Mestring av tall. Konference om talblindhet/dyskalkuli, Hotel Nyborg Strand, Torsdag 3. juni Olav Lunde

Størrelse: px
Begynne med side:

Download "Mestring av tall. Konference om talblindhet/dyskalkuli, Hotel Nyborg Strand, Torsdag 3. juni 2010. Olav Lunde"

Transkript

1 Mestring av tall Konference om talblindhet/dyskalkuli, Hotel Nyborg Strand, Torsdag 3. juni 2010 Olav Lunde

2 Mestring Medelsta-undersøkelsen: Ca. 15 % av elevene i avgangsklassene i grunnskolen i Sverige har en mestring i matematikk tilsvarende gjennomsnitt i 4. klasse! Engström & Magne, 2006 Det tydeligste kjennetegn på slike vansker er tidlige problemer med enkel tallbehandling, og vi kan finne dem i barnehagen/1. klasse. Mazzocco,

3 Hva er matematikkvansker? 3

4 Ofte vansker med Telleferdighet Enkel aritmetikk Enere/tiere (posisjonssystemet) Brøk Desimaltall Enkel tall-fakta, f. eks. 4+4 =8, 5+5=10 Bruk av matematiske ferdigheter i nye situasjoner ( overføring av læring ) Olav Lunde Nyborg, 3. juni 2010 Lunde, 2010, kap. 4 Baroody et.al.,

5 Kan vi finne kjennetegn på mulige matematikkvansker før eleven begynner på skolen? Nyere forskning finner at det å lese tall, tallkonstans ( Piaget ), forståelse og bruk av en-siffrede tall, og mental addisjon av en-siffrede tall skilte meget godt, og at 60-80% av førskolebarna som senere utviklet matematikkvansker, kunne finnes ved hjelp av så enkle tester i førskolealder. Det betyr at det vil være mulig å foreta screening av førskolebarn og så forebygge utvikling av matematikkvansker. ( MIO ) Mazzocco & Thompson: (2005); Morgan et.al., (2009) 5

6 Tallforståelse (number sense) - den didaktiske vinklingen Telling, forstå en-til-en- korrespondanse, kjenne til telleprinsippene Tall-kjennskap, dvs. kunne diskriminere mengder, kvantifisere dem og angi dem med tallord, ev. symbol (siffer) Antallsendringer, dvs. endre en mengde ved å gjøre den større (addisjon) eller mindre (subtraksjon), Estimering, kunne vurdere ulike mengder i forhold til hverandre, og det samme med tallene som betegner disse mengdene. Tall-mønstre, sekvenser, f. eks. Hva er neste tall? i denne rekken: 2, 4, 8, 16, eller denne 1, 2, 3, 5, 8, 13, 21? Forstå tallbruk, dvs. når tallene er kardinale, seriale eller måleenheter eller brukes som navn. Forstå sammenhengen mellom tall og objekter og kunne anvende dette i daglige situasjoner ( problemløsning ) (Berch, 2005; Baroody et.al., 2006; Locuniak & Jordan, 2008; Jordan et.al., 2008) Olav Lunde Nyborg, 3. juni

7 Et stort problem Det er ikke alltid at målt effekt (testing) er direkte knyttet til det som er det sentrale Ved kartlegging og teori, prøver vi å fjerne den grå ruten. Ved tiltak fundert i teori - forsøker vi f. eks. å sette filt mellom de tre kulene i midten Da kan vi få mestring av tall! - Hva er filt-bitene??? 7

8 Hva skjer inni hodet når tallene mestres? 2 epler og 3 epler blir? Automatiserte Tall-fakta 2+3=? Rom = Se gjenstander fra ulike perspektiv, se for seg ulike veger til et mål, se objekter i forhold til hverandre Form = oppfatte en helhet satt sammen av deler Etter van Nes og de Lange, (2007); Plassering = Se for seg hvor lørdagsgodtet eller Hopkins & Egeberg, 2009 kjeksen er plassert på kjøkkenet via et mentalt bilde 8 Olav Lunde Nyborg, 3. juni 2010

9 To måter å lære matematikk på: A) Forståelse gir grunnlag for regler! Erfaringer med den reelle verden danner kunnskapen (konstruktivismen) B) Reglene danner grunnlag for forståelsen! Hjernen er i stand til å følge et sett av regler uten å forstå dem. Ved bruk skaper hjernen mening og mestring også i nye situasjoner. (Det er slik barn lærer f. eks. å spille sjakk og andre spill.) Felles for begge er at abstrakte begreper utvikler seg, dvs. god språkferdighet. Devlin, 2009; Pind, 2008; Olav Lunde Nyborg, 3. juni

10 Laget av Gunvor Sønnesyn, INAP Hansen, A.,

11 Det startet med Vygotsky To former av begreper: 1. Spontane begreper. Utvikler seg når barna abstraherer egenskaper fra hverdags-erfaringer. Utvikles usystematisk gjennom den daglige interaksjonen. 2. Vitenskapelige begreper. Utvikler seg via formell erfaring med det begrepet betegner. En del av et begrepssystem, og blir vanligvis mediert gjennom undervisning og læring på skolen. I vitenskapelig tenking spilles hovedrollen av den primære språklige definisjonen som anvendes systematisk og gradvis føres ned til konkrete fenomener. I utviklingen av spontane begreper er det ingen systematikk, og de stiger opp fra fenomener og generaliseringer. Vitenskapelige begreper utvikler seg gjennom et systematisk samarbeid mellom barn og lærer. (Vygotsky, 2001, s ) Olav Lunde Nyborg, 3. juni

12 og Davydov begynner matematikkundervisningen basert på vitenskapelige begreper, på abstraksjoner og regler, ikke telling av konkreter! Devlin, 2009; Morris, 2000; Davydov & Tsvetkovich, 1991 Olav Lunde I Norge har Magne Nyborg poengtert betydningen av å bygge opp begrepssystemer for å fremme læringen. Nyborg, 1986; Nyborg, Nyborg & Hansen, 1997 Nyborg, 3. juni

13 En alternativ veg??? Mellin-Olsen stiller spørsmål om i hvor stor grad eleven med matematikkvansker også møter samme situasjonen den andre gangen. Til flere likhetstrekk det er mellom første møte og andre møtet, desto mer hemmende virkning har det på læringsutbyttet, mener han. - Derfor: Det andre møtet med matematikken bør være annerledes enn det første! Mellin-Olsen, Olav Lunde Nyborg, 3. juni 2010

14 Starte med telling Med diskrete verdier, enheter, gjenstander Naturlige tall, brukt til å telle gjenstander etc. Spontane begreper Plassere på tall-linjen (bare heltall/naturlige tall) Konkretiseringer (i kontekst) skal omformes til abstraksjoner (via konkretiseringsmateriell) Bruk av regneoperasjonene (+,-. *,/) Olav Lunde De to vegene: Nyborg, 3. juni 2010 Starte med måling Utgangspunkt i måling av kontinuerlige mengder (vann, tid, størrelse, lengder, areal..) Reelle tall, brukt til å måle og sammenligne Vitenskapelige begreper Reelle tall plasseres på talllinjen Abstraksjoner blir konkrete via systematiske erfaringer med realitetene i kontekst Bruk av sammenligninger (>,<, =) 14

15 Eksempler på Davydov-metoden Uten å bruke tall skal eleven undersøke verden rundt seg og hverdagen via sammenligninger (større/mindre/er like). Finne og beskrive relasjoner, uttrykt som forholdstall, antall enheter, ev. med rest Sammenligne helhet og deler av helheten. (Sjokolade ruter Mineralvann i flaske glass som enhet.) Poengtere forskjellene mellom mengden av det som måles, måleenheten og antall som brukes til å bestemme relasjonen mellom to størrelser. (Måle lengden på pulten med blyant som enhet Målt størrelse kan uttrykkes slik: A (lengden på bordet) og b = antall blyanter. A = xb, hvor x= antall ganger b går opp i A. En annen elev har en annen lengde på blyanten A = 7b 2 Problem!!! Det går ikke opp i antall hele blyantlengder A= 4b+rest Problem!!! Brøk blir da et naturlig, kjent (-og forstått) problem via erfaringer basert på regler og fremgangsmåter. Olav Lunde Nyborg, 3. juni 2010 Tenk Cuisinaire! Morris,

16 To poeng: 1. Kan det være at vi har overfokusert telling når vi ser på talloppfatning (number sense) og hva som er kjennetegnene på mestring av tall / matematikk? Vi starter med telling i førskolen og hjemme! 2. Kan det være at elever med matematikkvansker ikke mestrer de seks andre punktene ved talloppfatningen / number sense, og at vi sjelden tester dette? (Husk pendelen ) Olav Lunde Nyborg, 3. juni

17 Hva sier forskning om dette? Nyere nevropsykologisk forskning sier at der et minst seks ulike kognitive funksjoner som alle må fungere i samspill for at tall skal kunne mestres! Varma, et.al., 2007; Tang; Ward & Butterworth, 2008); Kaufmann, 2008; van Luit, 2009; Ansari et.al., 2008; Lunde, 2010 Olav Lunde Nyborg, 3. juni

18 Finner 91 siffer fordelt på 22 tall. Tallene er i ulike format: Som datoer ( ), som tid (09:02) og som pris (314.00). Tallene er fra ensiffrede til åtte-siffrede. De brukes også som navn, dvs. betegnelse på et bestemt sete. Dette krever mange matematiske tanker og det krever leseferdighet og begrepsforståelse. Det er også interessant å se at delingstegnet (:) brukes for å angi time/minutt og at tom plass i prisen gjengis med *. 18

19 6 sentrale tema og der vi oftest finner vansker 1. Telling kunne heltallene i riktig rekkefølge for å finne stolen. 2. Antallsforståelse oppfatte hva ulike tall står for (antall/nummer i en rekke). Både telling og antallsforståelse krever ferdighet i rekkeoppfatning (sekvensiering). Dette har sammenheng med å kunne oppfatte de ulike elementene i en mengde. Og hvis en skal kommunisere med konduktøren eller en passasjer som har satt seg på plassen, må en kunne navngi tallene. 3. Sammenligne to tall for å finne sete og forstå pris og tidsangivelse da må en vite tallenes rekkefølge og tallenes avstand på en tenkt tallinje. 4. Plass-verdi (ener/tier) må kunne dette for å forstå pris og tid (som er forskjellige mht. plass-verdi) 5. Utregning (aritmetikk) veksle penger ved betalingen hvis en ikke bare bruker kort 6. Overslagsregning (estimering) kunne orientere seg i vognen for å lett finne plassen eller se om det er nok å betale med en 100-kroning. Dette er da en romlig eller visuo-spatial[1] ferdighet. [1] Visuell = som har med synsevne og/eller tolkning av synspåvirkning å gjøre. Varma et.al.,

20 Det er innen disse 6 områdene vi finner svekket matematisk ferdighet hos elever med matematikkvansker. Hjernen aktiviseres ulikt alt etter type matematisk oppgave som skal arbeides med. I hverdagen er de fleste matematiske oppgavene sammensatt, og vi får et samspill mellom ulike deler i hjernen. - I prinsippet 2+3 OK, men ikke Hva er størst av 2 og 3? Sentralt i disse funksjonene står språkferdighet (inkludert begrepsforståelse) og visuo-spatial ferdighet, dvs. sentrale funksjoner i WM. Goswami, 2008; Varma et.al., 2007; Butterworth & Reigosa, 2007; Pickering (Ed.),

21 Konklusjon om MESTRING AV TALL: Fokuser på mestring av alle de 6 sentrale emner 21

22 1. Telling Telle ting (sykler, sko, jumprer, jakker); skrive ned og sammenligne. Hvor mange skritt er det når du går fra ett sted til et annet? Telle klosser, knapper, steiner osv. Kan vi gruppere dem på en lur måte slik at de er enklere å telle? (Gruppere på f. eks. 10.) 22

23 2. Antallsforståelse Alle mulige former for terningspill og kortspill. Synge sanger om tall. Lese eventyr: De tre bukkene Bruse, Gullhår og de tre bjørnene. Være med i butikken og handle, få noen penger til å kjøpe for Bruke tall-linje og sette inn antall og/eller kronebeløp. Det samme kan en gjøre ved å undersøke alderen til alle i familien (telle måneder)og sette dette inn i tall-linje. Hvem har færrest bokstaver i navnet sitt? Hvem har like mange? Hvordan kan vi kontrollere det? Legge så mange melkekorker som det er bokstaver i navnet like mange (kontrollere en for en). Forskjell kan forstås med at det ene navnet har flere eller færre bokstaver. 23

24 3. Sammenligninger (av to eller flere størrelser) Lage statistikk ved f. eks. å telle biler på ulike parkeringsplasser eller som kjører forbi. Hvor var der flest/færrest. Lage grupper etter farge og type bil. Sammenligne hvilke biler det er flest/færrest av. Sortere og lage statistikk ved hjelp av tall og så sammenligne tallene og finne hvor stor forskjellen er mellom de ulike tallene. Kjøp en amaryllis før jul! Amaryllisen måles hver dag og en sammenligner veksten for hver dag med starten og med forrige dag, sammenligner hver uke osv 24

25 Butikk 25

26 4. Plassverdi (enere, tiere, hundrer + desimal og brøk) Telle steiner, knapper eller andre ting, gruppere i tiere og så gruppere tierne i hundrer. Snakk om hvorfor dette er så lurt. Bruke Abakus og vise sammenhengen mellom dato og kulene på Abacusen. Antall kuler på tier-bøylen er likt med symbolet (sifferet) for antall tiere i det tosifrede dato-tallet på kalenderen Snakk om og vis fødselsdag, ukedager og navn på måned. Lag mat etter oppskrift 26

27 5. Enkel aritmetikk Kast terninger og legg sammen/subtraher. Spill Ludo med to terninger, spill Yatzy Spill Flaske-bingo og lignende spill, - også på datamaskinen... Enkel hoderegning 27

28 6. Overslagsregning (Estimering) Poenget er å vurdere antall, mengder, avstander osv. og så kontrollere det. Hvor mange seigmenn er det i en pose? Ta utgangspunkt i en handlekvittering. Hvor mange varer? Hva tror du dette har kostet? (Stryk over summen.) Det å kunne regne raskt i hodet men bare sånn omtrent. (- Viktig når en bruker kalkulator.) Syltetøyglass med erter. Gjette hvor mange, deretter telle dem. (Sjakkbrettet) 28

29 Wing & Tacon,

30 MIO Matematikken Individet Omgivelsene Dansk utgave kommer, NAVIMAT-prosjekt 30

31 31

32 Mulighetene er store! rask intervensjon, presise tiltak og forebygging kan redusere LD med opptil 70% (!!!) Lyon, et.al., 2003 Wilson & Räsänen, 2008 Lunde, 2008, a & b Lunde,

33 da får vi Logo for Brynekonferansene om språk og matematikk. 33

«Kan vi dele tall slik vi deler epler?»

«Kan vi dele tall slik vi deler epler?» «Kan vi dele tall slik vi deler epler?» Matematikk er naturlig for alle barn! Odense Congress Center 7. mai 2013 Olav Lunde Odense 7. mai 2013 1 eple delt i to 2 8 delt i to 8 8 3 3 E 8 : 2 = 4 8 delt

Detaljer

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09.

Regn i hodet: 46 + 28. Å uttrykke tall. Ulike uttrykksmåter. Det vesentlige er utvikling. Hvordan jobbe med dette? Hvordan jobbe med dette? 10.09. Hva er Hvorfor Singaporematematikk er folk interesserte i Singapore-matematikk Fordi elevene i Singapore stadig får best resultat på En samling undervisningsstrategier vanlig i Singapore internasjonale

Detaljer

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner

Gjett tre kort. Symboler. Gode regningsstrategier i addisjon og subtraksjon 08.09.2014. Matematikkundervisningens to dimensjoner Gode regningsstrategier i addisjon og subtraksjon Ann-Christin Arnås ann-christin.arnas@gyldendal.no Gjett tre kort Utstyr En kortstokk Regler Et spill for 2 3 spillere eller for en stor gruppe En person

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse

Begynneropplæringen i matematikk. 1.-3.trinn 07.03.2012. Dagsoversikt. Tallfølelse 07.03.2012 Begynneropplæringen i matematikk 1.-3.trinn Tillegskomponenter: Kartleggingsprøver: Halvårsprøve og årsprøve Grublishefte 1-4 og 5-7 Nettsted: www.gyldendal.no/multi Elevoppgaver Lærersider

Detaljer

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva sier Kunnskapsløftet? Tilpasset opplæring innenfor fellesskapet er grunnleggende elementer i fellesskolen. Tilpasset opplæring for den enkelte

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring

Hva vil det si å kunne matematikk? Hva er tallforståelse? Gjett tre kort. Arbeide både praktisk og teoretisk. Det viktigste for læring Hva vil det si å kunne matematikk? Gjett tre kort Hva er tallforståelse? Mona Røsseland Nasjonalt senter for Matematikk i opplæringen Lærebokforfatter; MULTI 9-Sep-08 9-Sep-08 2 Arbeide både praktisk og

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

for matematikklærere Torsdag, 30.april kl 09-15 1,.. 2,..3!

for matematikklærere Torsdag, 30.april kl 09-15 1,.. 2,..3! KUNNSKAPSLØFTET Plan for kompetanseutvikling I Levanger og Verdal kommuner Kurs i MATEMATIKK for matematikklærere Torsdag, 30.april kl 09-15 1,.. 2,..3! Målgruppe Foreleser : Kursdeltakere som går på didaktisk

Detaljer

Årsplan Matematikk Skoleåret 2015/2016

Årsplan Matematikk Skoleåret 2015/2016 Årsplan Matematikk Skoleåret 2015/2016 Mål for faget Elevene elsker matematikk og gleder seg over hver time de skal ha i faget. Elevene skal kjenne tallsymbolene fra 0 til 20. Elevene skal beherske å skrive

Detaljer

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker Forebygging av matematikkvansker Ann-Christin Arnås acarnaas@yahoo.no 1Lul 2Laa 3Bay 4Bey 5Bee 6Lol 7Lie 8Pop 9Taa 10 Boo Vi jobber med fremmede tallord Hvor mange? Regn ut: 1) bay+bey 2) pop+lul 3) boo-lie

Detaljer

Hva er god matematikkundervisning?

Hva er god matematikkundervisning? Hva er god matematikkundervisning? Astrid Bondø Nasjonalt Senter for Matematikk i Opplæringen 22-Feb-08 Ny læreplan, nye utfordringer for undervisninga i matematikk? Hva vil det si å ha matematiske kompetanse?

Detaljer

Årsplan i matematikk - 1. klasse 2014-2015

Årsplan i matematikk - 1. klasse 2014-2015 Antall timer pr : 4 timer Lærere: Ida Nystuen Askjer og Elise G. Solberg Læreverk: Multi Gyldendal Grunnbok 1A og 1B + Oppgavebok 1 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk - 1. klasse 2014-2015

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

Kompetansemål Innhold Læringsmål Kilder

Kompetansemål Innhold Læringsmål Kilder Års Tall telle til 50, dele opp og bygge mengder opp til 10, sette sammen og dele opp tiergruppe telling oppover fra et et vilkårlig tall i tallområdet 1-50 telling nedover fra et et vilkårlig tall i tallområdet

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Læringstrapp tall og plassverdisystemet

Læringstrapp tall og plassverdisystemet Læringstrapp tall og plassverdisystemet 4. Bruke enkle brøker som 1/2, 1 /4, 1 /3, 1 /6, 1 /8, 1 /10 og enkle desimaltall som 0,5, 0,25, 0,75, og 0,1 i praktiske sammenhenger. Gjenkjenne partall, oddetall,

Detaljer

Årsplan i matematikk 2. klasse 2014-15

Årsplan i matematikk 2. klasse 2014-15 Antall timer pr uke: 5 Lærere: Adeleid K Amundsen Læreverk: Multi Gyldendal Grunnbok 2A og 2B + Oppgavebok 2 Nettstedet: www.gyldendal.no/multi Årsplan i matematikk 2. klasse 2014-15 Tidsplan- Innhold

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter

Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema Læringsmål Grunnleggende ferdigheter Uke/ perio de Kompetansemål KL- 06 33-39 TALL bygge mengder opp til 10, tiergrupper. Bruke tallinjen til beregning og til å vise tallstørelser. Halvårsplan/årsplan i Matematikk for 2. trinn 2015/2016 Tema

Detaljer

KOMPETANSEMÅL ETTER 2. TRINNET Tall:

KOMPETANSEMÅL ETTER 2. TRINNET Tall: KOMPETANSEMÅL ETTER 2. TRINNET Tall: 1. Telle til 100, dele opp og byggemengder oppt il 10, sette sammen og dele opp tiergrupper. 2. Bruke tallinjen til beregninger og å angi tallstørrelser. 3. Gjøre overslag

Detaljer

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012

ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 ÅRSPLAN I MATTE 2. TRINN BREIVIKBOTN SKOLE 2011-2012 Lærer: Knut Brattfjord Læreverk: Grunntall 2 a og b, av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene er fra Lærerplanverket for kunnskapsløftet

Detaljer

Velkommen til presentasjon av Multi!

Velkommen til presentasjon av Multi! Velkommen til presentasjon av Multi! Bjørnar Alseth Høgskolen i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Dagsoversikt Ny læreplan,

Detaljer

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider.

Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. ÅRSPLAN I MATEMATIKK FOR 3. TRINN 2014/2015 Utarbeidet av: Elly Østensen Rørvik Læreverk: Multi grunnbok 3A og 3B, Oppgavebok, Multi kopiperm, Multi 1-4 grublishefte og Multi sine nettsider. UKE TEMA KOMPETANSEMÅL

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/

MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 2015-16 Uke Emne Kompetansemål Læringsmål Arbeidsmetode Læremidler Evaluering/ Årsplan i matematikk for 2 tr. 15-16 Læreverk: Multi 2A, 2B og oppgavebok. MOSBY OPPVEKSTSENTER ÅRSPLAN I MATEMATIKK - 2.TRINN 15-16 34 35 36 37 38 39 Tallene 0- med tallene opp til -Bruke tallinja til

Detaljer

Trenerveiledning del 2 Mattelek

Trenerveiledning del 2 Mattelek Trenerveiledning del 2 Mattelek 1 ANTALLSOPPFATNING - MINST/STØRST ANTALL FORKLARING Øvelser i dette området trener elevenes forståelse av antall. Et antall figurer presenteres i to separate bokser. Fra

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk?

04.01.2015. Dagsoversikt. Matematikkundervisningen har forandret seg. Hvordan bidra til at dine elever får større ferdigheter i matematikk? Hvordan bidra til at dine elever får større ferdigheter i matematikk? Haugalandsløftet 26. januar 2015 Tine Foss Pedersen 4-Jan-15 Dagsoversikt Læring basert på forståelse Ulike måter å regne på basert

Detaljer

Addisjon og subtraksjon i fire kategorier

Addisjon og subtraksjon i fire kategorier Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 7-Feb-07 Addisjon og subtraksjon i fire kategorier Problemstillinger som inkluderer addisjon og subtraksjon kan ha svært varierende strukturer.

Detaljer

Årsplan i matematikk 4.klasse, 2015-2016

Årsplan i matematikk 4.klasse, 2015-2016 Årsplan i matematikk 4.klasse, 2015-2016 Antall timer pr uke: 5. timer Lærere: Marte Fjelddalen, Helene V. Foss, Evelyn Haugen Læreverk: Multi Gyldendal Grunnbok 4A og 4B + Oppgavebok 4 Nettstedet: www.gyldendal.no/multi

Detaljer

Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0

Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0 Oversikt over innholdet i «Tempolex matematikk, ver. 1.5», veilederversjon 1.0 Tema referer til de ni hovedtemaene i Tempolex-programmet (+ Kartlegging og Egne lister). Katalognivået er en oppdeling av

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Perlesnor og tom tallinje

Perlesnor og tom tallinje Hanne Hafnor Dahl, May Else Nohr Perlesnor og tom tallinje En perlesnor er en konkret representasjon av tallrekka. Den kan bestå av 10, 20 eller 100 perler, alt etter hvilket tallområdet elevene arbeider

Detaljer

Fire myter - og en mulig sandhed om

Fire myter - og en mulig sandhed om Fire myter - og en mulig sandhed om Det lykkelige matematikmenneske Århus 26. Marts 2009 Tenker vi på læreren eller eleven? Forsiden på Jyllandsposten i dag! 1 Hva er matematisk lykke? 2 Lykkes med, får

Detaljer

Læreplanene for Kunnskapsløftet

Læreplanene for Kunnskapsløftet Læreplanene for Kunnskapsløftet Hvordan få samsvar mellom intensjon og praksis? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i Lamis Lærebokforfatter; MULTI 21-Mar-06 Intensjoner

Detaljer

Kartleggingsprøve i regning for 2. trinn

Kartleggingsprøve i regning for 2. trinn Kartleggingsprøve i regning for 2. trinn Veiledning til lærere 2014 «Formålet med kartleggingsprøver er å undersøke om det er enkeltelever som trenger ekstra oppfølging i ferdigheter og fag.». Bokmål september

Detaljer

Matematikk 1. 4. årstrinn Smøla kommune

Matematikk 1. 4. årstrinn Smøla kommune Lokal læreplan i Matematikk 1. 4. årstrinn Smøla kommune Grunnskolen 1 INNHOLDSFORTEGNELSE Hovedområder.. side 3 Gjennomføring.. side 10 Målark. side 11 Digitale ressurser.. side 19 2 HOVEDOMRÅDER Matematikkplanen

Detaljer

Når tall går i ball og bare blir tull

Når tall går i ball og bare blir tull Når tall går i ball og bare blir tull - Hva gjør vi da? Ålesund, 30. sept 2013 Volda, 1. okt 2013 AKTUELT: Planen presentert av Kristin Halvorsen, 24. august 2011 med tittelen «Fra matteskrekk til mattemestring»

Detaljer

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne Fokus på matematikkvansker og matematikkfaget Jeanette Wagelid Schjetne Presentasjon av meg Adjunkt fra Høyskolen i Finnmark, Alta Studert tysk ved Volkshochschule, Münster, Tyskland Studie for Matematikkterapi,

Detaljer

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene.

2012-2013. Generelt for alle emner: Muntlig og skriftlig tilbakemelding og fremovermelding på arbeid i bøkene. Kyrkjekrinsen skole Plan for perioden: 2012-2013 Fag: Matematikk År: 2012/2013 Klasse:1. trinn Lærer: Mari Saxegaard og Anne Karin Vestrheim Uke Årshjul Hovedtema Kompetanse mål Delmål / Konkretisering

Detaljer

FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon

FRI KOPIERING MATTE-PRØVA Kartlegging av kunnskap og innsikt i matematikk. Oppgaver til bruk ved direkte observasjon FRI KOPIERING "MATTE-PRØVA" Kartlegging av kunnskap og innsikt i matematikk Oppgaver til bruk ved direkte observasjon Elev: Prøvd dato: Reidunn Ødegaard & Ragnhild Skaar. - 4. rev.utg., Gjøvik, Øverby

Detaljer

Kartleggingsprøve i regning for 1. trinn

Kartleggingsprøve i regning for 1. trinn Kartleggingsprøve i regning for 1. trinn Veiledning til lærere 2015 «Formålet med kartleggingsprøver er å undersøke om det er enkeltelever som trenger ekstra oppfølging i ferdigheter og fag». Bokmål februar

Detaljer

Sortering G: Rød farge (1.1) Regnefortelling

Sortering G: Rød farge (1.1) Regnefortelling G T P T ÅPLN I TTIKK FO 1. TINN 2013/2014 Læreverk: ulti, Tuba Luba, og Grunntall Faglærer: Janicke. Oldervoll ÅL (K06) T IDFO VDING LOKL LÆPLN Forstå 1-10er mengde, og forstå at vi bruker tallene 1-10

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016. Endringer kan forekomme

ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016. Endringer kan forekomme ÅRSPLAN I MATEMATIKK 3. KLASSE 2015/2016 Endringer kan forekomme Uke Kompetansemål Innhold Arbeidsmåter Vurdering 34 35 Statistikk: Elevene skal kunne samle, sortere, notere og illustrere data på formålstjenlige

Detaljer

Hvordan lykkes med tilpasset undervisning?

Hvordan lykkes med tilpasset undervisning? Hvordan lykkes med tilpasset undervisning? Mona Røsseland Doktorgradsstipendiat Universitetet i Agder www.fiboline.no Oversikt 10-11.30: Makronivå: Hva er god matematikkundervisning og hvordan legger det

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking aktiv samhandling. Språkets betydning er veldig viktig for å forstå matematikk.

Detaljer

Hva er det største tallet du kan lage med disse sifrene?

Hva er det største tallet du kan lage med disse sifrene? Hva er det største tallet du kan lage med disse sifrene? Hvor mange tall tror du det er mellom 0 og? Tall og tallforståelse MÅL I dette kapitlet skal du lære om ulike typer tall plassverdisystemet og tall

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Tall og enheter. Mål. for opplæringen er at eleven skal kunne

Tall og enheter. Mål. for opplæringen er at eleven skal kunne 8 1 Tall og enheter Mål for opplæringen er at eleven skal kunne anslå svar, regne med og uten tekniske hjelpemidler i praktiske oppgaver og vurdere rimeligheten av resultatene 1.1 Regnerekkefølge På ungdomsskolen

Detaljer

plassere negative hele tall på tallinje

plassere negative hele tall på tallinje Kompetansemål etter 7. trinn Tall og algebra: 1. beskrive plassverdisystemet for desimaltall, regne med positive og negative hele tall, desimaltall, brøker og prosent, og plassere dem på tallinje 2. finne

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i

Tall: Hovedområdet tall og algebra handler om å utvikle tallforståing og innsikt i hvordan tall og tallbehandling inngår i Lærebok: Tusen Millioner, Gjerdrum og Skovdahl Tallbok (rutebok i A5 format) Barn lærer matematikk gjennom spill, leik, utforsking og aktiv samhandling. Språkets betydning er veldig viktig for å forstå

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Uke nr. Kap. Emne/Tema: Kompetansemål etter 7. årstrinn: 34-39 Kap. 1 Hele tall. Beskrive og bruke Titallsystemet. plassverdisystemet for Tall og Avrunding. desimaltal, rekne med regning Addisjon og positive

Detaljer

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015

ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 ÅRSPLAN I MATEMATIKK 2. trinn 2014/2015 Faglærer: Læreverk: Hege Skogly Grunntall 2a og 2b, Bakke og Bakke Ressursperm og nettsted Grunnleggende ferdigheter i faget (Fra læreplanverket for Kunnskapsløftet,

Detaljer

"Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn

Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn "Hva er god matematikkundervisning? Mål at alle matematikklærerne skal: en felles forståelse for hva god matematikkundervisning er. Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter,

Detaljer

Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Våren 2014

Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Våren 2014 Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Kontaktlærer; Lærer: Marita Aarseth Hoff Assistent: Astrid Wærnes Sandvik LIKT Skolen har utarbeidet en egen plan for dataopplæring

Detaljer

Den gode matematikkundervisning

Den gode matematikkundervisning Den gode matematikkundervisning Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? - hva er det? Mona Røsseland Nasjonalt senter for matematikk i opplæringen Leder i LAMIS Lærebokforfatter;

Detaljer

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål

Anne-Lise Gjerdrum Elisabet W. Kristiansen. Illustrasjoner: John Thoresen. Tusen millioner. Bokmål Anne-Lise Gjerdrum Elisabet W. Kristiansen Illustrasjoner: John Thoresen Tusen millioner 4 Oppgavebok Bokmål Oppgaveboka inneholder øvings- og repetisjonsoppgaver til alle kapitlene i grunnbøkene. Øvingsoppgavene

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

Fagplan, 4. trinn, Matematikk

Fagplan, 4. trinn, Matematikk Fagplan, 4. trinn, Matematikk Måned Kompetansemål - K06 Læringsmål / delmål Kjennetegn på måloppnåelse / kriterier Mål for opplæringen er at eleven skal kunne: August UKE 33, 34 OG 35. September UKE 36-39

Detaljer

Årsplan i matematikk 5.klasse 2015/16

Årsplan i matematikk 5.klasse 2015/16 Årsplan i matematikk 5.klasse 2015/16 Emne/Innhold Uke Presisering Læremidler Kompetansemål Hele tall 34- Tall og algebra Multi s. 4-10 Multi 5a Kap 1 39 Bestemme tallverdien til sifrene i tall med opp

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Foreldrene betyr all verden

Foreldrene betyr all verden Foreldrene betyr all verden Gjett tre kort Mona Røsseland Nasjonalt senter for Matematikk i opplæringen, NTNU (i studiepermisjon) Lærebokforfatter; MULTI 15-Sep-09 15-Sep-09 2 Mastermind Hva påvirker elevenes

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen 13-Oct-06 Kursinnhald Hva er matematisk kompetanse? Hvordan styrke den hos elevene på en slik måte

Detaljer

ÅRSPLAN I MATEMATIKK 4. KLASSE 2015/2016. Endringer kan forekomme

ÅRSPLAN I MATEMATIKK 4. KLASSE 2015/2016. Endringer kan forekomme ÅRSPLAN I MATEMATIKK 4. KLASSE 2015/2016 Endringer kan forekomme Uke Kompetansemål Innhold Arbeidsmåter Vurdering 34 35 Geometri: Elevene skal kunne lese av, plassere og beskrive posisjoner i rutenett,

Detaljer

Inneholder ett oppslag fra hvert hefte:

Inneholder ett oppslag fra hvert hefte: Sett inn støtet er en serie hefter som gir systematisk opplæring og trening i utvalgte tema innenfor matematikk. Heftene har enkle instruksjoner og god progresjon i vanskelighetsgrad. Oppgavene er laget

Detaljer

Forsterket opplæring i matematikk. Marion Høyland Sødal Ressursperson i matematikk Lærer Ime barneskole, Mandal

Forsterket opplæring i matematikk. Marion Høyland Sødal Ressursperson i matematikk Lærer Ime barneskole, Mandal Forsterket opplæring i matematikk Marion Høyland Sødal Ressursperson i matematikk Lærer Ime barneskole, Mandal Forsterket opplæring i matematikk 1. Bakgrunnsinformasjon Hvorfor matematikk? 2. Dagens tema

Detaljer

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!)

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Foreldre teller!! Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Denne økten: Hva kan vi gjøre hjemme for at matematikk skal bli et spennende fag?

Detaljer

Vurderingskriterier kjennetegn på måloppnåelse

Vurderingskriterier kjennetegn på måloppnåelse Kompetansemål 1.trinn Mål for opplæringen er at Eleven skal kunne: 1. Telle til 50, dele og sette sammen mengder opp til 10 2. Gjøre overslag over mengder, telle opp, sammenligne tall og tallstørrelser

Detaljer

Mona Røsseland Lærebokforfatter, MULTI

Mona Røsseland Lærebokforfatter, MULTI Foreldrene betyr all verden! Mona Røsseland Lærebokforfatter, MULTI Hvilken rolle har foreldrene? Hjemmet er like viktig som undervisningen for at en elev skal få bra resultater. Ikke tenk at skolen er

Detaljer

Førskolebarnets matematikk-kunnskaper

Førskolebarnets matematikk-kunnskaper Førskolebarnets matematikk-kunnskaper Vad kan förskolebarn om tal? Hur löser de problem? Lärarstuderande Grethe Midtgård, Bergen, berättar om Marit, 6 år och hennes sätt att hantera situationer med matematik.

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2010-2011 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Ny Giv i regning og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Regning

Detaljer

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013

ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 ÅRSPLAN I MATTE 5. 7. TRINN BREIVIKBOTN SKOLE 2012-2013 Lærer: Knut Brattfjord og Hege Skogly Læreverk: Grunntall 5 a og b, 6 a og b og 7 a og b av Bakke og Bakke, Elektronisk Undervisningsforlag AS Målene

Detaljer

Årsplan Matematikk 2015-2016 Årstrinn: 2.trinn

Årsplan Matematikk 2015-2016 Årstrinn: 2.trinn Årsplan Matematikk 2015-2016 Årstrinn: 2.trinn Ingvil Sivertsen, Monika Szabo Rovena Vasquez, Selma Hartsuijker Akersveien 4, 0177 OSLO Tlf: 23 29 25 00 Kompetansemål Tal Tidspunkt Tema Lærestoff Arbeidsmåter

Detaljer

Kunnskap om posisjonssystemet

Kunnskap om posisjonssystemet Elisabet Lindland Kunnskap om posisjonssystemet sammenheng med leseferdighet? Kunnskap om posisjonssystemet ser ut til å være essensielt i elevenes kunnskap om matematikk, [5]. I addisjon, subtraksjon,

Detaljer

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi

Løft matematikkundervisningen. med Multi 1.-4.trinn 24.11.2010. Oversikt. Dette er Multi! Kjernekomponenter. Grunntanken bak Multi Løft matematikkundervisningen med Multi 1.-4.trinn Oversikt Grunntanken bak Multi Hva er nytt i revisjonen? Vurdering i Multi Mona Røsseland Dette er Multi! Kjernekomponenter Grunntanken bak Multi Elevbok,

Detaljer

Hva er matematisk kompetanse?

Hva er matematisk kompetanse? Hva er matematisk kompetanse? Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS (landslaget for matematikk i skolen) Lærebokforfatter, MULTI 3-Feb-07 Dagsoversikt Hvordan styrke

Detaljer

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013

Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År: 2012-2013 Trinn og gruppe: 3ab Lærer: Therese Hermansen og Monica Strand Brunvoll Uke Årshjul Hovedtema Kompetansemål Delmål Arbeidsmetode

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45

UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL INNHOLD METODE VURDERING 34-45 MAL ÅRSPLAN I MATEMATIKK FOR 6 TRINN 2014/2015. Utarbeidet av: Britt G. Reigstad Læreverk: Multi 6a, 6b, Oppgavebok, Parallellbok, Multi kopiperm og Multi grublishefte 5-7 UKE TEMA KOMPETANSEMÅL LÆRINGSMÅL

Detaljer

LOKAL LÆREPLAN Matte Trinn 1-7

LOKAL LÆREPLAN Matte Trinn 1-7 LOKAL LÆREPLAN Matte Trinn 1-7 Drammen kommune side 1 1. trinn Periodeplan 1 Kompetansemål Tal Mål for opplæringa er at eleven skal kunne: telje til 100, dele opp og byggje mengder opp til 10, setje saman

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

All læring i barnehagealder må knyttes til lek og allsidighet. Viktig blir det også å gripe tak i barnas interesser og gi barna et matematisk språk.

All læring i barnehagealder må knyttes til lek og allsidighet. Viktig blir det også å gripe tak i barnas interesser og gi barna et matematisk språk. All læring i barnehagealder må knyttes til lek og allsidighet. Viktig blir det også å gripe tak i barnas interesser og gi barna et matematisk språk. Vi velger å ha fokus på utvalgte matematiske begreper

Detaljer

Kompetansesenter for læringsutvikling. Matematikkvansker

Kompetansesenter for læringsutvikling. Matematikkvansker Matematikkvansker Kjennetegn Spesifikke matematikkvansker, kjennetegnes med et forståelses- og mestringsnivå som er markert svakere enn eget evnenivå og mestring i skolefagene for øvrig, på tross av en

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Sensorveiledning nasjonal deleksamen

Sensorveiledning nasjonal deleksamen Sensorveiledning nasjonal deleksamen 11.05.2016 Oppgave 1 Viser to ulike resonnement som fører frem. Eksempler: 1. Forklarer at 3 = 6 som igjen er lik 0,6. 5 10 2. Korrekt eliminering av de tre gale alternativene,

Detaljer

Etterutdanning i matematikk - Modul 2 Kristiansund 2006/07

Etterutdanning i matematikk - Modul 2 Kristiansund 2006/07 Mona Røsseland Matematikksenteret Etterutdanning i matematikk - Modul 2 Kristiansund 2006/07 - Fokus på hovedområdene 14-Oct-06 Kursoversikt 1.kursdag: Tall Tallforståelse, naturlige tall, de fire regneartene

Detaljer

Innledning. ved Elin Reikerås

Innledning. ved Elin Reikerås 4 Matematikken Individet Omgivelsene Innledning ved Elin Reikerås Helene har bursdag og kommer løpende inn i barnehagen. «Jeg er så mange i dag» stråler hun og holder opp tre fingrer. «Akkurat som Kasper

Detaljer

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21

Innhold DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Innhold Velkommen til studiet... 13 Oppbygning... 15 Sammenheng og helhet... 16 Pedagogisk struktur... 17 Lykke til med et spennende kurs... 19 DEL I MATEMATIKK SKOLEFAG OG KULTURARV 21 Kapittel 1 Tall...

Detaljer

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier er lure måter å tenke på som gjør at det blir enklere å regne. Bruk av hoderegning påvirker elevenes

Detaljer

Tallregning Vi på vindusrekka

Tallregning Vi på vindusrekka Tallregning Vi på vindusrekka Addisjon... 2 Addisjon: Oppstilling... 3 Addisjon med minnetall... 4 Addisjon med desimaltall... 5 Subtraksjon... 6 Subtraksjon uten låning... 7 Subtraksjon med låning...

Detaljer