæring i kalkulator for elever Verktøyopplæring i kalkulator for elever Innholdsfortegnelse Enkel kalkulator... 2 Kalkulator med brøk og parenteser... 7 GeoGebra som kalkulator... 11 H. Aschehoug & Co. www.lokus.no Side 1 Enkel kalkulator

Detaljer

Løsningsforslag heldagsprøve våren 2010 1T

Løsningsforslag heldagsprøve våren 2010 1T Løsningsforslag heldagsprøve våren 00 T DEL OPPGAVE a) Regn ut x x x x x x x x x x 9x x x x x 6x x x x 6x x 6x b) Løs likninga x x 6 x x 6 x x 6 x x 6 x x x x c) Løs likningssettet ved regning x y x y

Detaljer

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy

Sigbjørn Hals, Cappelen Damm Undervisning. Sinus 2P. Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy Sinus 2P Digitale løsninger av oppgaver og eksempler med noen utvalgte matematikkverktøy GeoGebra 4.0 og 4.2 wxmaxima Microsoft Mathematics WordMat TI-Nspire CAS 1 Innhold Litt om programmene... 4 GeoGebra

Detaljer

Oppgaver om derivasjon

Oppgaver om derivasjon Oppgaver om derivasjon Oppgave 1 Gitt funksjonen g(x) = x 3 6x 48x + 13 a) Finn g (x). b) Bruk den deriverte til å finne x-koordinaten til topp/bunn-punktene til grafen. Finn også de tilhørende y-koordinatene,

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

Oppgaver i funksjonsdrøfting

Oppgaver i funksjonsdrøfting Oppgaver i funksjonsdrøfting To av oppgavene er merket med *. Det betyr at de er ekstra interessante. Oppgave 1 Gitt funksjonen f(x) = x + 4. a) Finn nullpunktene til funksjonen. b) Bruk definisjonen på

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

Løsningsforslag til underveisvurdering i MAT111 vår 2005

Løsningsforslag til underveisvurdering i MAT111 vår 2005 Løsningsforslag til underveisvurdering i MAT111 vår 5 Beregn grenseverdien Oppgave 1 (x 1) ln x x x + 1 Svar: Merk at nevneren er lik (x 1), så vi kan forkorte (x 1) oppe og nede og får (x 1) ln x ln x

Detaljer

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org

Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007. eksamensoppgaver.org Løsningsforslag for eksempeloppgave REA3026 Matematikk S1 - April 2007 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er

Detaljer

Plotting av grafer og funksjonsanalyse

Plotting av grafer og funksjonsanalyse Opplæringshefte i GeoGebra Innholdsfortegnelse: Plotting av grafer og funksjonsanalyse... 2 Oppgave 1... 2 Oppgave 2... 4 Oppgave 3... 8 Å plassere et bilde i GeoGebra... 8 Oppgave 4... 8 Vektorregning

Detaljer

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 2.4 Brøkregning. 3.6 Rette linjer 2(3 + 1) (6+ 2):4+ 42 Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus 1P boka til Cappelen Damm til Excel- og GeoGebrastoff. Se brukerveiledningen i Lokus for perspektivtegning med GeoGebra..1 Regnerekkefølge

Detaljer

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX Privatister 10. desember 2003. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk MX Privatister 10. desember 003 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i MX er gratis, og det er lastet

Detaljer

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42

2.1 Regnerekkefølge. 3.4 Rette linjer med digitale verktøy 2(3 + 1) (6+ 2):4+ 42 Sinus T uten grafisk kalkulator Dette dokumentet oversetter kapittelet Lommeregnerstoff i Sinus T boka til Cappelen Damm til Excel- og GeoGebrastoff.. Regnerekkefølge ( + ) (6+ ):+ CTRL+J Bytter mellom

Detaljer

Del 1. Generelle tips

Del 1. Generelle tips Innhold Del 1. Generelle tips... 2 Bruk en "offline installer"... 2 Øk skriftstørrelsen... 3 Sett navn på koordinataksene... 3 Vis koordinater til skjæringspunkt, ekstremalpunkt m.m.... 4 Svar på spørsmålene

Detaljer

: subs x = 2, f n x end do

: subs x = 2, f n x end do Oppgave 2..5 a) Vi starter med å finne de deriverte til funksjonen av orden opp til og med 5 i punktet x = 2. Det gjør vi ved å bruke kommandoen diff f x, x$n der f x er uttrykket som skal deriveres, x

Detaljer

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen

QED Matematikk for grunnskolelærerutdanningen. Bind 1 og 2. GeoGebra-øvelser i funksjonslære. Av Peer Sverre Andersen QED 5 10 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE GRAFER...

Detaljer

S1 Eksamen høst 2009 Løsning

S1 Eksamen høst 2009 Løsning S1 Eksamen, høsten 009 Løsning S1 Eksamen høst 009 Løsning Del 1 Oppgave 1 a) Skriv så enkelt som mulig: 1) 5a a a a 1 5a a 4 a 1 6a a 5 ) 1 3 13 3 3 48 3 6 7 8 6 3) 4 a b a 3 a b 13 43 1 a b a b 4 4)

Detaljer

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2

3 x = 27 x ln 3 = ln 27 ln 27 x = ln 3 x = 3. 10 x2 = 10 x log(10 x2 ) = log(10 x ) x 2 = x x(x 1)=0 x = 0 x = 1. x +3=2 4 oppgave. a..i) 3 x = 7 x ln 3 = ln 7 ln 7 x = ln 3 x = 3. a..ii) 0 x = 0 x log(0 x ) = log(0 x ) x = x x(x )=0 x = 0 x =.3 a..i) Kvadrerer x +3= x +3= x = Setterikkeprøve,forjegseratsvareterriktig,menhuskåsetteprøvepå

Detaljer

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10.

GeoGebra i 1T. Grafer. Å tegne grafen til en funksjon. GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. 2 Grafer Å tegne grafen til en funksjon Akser Rutenett Avrunding GeoGebra tegner grafen til f(x) = 0,5x 2 for 0 x 10. Funksjonen får automatisk navnet f. Hvis grafen ikke vises, kan du høyreklikke i grafikkfeltet

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS

03.10.2013 Manual til. GeoGebra. Ungdomstrinnet. Ressurs til. Grunntall 8 10. Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS 03.10.2013 Manual til GeoGebra Ungdomstrinnet Ressurs til Grunntall 8 10 Bjørn Bakke og Inger Nygjelten Bakke ELEKTRONISK UNDERVISNINGSFORLAG AS Innhold Verktøy... 4 Hva vinduet i GeoGebra består av...

Detaljer

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål

Eksempel på løsning 2011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 2010 Bokmål Eksempel på løsning 011 MAT1013 Matematikk 1T Sentralt gitt skriftlig eksamen Høsten 010 Bokmål MAT1013 Matematikk 1T, Høst 010 Del 1 Uten hjelpemidler Kun vanlige skrivesaker, passer, linjal med centimetermål

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k

Terminprøve Sigma 1T Våren 2008 m a t e m a t i k k Terminprøve Sigma 1T Våren 2008 Prøvetid 5 klokketimer for Del 1 og Del 2 til sammen. Vi anbefaler at du ikke bruker mer enn to klokketimer på Del 1. Du må levere inn Del 1 før du tar fram hjelpemidler.

Detaljer

DEL 1 Uten hjelpemidler

DEL 1 Uten hjelpemidler DEL 1 Uten hjelpemidler Oppgave 1 (1 poeng) Regn ut og skriv svaret på standardform 1 1,8 10 0,0005 Oppgave (3 poeng) A B C D E F G H I J K L På tallinjen ovenfor er det merket av 1 punkter. Hvert av tallene

Detaljer

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er

f (x) = a x k der tallet a og eksponenten k kan være både positive og negative tall. Et eksempel på en potensfunksjon med negativ eksponent er 7.5 Potensfunksjoner Funksjonen f gitt ved f () = 3 er et eksempel på en potensfunksjon. For alle potensfunksjoner er funksjonsuttrykket på formen f () = a k der tallet a og eksponenten k kan være både

Detaljer

Manual for wxmaxima tilpasset R1

Manual for wxmaxima tilpasset R1 Manual for wxmaxima tilpasset R1 Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017

Løsningsforslag Eksamen S2, høsten 2016 Laget av Tommy Odland Dato: 27. januar 2017 Løsningsforslag Eksamen S, høsten 016 Laget av Tommy Odland Dato: 7. januar 017 Del 1 - uten hjelpemidler Oppgave 1 a) Vi skal derivere f(x) = x 3 5x, og vi kommer til å få bruk for reglene (ax n ) = anx

Detaljer

Funksjoner (kapittel 1)

Funksjoner (kapittel 1) Ukeoppgaver, uke 34 og 35, i Matematikk 0, Funksjoner og grenser. Høgskolen i Gjøvik Avdeling for ingeniørfag Matematikk 0 Ukeoppgaver uke 34 og 35 Funksjoner (kapittel ) Oppgave Figuren til øyre viser

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for dagen Del 1: 09:00-11:45 Lunsj: 11:45-12:15 Del 2: 12:15-14:30 Eksamensinformasjon: 14:30-15:00 Plan for tiden før lunsj Økt 1: 09:00-09:45 Økt 2: 10:00-10:45

Detaljer

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II

Eksamen. Fag: AA6524/AA6526 Matematikk 3MX. Eksamensdato: 6. desember 2006. Vidaregåande kurs II / Videregående kurs II Eksamen Fag: AA654/AA656 Matematikk 3MX Eksamensdato: 6. desember 006 Vidaregåande kurs II / Videregående kurs II Studieretning: Allmenne, økonomiske og administrative fag Elevar/Elever Privatistar/Privatister

Detaljer

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning

Matematikk S1. det digitale verktøyet. Kristen Nastad. Aschehoug Undervisning Matematikk S1 og det digitale verktøyet Kristen Nastad Aschehoug Undervisning Forord Heftet er skrevet på grunnlag av versjon 1.4.11643 2008 07 09 av operativsystemet til programmet TI-nspire TM CAS Operating

Detaljer

Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene

Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene Tall i arbeid Påbygging Kapittel 3 Funksjoner Løsninger til innlæringsoppgavene 3.1 a Koordinatene til origo er (0, 0). b Vi leser av førstekoordinaten langs x-aksen og andrekoordinaten langs y-aksen for

Detaljer

Eksamen 1T høsten 2015, løsningsforslag

Eksamen 1T høsten 2015, løsningsforslag Eksamen 1T høsten 015, løsningsforslag Del 1, ingen hjelpemidler Oppgave 1 1,8 10 1 0,0005 = 1,8 10 1 5 10 4 = 1,8 5 10 1+( 4) = 9 10 8 Oppgave Velger addisjonsmetoden Legger sammen ligningene: x + y =

Detaljer

Innledning. Mål. for opplæringen er at eleven skal kunne

Innledning. Mål. for opplæringen er at eleven skal kunne 8 1 Innledning Mål for opplæringen er at eleven skal kunne løse likninger, ulikheter og likningssystemer av første og andre grad og enkle likninger med eksponential- og logaritme funksjoner, både ved regning

Detaljer

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene

2P kapittel 2 Modellering Løsninger til innlæringsoppgavene P kapittel Modellering Løsninger til innlæringsoppgavene.1 a c d e y = 4x+ 1 Stigningstallet er 4. Konstantleddet er 1. Linja skjærer altså y-aksen i punktet (0,1). y = 3x 4 Stigningstallet er 3. Konstantleddet

Detaljer

Verktøyopplæring i kalkulator

Verktøyopplæring i kalkulator Verktøyopplæring i kalkulator Enkel kalkulator... 3 Regneuttrykk uten parenteser... 3 Bruker kalkulatoren riktig regnerekkefølge?... 3 Negative tall... 4 Regneuttrykk med parenteser... 5 Brøk... 5 Blandet

Detaljer

Lineære funksjoner. Skjermbildet

Lineære funksjoner. Skjermbildet Lineære funksjoner I dette opplæringsløpet lærer du å tegne funksjoner i GeoGebra samt å bruke verktøy til å løse oppgaver som dreier seg om funksjoner. Alle oppgavene handler om lineære funksjoner. I

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Det digitale verktøyet. Matematikk 1T. Kristen Nastad

Det digitale verktøyet. Matematikk 1T. Kristen Nastad Det digitale verktøyet og Matematikk 1T Kristen Nastad Forord Heftet er skrevet på grunnlag av versjon 1.2.2409 av operativsystemet til programmet TI-nspire TM CAS Computer Software for Windows og Aschehougs

Detaljer

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org

Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005. eksamensoppgaver.org Løsningsforslag AA6516 Matematikk 2MX - 07. desember 2005 eksamensoppgaver.org eksamensoppgaver.org 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i 2MX er gratis, og det er lastet ned

Detaljer

QED 1 7 Matematikk for grunnskolelærerutdanningen

QED 1 7 Matematikk for grunnskolelærerutdanningen QED 1 7 Matematikk for grunnskolelærerutdanningen Bind 1 og 2 GeoGebra-øvelser i funksjonslære, 2. utgave Av Peer Sverre Andersen Innhold INNLEDNING... 3 KORT INNFØRING I GEOGEBRA... 4 ØVELSE 1. TEGNE

Detaljer

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org

Løsningsforslag for eksamen i REA3026 Matematikk S1-08.05.2008. eksamensoppgaver.org Løsningsforslag for eksamen i REA306 Matematikk S1-08.05.008 eksamensoppgaver.org eksamensoppgaver.org Om løsningsforslaget Løsningsforslaget for matematikk eksamen i S1 er gratis, og det er lastet ned

Detaljer

Funksjoner med og uten hjelpemidler

Funksjoner med og uten hjelpemidler Funksjoner med og uten hjelpemidler Plan for i dag og i morgen Dag 1: 09.00-11.45 Del 1: teori. 11.45-12.30 Lunsj 12.30-13.15 Del 2: bruk av GeoGebra. 13.15-15.15 Oppgaveregning, del 1. Dag 2: 09.00-10.45

Detaljer

Eksempeloppgåve/ Eksempeloppgave 2009

Eksempeloppgåve/ Eksempeloppgave 2009 Eksempeloppgåve/ Eksempeloppgave 2009 MAT1013 Matematikk 1T Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del 1: Hjelpemiddel på Del 2: Bruk av kjelder: Vedlegg: Framgangsmåte:

Detaljer