Tilpasset opplæring. Brynhild Farbrot Foosnæs

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no"

Transkript

1 Tilpasset opplæring

2 Hva sier Kunnskapsløftet? Tilpasset opplæring innenfor fellesskapet er grunnleggende elementer i fellesskolen. Tilpasset opplæring for den enkelte elev kjennetegnes ved variasjon i bruk av lærestoff, arbeidsmåter, læremidler samt variasjon i organisering av og intensitet i opplæringen.

3 Funn fra Pisa + I Norge bruker man svært mye tid til individuelt arbeid i matematikk (bare Sverige bruker mer tid enn oss til dette) Det er mye aktivitet i norske klasserom, men lite faglig fokus og retning Aktivitetens hensikt og mål er ofte uklart for elevene Mange timer uten introduksjon og oppsummering Mange monotone timer i matematikk

4 Fra stortingsmelding nr 31 Departementet vil understreke at tilpasset opplæring ikke innebærer at hver enkelt elev har krav på en individuell plan for sin opplæring, eller at mer tid bør benyttes til individuelt arbeid. Tilpasset opplæring skal i all hovedsak skje innenfor rammen av fellesskapet, i klasser eller grupper, og på en måte som er håndterlig for lærerne og skolen,

5 Historien om fire elever

6 Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet om betydningen av relasjonen lærer elev, og tar ansvar for kvaliteten på denne relasjonen.

7 Jeg hater matte Jeg kan ikke matte Ble til historien om 10 elever

8 Mestring i matematikk nært knyttet til elevenes selvoppfatning og tro på egne evner

9 Erfaringer med faget Pugge gangetabellen Skjønte ingenting av det læreren forklarte Oppgaver i boka Ut av klassen Tekstoppgaver GLEM DET!!! Får det ikke til!!!

10 Hattie: Elevenes forventninger til egen læring er sterkt påvirket av tidligere erfaringer med det å lære

11 Fra Formål med faget Matematikkfaget i skolen medverkar til å utvikle den matematiske kompetansen som samfunnet og den einskilde treng. For å oppnå dette må elevane få høve til å arbeide både praktisk og teoretisk. Opplæringa vekslar mellom utforskande, leikande, kreative og problemløysande aktivitetar og ferdigheitstrening.

12 Elevene synes matte er vanskelig og kjedelig Hva gjør vi?

13 Matematikkvansker Lærevansken skolen glemte

14 Opplæringen har stor betydning Rask intervensjon Presise tiltak Forebygging Kan redusere lærevanskene i skolen med opptil 70% (Lyon, et.al 2003)

15 Ca 5% Egne opplegg Ca 15 % Skreddersøm i perioder Ca 80% Konfeksjon Lunde

16 Tidlig innsats Styrking av opplæringen på de lavere trinnene Tiltak så snart vanskene oppdages

17 Fakta Vi vet at ca grunnskoleelever (10-15% av elevkullet) årlig står i fare for å gå ut av ungdomstrinnet uten å beherske de fire regningsartene Dette er barn med lærevansker i matematikk med behov for tilrettelagt opplæring Lunde

18 Hva er matematikkvansker? Matematikkvansker representerer brudd på den jevne og kontinuerlige faglige utviklingen som de fleste elevene følger (Ostad 1990)

19 Matematikkvansker Dyskalkuli (spesifikke matematikkvansker) Vanskene står ikke i forhold til den generelle evnemessige utrustning, ca 5-6% av elevene Matematikkvansker sliter med faget generelt, ca % av elevene. Akalkuli Alvorlig grad av matematikkvansker. Klarer ikke å lære seg de fire grunnleggende regnearter på tross av god tilpasset opplæring. Marit Holm

20 Matematikkvansker Primær vanske Sekundær vanske Lunde

21 Årsaker til matematikkvansker 1. Medisinske/nevrologiske Kognitive faktorer - hvordan informasjon bearbeides i hjernen Dårligere abstraksjonsevne enn sine jevnaldrene. Ord som ikke knyttes til noe kjent, blir ord helt uten mening. Elevene har vanskelig for å lære meningsløse ord og uttrykk. Barna kan ha vansker med konsentrasjonen. Ekstra vanskelig å konsentrere seg om noe man ikke skjønner. Barna kan ha dårlig kortids- og langtidshukommelse, særlig mange med dårlig korttidshukommelse. Må få tid til å persipere, begreper skrives ned, henges rundt Brynhild i klasserommet, Farbrot Foosnæs læreren bør gjenta seg selv ofte

22 Årsaker til matematikkvansker 2. Psykologiske Manglende anstrengelse/motivasjon eller Konsentrasjonsvansker Angst Elevens ytre miljø påvirker det indre miljøet, slik at vansker oppstår

23 Årsaker til matematikkvansker Redusert spatsial evne (Nevropsykologisk): Barna kan ha vansker med å planlegge noe som skal foregå. De har vanskeligheter med tid og avstand. Vanskelig med oppgaver som består av flere ledd. Barna kan ha vansker med å forholde seg til retning, rom og tid. Vansker med høyre og venstre Vansker med posisjonssystemet.

24 Årsaker til matematikkvansker 3. Sosiologiske Eleven kommer fra et understimulert miljø og har ikke nødvendige læringsforutsetninger i form av erfaringer og språkferdigheter. Det ytre miljøet har medført at læringsforutsetningene mangler ( eller er utilstrekkelige) og må læres først. Elevens indre miljø fungerer for så vidt OK

25 Årsaker til matematikkvansker 4. Didaktiske Feil undervisningsmetoder Ensidig ferdighetstrening Gal progresjon

26 Ofte oppstår vanskene som et samspill mellom flere av disse forholdene

27 Melling-Olsen stiller spørsmål om i hvor stor grad elevene med matematikkvansker også møter samme situasjon den andre gangen Jo flere likhetstrekk det er mellom første møte og andre møte, desto mer hemmende virkning har det på læringsutbytte, mener han Derfor: Det andre møtet med matematikken bør være annerledes enn det første! Melling-Olsen, 1997

28 Tegn på matematikkvansker Vansker med størrelsesbegrepet og å foreta sammenlikninger (hvilket tall er størst i et par) Bruk av tungvinte tellestrategier Langsom identifisering/oppfatning av antall Langsom utføring av enkle hoderegningsoppgaver

29

30 Aktivitet Ukens grublis: I en klasse med 30 elever var det 12 som drev orientering, mens 17 spilte på fotballag. 5 av elevene gjorde begge deler. Hvor mange av de 30 drev verken med fotball eller orientering? Hvordan tenkte du for å løse oppgaven?

31 Aktivitet Først til 100

32 Aktivitet Hvilke tre?

33 Kartlegging Sliter med Desimaltall Tidsregning Brøk Forholdsregning Oppgaver med tekst Glemt algoritmene - Automatisering Addisjon og subtraksjon 0-20 Multiplikasjon

34 Aktivitet Nærmest 1500 = + +

35 Nærmest 100 hundrer tiere enere sum

36 Desimaltall Visualisering

37 Nærmest 10 tiere enere tideler sum

38 Nærmest 1 enere tideler hundredeler sum

39 Glemt algoritmene Tilby elevene modeller for tanken! (Ole Enge HIST)

40 Rett abstraksjonsnivå

41 41 Utvikling av strategier Et eksempel

42 42 Modell av strategi

43 43 25 * 35

44 Divisjonsalgoritmen

45 Observasjon i klassen Ser på læreren Later som de prøver Venter på at de andre svarer Sitter lent over bøkene Gjør lite eller ingenting Ber ikke om hjelp Ingen aktivitet

46 Mål for tilretteleggingen Utjevne forskjellene!

47 Hva? Motivasjon Mestring Variasjon Aktivitet Forståelse

48 Muntlig aktivitet!!! Sette ord på tanken Få oppgaver, mye muntlig trening Felles i gruppen Arbeidspar Fokus på begreper og språk

49 Aktiviteter Begrepskryssord Begrepsbingo

50 Historien om fire elever

51 Det er aldri for sent! Lytt til elevene Ingen vits i å gjøre mer av det som ikke virker!

Regning som grunnleggende ferdighet. Brynhild Farbrot Foosnæs

Regning som grunnleggende ferdighet. Brynhild Farbrot Foosnæs Regning som grunnleggende ferdighet Brynhild.foosnas@baerum.kommune.no Hva er grunnleggende regneferdighet? Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet

Detaljer

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

NY GIV I REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF NY GIV I REGNING Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva er grunnleggende regneferdighet? Hvorfor strever elevene? Hva gjør vi med det? Hva menes med grunnleggende regneferdighet? Hva skiller

Detaljer

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no

Ny Giv i regning og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no Ny Giv i regning og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Regning

Detaljer

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Ny Giv og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Historien om fire

Detaljer

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs

Ny Giv og inkluderende tilpasset opplæring. Brynhild Farbrot Foosnæs Ny Giv og inkluderende tilpasset opplæring Brynhild.foosnas@baerum.kommune.no Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk? Historien om fire

Detaljer

Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild Farbrot Foosnæs

Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild Farbrot Foosnæs Matematikkvansker Hvorfor strever noen og hva gjør vi med det? Brynhild.foosnas@baerum.kommune.no Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet om

Detaljer

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot DAG 3 AKERSHUS NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

DAG 3 HAMAR NY GIV - REGNING. Brynhild Farbrot

DAG 3 HAMAR NY GIV - REGNING. Brynhild Farbrot DAG 3 HAMAR NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Plan for dagen Ulike undervisningsmetoder Matematikkvansker Aktiviteter Hva menes med grunnleggende

Detaljer

NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET?

NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET? NY GIV REGNING HVORFOR STREVER NOEN OG HVA GJØR VI MED DET? Brynhild.foosnas@baerum.kommune.no @BrynhildFF Historien om fire elever Kjennetegn ved god klasseledelse Thomas Nordahl: Læreren har høy bevissthet

Detaljer

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF

DAG 3 AKERSHUS NY GIV - REGNING. Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF DAG 3 AKERSHUS NY GIV - REGNING Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

GRUNNLEGGENDE REGNEFERDIGHET

GRUNNLEGGENDE REGNEFERDIGHET GRUNNLEGGENDE REGNEFERDIGHET Brynhild Farbrot Foosnæs Brynhild.foosnas@baerum.kommune.no @BrynhildFF Hva menes med grunnleggende regneferdighet? Hva skiller grunnleggende regneferdighet fra faget matematikk?

Detaljer

Foreldrene betyr all verden! Brynhild Farbrot

Foreldrene betyr all verden! Brynhild Farbrot Foreldrene betyr all verden! Brynhild Farbrot Foosnæs brynhild.foosnas@ude.oslo.kommune.no @BrynhildFF Plan for kvelden Hva kan dere foreldre bidra med? Matematikkfaget i skolen i dag Spill og aktiviteter

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 5.-7.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole

Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole Undervisning som stimulerer barns evne til matematiske tenkning «russisk matematikk» i norsk skole Novemberkonferansen 26. 27. november 2014 Kjersti Melhus Disposisjon for presentasjonen Litt om bakgrunnen

Detaljer

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker

Vi jobber med fremmede tallord. Definisjon. Øvingsoppgaver. Sekundære matematikkvansker. Forebygging av matematikkvansker Forebygging av matematikkvansker Ann-Christin Arnås acarnaas@yahoo.no 1Lul 2Laa 3Bay 4Bey 5Bee 6Lol 7Lie 8Pop 9Taa 10 Boo Vi jobber med fremmede tallord Hvor mange? Regn ut: 1) bay+bey 2) pop+lul 3) boo-lie

Detaljer

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell

Løft matematikkundervisningen. med Multi 01.05.2010. Gruppere ulike mengder. Telling. Lineær modell Løft matematikkundervisningen med Multi 1. 1.trinnsboka har vært for lite utfordrende for mange elever. Revidert Multi 1 består nå av to grunnbøker Elevene får med dette bedre tid til å utvikle grunnleggende

Detaljer

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne

Fokus på matematikkvansker og matematikkfaget. Jeanette Wagelid Schjetne Fokus på matematikkvansker og matematikkfaget Jeanette Wagelid Schjetne Presentasjon av meg Adjunkt fra Høyskolen i Finnmark, Alta Studert tysk ved Volkshochschule, Münster, Tyskland Studie for Matematikkterapi,

Detaljer

Bakgrunn for prosjektet/målsetting 1. Prosjektgjennomføring/Metode 2. Resultater og resultatvurdering 3. Oppsummering/konklusjon/videre planer 3

Bakgrunn for prosjektet/målsetting 1. Prosjektgjennomføring/Metode 2. Resultater og resultatvurdering 3. Oppsummering/konklusjon/videre planer 3 Prosjektrapport: Mestrings- og mattestrategileir MATTECAMP Søknadsnummer: 2015/FB13497 Søkerorganisasjon: Dysleksi Norge Innholdsfortegnelse Bakgrunn for prosjektet/målsetting 1 Prosjektgjennomføring/Metode

Detaljer

ADDISJON FRA A TIL Å

ADDISJON FRA A TIL Å ADDISJON FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til addisjon 2 2 Grunnleggende om addisjon 3 3 Ulike tenkemåter 4 4 Hjelpemidler i addisjoner 9 4.1 Bruk av tegninger

Detaljer

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne?

Elevaktiv matematikk. hvorfor og hvordan? Retningslinjer for undervisningen. Intensjoner med ny læreplan. Hvilke utfordringer gir dette lærerne? Elevaktiv matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? hvorfor og hvordan? Mona Røsseland Leder i Lamis Nasjonalt senter for matematikk i opplæringen Lærebokforfatter

Detaljer

Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014. Emne 1: 2KUOR19 Kunnskap om regning 15 sp

Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014. Emne 1: 2KUOR19 Kunnskap om regning 15 sp Eksamen i K2RSGFAF Regning som grunnleggende ferdighet i alle fag, Kompetanse for kvalitet 2014 Emne 1: 2KUOR19 Kunnskap om regning 15 sp Eksamensdag: Torsdag 18. desember 2014 Eksamenstid: Kl. 09:00 kl.

Detaljer

Den systemteoretiske analysemodellen

Den systemteoretiske analysemodellen Den systemteoretiske analysemodellen Levanger 20. 21. april 2006 Torunn Tinnesand lp-modellen læringsmiljø og pedagogisk analyse Analysedel Formulering av utfordringer, tema eller problem Målformulering

Detaljer

Oppdatert august 2014. Helhetlig regneplan Olsvik skole

Oppdatert august 2014. Helhetlig regneplan Olsvik skole Oppdatert august 2014 Helhetlig regneplan Olsvik skole Å regne Skolens er en strategier basis for for livslang å få gode, læring. funksjonelle elever i regning. 1 Vi på Olsvik skole tror at eleven ønsker

Detaljer

Felles klasseundervisning og tilpasset opplæring kan det forenes?

Felles klasseundervisning og tilpasset opplæring kan det forenes? Felles klasseundervisning og tilpasset opplæring kan det forenes? 1.-4.trinn Innhold Hvordan skal vi klare å få alle elevene til å oppleve mestring og samtidig bli utfordret nok og få mulighet til å strekke

Detaljer

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter?

Matematikk i praksis - eller grunnleggende basiskunnskaper og ferdigheter? Introduksjon Viktige spørsmål om skolematematikken: Hvorfor skal alle lære matematikk? Hvor MYE (og hva slags) matematikk skal ALLE lære? Hvor LENGE skal alle lære den SAMME matematikken? Matematikken

Detaljer

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot)

Du betyr en forskjell. (Fritt etter foredrag av Brynhild Farbrot) Du betyr en forskjell (Fritt etter foredrag av Brynhild Farbrot) Dere foreldre, er like viktige som undervisningen. Gi barnet ditt allsidig erfaringer fra dagliglivet. Barn som har et godt begrepsinnhold

Detaljer

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt

å gjenkjenne regning i ulike kontekster å kommunisere og argumentere for valg som er foretatt 13. mai 2014 å gjenkjenne regning i ulike kontekster å velge holdbare løsningsmetoder - gjennomføre å kommunisere og argumentere for valg som er foretatt tolke resultater kunne gå tilbake og gjøre nye

Detaljer

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!)

Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Foreldre teller!! Hjemmet og matematikkundervisningen. (Uavhengig av de voksnes tidligere erfaringer med matematikk?!) Denne økten: Hva kan vi gjøre hjemme for at matematikk skal bli et spennende fag?

Detaljer

Matematikk med familien. Lofsrud skole 20.01.2016

Matematikk med familien. Lofsrud skole 20.01.2016 Matematikk med familien Lofsrud skole 20.01.2016 Siv.ing. Magnus Jakobsen Lektor med opprykk, F21 www.lektorjakobsen.no Hanan Abdelrahman Lektor med opprykk, Lofsrud skole www.fb.com/matematikkhjelperen

Detaljer

17.02.2014 EFFEKTIV LÆRING MATEMATIKK ØVING FOR Å AUTOMATISERE GRUNNFERDIGHETER! STATISTIKK NORMALFORDELINGEN / GAUS KURVE MATEMATIKKVANSKER

17.02.2014 EFFEKTIV LÆRING MATEMATIKK ØVING FOR Å AUTOMATISERE GRUNNFERDIGHETER! STATISTIKK NORMALFORDELINGEN / GAUS KURVE MATEMATIKKVANSKER EFFEKTIV LÆRING MATEMATIKK ØVING FOR Å AUTOMATISERE GRUNNFERDIGHETER! Bjørn Einar Bjørgo MATEMATIKKVANSKER 1. Generelle matematikkvansker. Store forståelsesvansker. Forekomst: 10% (1-2% psyk. utv. - 8%

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

11.09.2013. Kursdag på NN skole om matematikkundervisning. Hva har læringseffekt? Hva har læringseffekt? Multiaden 2013. Lærerens inngripen

11.09.2013. Kursdag på NN skole om matematikkundervisning. Hva har læringseffekt? Hva har læringseffekt? Multiaden 2013. Lærerens inngripen God matematikkundervisning. Punktum. Multiaden 2013 Kursdag på NN skole om matematikkundervisning Hva bør dagen handle om? Ranger disse ønskene. Formativ vurdering Individorientert undervisning Nivådifferensiering

Detaljer

Kompetansesenter for læringsutvikling. Matematikkvansker

Kompetansesenter for læringsutvikling. Matematikkvansker Matematikkvansker Kjennetegn Spesifikke matematikkvansker, kjennetegnes med et forståelses- og mestringsnivå som er markert svakere enn eget evnenivå og mestring i skolefagene for øvrig, på tross av en

Detaljer

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi

Forfatterne bak Multi: Multi i praksis. 5.-7.trinn. En bred matematisk kompetanse. Oppbyggingen av Multi. Grunntanken bak Multi Forfatterne bak Multi: Multi i praksis 5.-7.trinn Bjørnar Alseth Universitetet i Oslo Henrik Kirkegaard, Flisnes skole, Ålesund Mona Røsseland, Matematikksenteret Gunnar Nordberg, Høgskolen i Oslo Grunntanken

Detaljer

Mestringsforventninger i matematikk. Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund

Mestringsforventninger i matematikk. Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund Mestringsforventninger i matematikk Learning Regions Karin Sørlie, Ingrid Syse & Göran Söderlund Plan Generelt om mestringsforventninger Hva er mestringsforventninger? Hvorfor er de viktige? Fase 1 av

Detaljer

«Kan vi dele tall slik vi deler epler?»

«Kan vi dele tall slik vi deler epler?» «Kan vi dele tall slik vi deler epler?» Matematikk er naturlig for alle barn! Odense Congress Center 7. mai 2013 Olav Lunde Odense 7. mai 2013 1 eple delt i to 2 8 delt i to 8 8 3 3 E 8 : 2 = 4 8 delt

Detaljer

Må realfag være tungt og kjedelig? Kari Folkvord og Grethe Mahan

Må realfag være tungt og kjedelig? Kari Folkvord og Grethe Mahan Må realfag være tungt og kjedelig? Kari Folkvord og Grethe Mahan Levende naturfag et elevaktivt klasserom (2007) Engasjerende realfag elevaktive arbeidsmåter i biologi og kjemi (2011) Forfatterne har mange

Detaljer

Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Våren 2014

Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Våren 2014 Halvårsplan for 1. trinn våren 2013 Ellingsøy barne- og ungdomsskole Kontaktlærer; Lærer: Marita Aarseth Hoff Assistent: Astrid Wærnes Sandvik LIKT Skolen har utarbeidet en egen plan for dataopplæring

Detaljer

PEDAGOGDAGENE 2014 DANS I MØTE MED BARN. Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen

PEDAGOGDAGENE 2014 DANS I MØTE MED BARN. Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen PEDAGOGDAGENE 2014 DANS I MØTE MED BARN Kunsthøgskolen i Oslo: Heidi Marian Haraldsen Veslemøy Ellefsen Dans i møte med barn - Hva tar dansen med seg inn i møtet med barnet? Barn i møte med dans - Hva

Detaljer

Meningsfylt matematikk

Meningsfylt matematikk Meningsfylt matematikk - også for elever som strever med faget Geir Botten Høgskolen i Sør-Trøndelag, Trondheim København 28.04.15 Eksempler på motiverende opplegg i matematikk Hva koster ei ukes ferie

Detaljer

Presentasjon av Multi

Presentasjon av Multi Presentasjon av Multi Mellomtrinnet Eksempler på Multi i praktisk bruk Faglig fokus og tydelige læringsmål Nettstedet Tilpasset opplæring Ulike oppgavetyper og aktivitetsformer Faglig fokus og tydelige

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2016 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse KJØP OG SALG Lære om : - Sedler og mynters

Detaljer

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka

LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE. FAG: Matematikk TRINN: 5. Timefordeling på trinnet: 4 timer i uka LOKAL LÆREPLAN ETTER LK-06 VED TORDENSKJOLDS GATE SKOLE FAG: Matematikk TRINN: 5 Timefordeling på trinnet: 4 timer i uka Grunnleggende ferdigheter i regning, lesing, skriving og digitale ferdigheter. Uke

Detaljer

"Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn

Hva er god. matematikkundervisning. Mål at alle matematikklærerne skal: Resultat i matematikk på kunnskapsnivåer, 8.trinn "Hva er god matematikkundervisning? Mål at alle matematikklærerne skal: en felles forståelse for hva god matematikkundervisning er. Mona Røsseland Matematikksenteret (for tiden i studiepermisjon) Lærebokforfatter,

Detaljer

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no

Hoderegningsstrategier. Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier Novemberkonferansen 2014 Tine Foss Pedersen tinefp@online.no Hoderegningsstrategier er lure måter å tenke på som gjør at det blir enklere å regne. Bruk av hoderegning påvirker elevenes

Detaljer

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig

Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1. Semester: VÅR År: 2016 Eksamenstype: Skriftlig Sensurveiledning Emnekode: LGU 51014 Emnenavn: Matematikk 1 (5 10), emne 1 Semester: VÅR År: 2016 Eksamenstype: Skriftlig Oppgave 1 Figuren viser hvordan en nettside forklarer en metode for addisjon og

Detaljer

Tall og algebra - begrep, forutsetninger og aktiviteter

Tall og algebra - begrep, forutsetninger og aktiviteter Tall og algebra - begrep, forutsetninger og aktiviteter Astrid Bondø NSMO 17-Sep-08 Hvordan gjøre oppgavene rikere? Oppgave A Regn ut svaret: a. 985 67 b. 897 65 c. 875 96 d. 586 97 addisjon subtraksjon

Detaljer

Kvalitetsplan for Balsfjordskolen

Kvalitetsplan for Balsfjordskolen Kvalitetsplan for Balsfjordskolen Høst 2013 Vår 2017 1 Innholdsfortegnelse VISJON... 3 FORORD... 4 INNLEDNING... 5 FOKUSOMRÅDE 1: KLASSELEDELSE varme og tydelighet... 7 FOKUSOMRÅDE 2: TILPASSET OPPLÆRING

Detaljer

Forord. Trondheim, mai 2013. Eva Estil

Forord. Trondheim, mai 2013. Eva Estil Forord Etter 6 år ved NTNU Dragvoll er min epoke som student over. Da jeg startet å studere her i 2006 trodde jeg aldri jeg skulle ende opp med en mastergrad, men sånn ble det og min masteroppgave i spesialpedagogikk

Detaljer

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012

GODE ALGORITMER. Mekanisk regneferdighet. Forskningens konklusjon. Hva kreves i læreplanen? Var alt bedre før? 17.09.2012 Mekanisk regneferdighet GODE ALGORITMER IKKE SØRGELIG SUBTRAKSJON OG DYSTER DIVISJON Bjørnar Alseth Multi i Vest 2012 Forskningens konklusjon Hva kreves i læreplanen? Forskerne er enige om 1. Vi må ikke

Detaljer

Udeskolepædagogik i Norden

Udeskolepædagogik i Norden Udeskolepædagogik i Norden Hvor er udeskolen på vej hen? Hvilken placering har udeskole i norsk uddannelses- og forskningssammenhæng? Konference om udeskolepædagogisk forskning og uddannelse i Norden.

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk Inspirasjon og motivasjon for matematikk Hvordan får vi aktive, engasjerte og motiverte elever og lærere i matematikk? Bjørnar Alseth Høgskolen i Oslo Styremedlem i Lamis Lærebokforfatter; MULTI Mona Røsseland

Detaljer

De fire regningsartene

De fire regningsartene De fire regningsartene Det går ikke an å si at elevene først skal ha forstått posisjonssystemet, og deretter kan de begynne med addisjon og subtraksjon. Dette må utvikles gradvis og om hverandre. Elevene

Detaljer

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018

LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 LÆREPLAN I MATEMATIKK 3. TRINN RYE SKOLE VÅR 2018 TID EMNE DELMÅL LÆRINGSKJENNETEGN/ VURDERINGSKRITERIER Høy Middels Lav måloppnåelse måloppnåelse måloppnåelse J A N U A R KJØP OG SALG Læringsstrategier:

Detaljer

Årsplan matematikk 1. trinn skoleåret 15/16

Årsplan matematikk 1. trinn skoleåret 15/16 Årsplan matematikk 1. trinn skoleåret 15/16 FAG Den lokale læreplanen for faget må: Sees i sammenheng med det aktuelle trinn Sikre at skolen jobber med alle kompetansemål i faget Aktuelle elementer fra

Detaljer

Matematisk førstehjelp

Matematisk førstehjelp Matematisk førstehjelp Brøk prosent desimaltall Brynhild Farbrot Foosnæs Matematisk kompetanse Kunnskapsløftet Kompetansemål Ferdigheter Forståelse Anvendelse Kunnskapsløftet Kompetansemål Ferdigheter:

Detaljer

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6

Kvikkbilde 8 6. Mål. Gjennomføring. Planleggingsdokument Kvikkbilde 8 6 Kvikkbilde 8 6 Mål Generelt: Sammenligne og diskutere ulike måter å se et antall på. Utfordre elevene på å resonnere omkring tallenes struktur og egenskaper, samt egenskaper ved regneoperasjoner. Spesielt:

Detaljer

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs

Ny Giv. Grunnleggende regneferdighet. Brynhild Farbrot Foosnæs Ny Giv Grunnleggende regneferdighet Brynhild Farbrot Foosnæs Læring innebærer endring Hva har du endret siden sist? Læring innebærer at du blir utfordret og at du tør å ta utfordringen. Hvilke utfordringer

Detaljer

Inspirasjon og motivasjon for matematikk

Inspirasjon og motivasjon for matematikk oversikt Inspirasjon og motivasjon for matematikk Mona Røsseland Nasjonalt senter for matematikk i Opplæringen Leder i LAMIS Lærebokforfatter, MULTI Ny læreplan, nye utfordringer for undervisningen i matematikk

Detaljer

Årsplan i Matematikk

Årsplan i Matematikk Årsplan i Matematikk Tidspunkt (uke eller mnd) Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: 5A Kap 1: God start Kunne utvikle og bruke ulike regnemetoder for addisjon og subtraksjon

Detaljer

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst)

ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2015/2016 (høst) Læreverk: Multi Lærer: Mona Haukås Olsen og Anne Marte Urdal/Ruben Elias Austnes 34-36 37-40 MÅL (K06) TEMA ARBEIDSFORM VURDERING lese avlassere og beskrive

Detaljer

På lag med framtida. Virksomhetsplan. for. Lindesnes ungdomsskole LINDESNES KOMMUNE

På lag med framtida. Virksomhetsplan. for. Lindesnes ungdomsskole LINDESNES KOMMUNE Virksomhetsplan for Lindesnes ungdomsskole 2015 2019 LINDESNES KOMMUNE Innhold: 1. Bakgrunn 2. Kommuneplanens mål og verdier 3. Etatsplanens føringer 4. Enhetens fokusområder 5. Handlingsprogram 2 1. Bakgrunn

Detaljer

Årsplan i matematikk 6.trinn 2015/2016

Årsplan i matematikk 6.trinn 2015/2016 Årsplan i matematikk 6.trinn 2015/2016 Tidspunkt Kompetansemål: (punkter fra K-06) Delmål: Arbeidsmetode: Vurderingsmetode: Uke 36 /37 Tall og tallforståelse -siffer og tall -beskrive plassverdisystemet

Detaljer

God opplæring for alle

God opplæring for alle God opplæring for alle Feil ressursbruk Økt kompetanse i system Vi er på vei! Mange elever går ut av grunnskolen uten å realisert sitt potensial for læring. Alle elever lærer og oppnår gode resultater

Detaljer

To likninger med to ukjente

To likninger med to ukjente To likninger med to ukjente 1. En skisse av undervisningsopplegget Mål Målet er at elevene skal lære seg addisjonsmetoden til å løse lineære likningssett med to ukjente. I stedet for å få metoden forklart

Detaljer

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver?

Men hvorfor trenger vi et didaktisk verktøy og hvorfor skulle vi endre eller lage oppgaver? DiVeLOpp - DEL 1 Didaktisk Verktøy for å Lage Oppgaver Vi vil snakke om kunnskaper og læringsaktiviteter i fire ganger. Vi begynner med å identifisere kunnskaper. Deretter ser vi på læringsaktiviteter.

Detaljer

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen

Alle teller. - en introduksjon. Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Alle teller - en introduksjon Ny GIV 1. samling 2012/2013 Anne-Gunn Svorkmo Astrid Bondø Svein Hallvard Torkildsen Håndbok - for lærere som underviser i matematikk i grunnskolen Forfatteren: Professor

Detaljer

Tiervenner erteposegjemsel

Tiervenner erteposegjemsel Telle til 10 Mål: Elevene skal kunne rekketelle til 10, i stigende og synkende rekkefølge. Antall elever: minst 10 elever. Kjegler med tallene 1 til 10. (Bruk kjegleovertrekk på 0-kjeglen og skriv lapp

Detaljer

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål

Veiledning. Nasjonale prøver i regning for 5. trinn. Versjon: juli 2010, bokmål Veiledning Nasjonale prøver i regning for 5. trinn Versjon: juli 2010, bokmål Nasjonale prøver i regning for 5. trinn Her får du informasjon om nasjonale prøver i regning og hva prøven måler. Videre presenteres

Detaljer

FoU Klasseledelse Forventning, motivasjon og mestring. Lars Arild Myhr, 28.01.13

FoU Klasseledelse Forventning, motivasjon og mestring. Lars Arild Myhr, 28.01.13 FoU Klasseledelse Forventning, motivasjon og mestring. Lars Arild Myhr, 28.01.13 Innhold i dag: Lars Arild Myhr: Om prosjektet og modulen Forventning, motivasjon og mestring. Arne Jordet: Klasseledelse

Detaljer

Motivasjon og mestring i matematikk

Motivasjon og mestring i matematikk Motivasjon og mestring i matematikk Mona Røsseland Multiforfatter, Dr.grad stipendiat Uni i Agder 2 Den fundamentale hensikten med skole og undervisning er å sikre at alle elever har et læringsutbytte

Detaljer

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57)

I følge Kunnskapsløftet er formålet med matematikkfaget å dekke følgende behov: (se s.57) Kunnskapsløftet-06 Grunnlag og mål for planen: Den lokale læreplanen skal være en kvalitetssikring i matematikkopplæringen ved Haukås skole, ved at den bli en bruksplan, et redskap i undervisningshverdagen.

Detaljer

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0

timene og hjemme 36 både med og uten digitale verktøy fortløpende Kapittelprøve Arbeidsinnsats i 38 de hele tallene, bruke positive og mindre enn 0 ÅRSPLAN I MATEMATIKK FOR 4. TRINN 2017/2018 Læreverk: Multi Lærer: Kaia Bøen Jæger og Carl Petter Tresselt UKE MÅL (K06) TEMA ARBEIDSFORM VURDERING 34 lese av, plassere og beskrive posisjoner i Koordinatsystemet

Detaljer

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser

Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale læringsressurser Årsplan i matematikk for 5. trinn, skoleåret 2009/2010. Hovedområde Læreverk Abakus 5A og 5B (grunnbøker+oppgavebøker), digitale sressurser for 5. trinn Fra Lese-forlivet-planen brukes jevnlig i alle fag

Detaljer

Vedlegg 3 Bruk av didaktisk relasjonstenkingsmodell som ramme for å kartlegge tilpasset opplæring (ordinær undervisning) og utbytte av denne

Vedlegg 3 Bruk av didaktisk relasjonstenkingsmodell som ramme for å kartlegge tilpasset opplæring (ordinær undervisning) og utbytte av denne Vedlegg 3 Bruk av didaktisk relasjonstenkingsmodell som ramme for å kartlegge tilpasset opplæring (ordinær undervisning) og utbytte av denne Den didaktiske relasjonstenkingsmodellen av Bjørndal og Lieberg

Detaljer

Ungdomstrinn i utvikling og Høgskulen i Volda sin rolle

Ungdomstrinn i utvikling og Høgskulen i Volda sin rolle Ungdomstrinn i utvikling og Høgskulen i Volda sin rolle Skoleutviklingskonferanse i Molde 27. august 2013 ra@hivolda.no Search for the guilty Genese Evaluering av L97 «tre års kjedsomhet» PISA og TIMSS

Detaljer

Forfatterne bak Multi:

Forfatterne bak Multi: Multi i praksis Tilpasset opplæring Program for dagen 12.00 13.30: Tankene bak Multi Varierte uttrykksformer gir differensiering og god læring 13.30 14.10: Mat 14.10 15.00: Varierte uttrykksformer gir

Detaljer

Matematikk - veilednings- og støttemateriell

Matematikk - veilednings- og støttemateriell Matematikk - veilednings- og Veilednings-/ Veiledning til læreplanene i matematikk fellesfag Veiledning 16.08. 21.08. 0,- Lærer på videregående Veiledningen gir praktiske eksempler på hvordan lærer kan

Detaljer

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13

Bergen kommune. Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Bergen kommune Matematikk er et redskap for å se, oppdage og løse dagliglivets små og store problemer. Dato: 13.08.13 Kaland skole, Bergen kommune, 13.08.13 Medbestemmelse Respekt for alle Omsorg. ros

Detaljer

Halvårsplan våren 2015. Læreverk: Multi. informasjon

Halvårsplan våren 2015. Læreverk: Multi. informasjon Halvårsplan våren 2015 Fag: Matematikk Trinn: 1.trinn Læreverk: Multi Faglærer(e): Linda Lauritsen Uke Kompetansemål i Kunnskapsløftet etter 2. årstinn Tema Utfyllende informasjon 2 Repetisjon av alle

Detaljer

Kyrkjekrinsen skole Årsplan for perioden:

Kyrkjekrinsen skole Årsplan for perioden: Kyrkjekrinsen skole Årsplan for perioden: 2012-2013 Fag: Matematikk År:2012-2013 Trinn og gruppe: 4. trinn Lærer: Henriette Hjorth Røen og Katrine Skaale Johansen Uke Årshjul Hovedtema Kompetansemål Delmål

Detaljer

Messenlia skoles virksomhetsplan 2015/2016

Messenlia skoles virksomhetsplan 2015/2016 Messenlia skoles virksomhetsplan 2015/2016 Side Skoleleder har ordet 2 Fakta om skolen 3 Skolens visjon pedagogiske plattform 4-6 Messenlia skoles satsingsområder 7 Plan for skolevurdering 7-11 Organisering

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt

God matematikkundervisning... - Kva er det? Hva er matematisk kompetanse? Oversikt God matematikkundervisning... - Kva er det? Mona Røsseland Matematikksenteret, NTNU Leder i Lamis Lærebokforfatter, MULTI 12-Apr-07 Oversikt Noen tanker om hva som kan være kjennetegn på god matematikkundervisning..

Detaljer

Posisjonsystemet FRA A TIL Å

Posisjonsystemet FRA A TIL Å Posisjonsystemet FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side 1 Innledning til posisjonsystemet P - 2 2 Grunnleggende om posisjonsystemet P - 2 3 Titallsystemet P - 3 4 Posisjonsystemet

Detaljer

Hva er suksessfaktorene for å heve matematikkkompetansen. til norske elever? Hvilken kompetanse skal eleven få? Oversikt. Hva påvirker elevens læring?

Hva er suksessfaktorene for å heve matematikkkompetansen. til norske elever? Hvilken kompetanse skal eleven få? Oversikt. Hva påvirker elevens læring? Hva er suksessfaktorene for å heve matematikkkompetansen til norske elever? Oversikt Hvordan skal vi arbeide med faget slik at elevene får en kompetanse som bærer, fremfor kortsiktig avkastning ved å pugge

Detaljer

DROP-IN METODEN. Et svar på opplæringslovens 9a: Rett til psykisk helse, trivsel og læring

DROP-IN METODEN. Et svar på opplæringslovens 9a: Rett til psykisk helse, trivsel og læring DROP-IN METODEN Et svar på opplæringslovens 9a: Rett til psykisk helse, trivsel og læring En metode for å veilede elever til en mer positiv elevrolle Fra bekymring til forandring gjennom samtale, veiledning

Detaljer

ÅRSPLAN. Grunnleggende ferdigheter

ÅRSPLAN. Grunnleggende ferdigheter ÅRSPLAN Skoleåret: 2015/16 Trinn: 5 Fag: Matematikk Utarbeidet av: Trine og Ulf Mnd. Kompetansemål Læringsmål (delmål) kriterier for måloppnåelse Aug Sep Okt Nov Beskrive og bruke plassverdisystemet for

Detaljer

2) Automatiseringssystemet Ferdigheter som etter å ha blitt innøvd og automatisert, går av seg selv uten bevisst tankevirksomhet (f.eks. å gå).

2) Automatiseringssystemet Ferdigheter som etter å ha blitt innøvd og automatisert, går av seg selv uten bevisst tankevirksomhet (f.eks. å gå). Om automatisering Tempolex er et øvingssystem for å automatisere grunnferdigheter. Dagens skole har mye fokus på forståelse og relativt lite fokus på automatisering. For effektiv læring er det nødvendig

Detaljer

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall

Ny Giv. Grunnleggende regneferdighet. Tone Skori Stavanger 270213. Ditt navn og årstall Ny Giv Grunnleggende regneferdighet Tone Skori Stavanger 270213 Ditt navn og årstall Læringspartner (Kilde: Hilde Ødegaard Olsen, Skøyen skole) Hva er en læringspartner? En du sitter sammen med en viss

Detaljer

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no

Nummer 8-10. H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400. www.aschehoug.no Nummer 8-10 H. Aschehoug & Co Sehesteds gate 3, 0102 Oslo Tlf: 22 400 400 www.aschehoug.no Hvorfor styrker man algebra i skolen? Det klages over at begynnerstudenter ved ulike høgskoler/universiteter har

Detaljer

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum.

Målenheter for vekt: tonn, kg, hg, g. Måling med omgjøring i km, m, dm, cm, mm. Måling med volum. Årsplan i matematikk 6.trinn 2015-16 Læreverk: MULTI Uk Kompetansemål i Tema Delmål Arbeidsmåte Vurdering e kunnskapsløftet. 34-37 Repetisjon Målenheter for vekt: tonn, kg, hg, g - De fire regneartene.

Detaljer

MATEMATIKK. September

MATEMATIKK. September MATEMATIKK Periode Hovedområde Kompetansemål Innhold / metode August Tall og algebra Sette sammen og dele opp tiergrupper Gjenkjenne, samtale om og videreføre September strukturer i enkle tallmønstre Bruke

Detaljer

Er utstrakt bruk av strategitenkning fornuftig i tidlig fase av matematikkopplæringen?

Er utstrakt bruk av strategitenkning fornuftig i tidlig fase av matematikkopplæringen? Er utstrakt bruk av strategitenkning fornuftig i tidlig fase av matematikkopplæringen? Den viktigste årsaken til matematikkvansker hos elever som har normale evneforutsetninger er dårlig kapasitet i korttidsminnet.

Detaljer

Kvalitetsplan for Grøtvedt skole 2013

Kvalitetsplan for Grøtvedt skole 2013 Kvalitetsplan for Grøtvedt skole 2013 med bakgrunn i kvalitetsplan for Askim-skolen og resultater fra ståstedsanalyse, organisasjonsanalyse, kartlegginger, nasjonale prøver, eksamen, elev- og foreldreundersøkelser

Detaljer

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu

8 årstrinn, Høst Tina Dufke & Arne Christian Ringbsu 35-38 TALLÆRE OG GRUNNLEGGENDE REGNING Periode 8 årstrinn, Høst 2016. Tina Dufke & Arne Christian Ringbsu Hovedemne Mål Innhold Læringsressurser Vurdering Titallssystemet med heltall og desimaltall Regning

Detaljer

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall

Kjennetegn på måloppnåelse TALL OG ALGEBRA. Kunne plassverdisystemet for hele- og desimaltall MATEMATIKK 6.trinn KOMPETANSEMÅL Mål for opplæringen er at eleven skal kunne: VURDERINGSKRITERIER Kjennetegn på måloppnåelse TALL OG ALGEBRA Elevene skal: Beskrive og bruke plassverdisystemet for desimaltall.

Detaljer

SAKSFREMLEGG. Saksnummer: 15/91-1. Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014

SAKSFREMLEGG. Saksnummer: 15/91-1. Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014 SAKSFREMLEGG Saksnummer: 15/91-1 Arkiv: B65 Saksbehandler: Tove Kristensen Knudsen Sakstittel: RESULTATER NASJONALE PRØVER 2014 Planlagt behandling: Hovedutvalg for oppvekst og kultur Administrasjonens

Detaljer

Telle med 0,3 fra 0,3

Telle med 0,3 fra 0,3 Telle med 0,3 fra 0,3 Mål Generelt: Søke etter mønster og sammenhenger. Gi grunner for at mønstrene oppstår. Lage nye mønstre ved å utnytte mønstre en allerede har funnet. Utfordre elevene på å resonnere

Detaljer

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim,

MAM Mestre Ambisiøs Matematikkundervisning. Realfagskonferansen Trondheim, MAM Mestre Ambisiøs Matematikkundervisning Realfagskonferansen Trondheim, 03.05.16 Mestre Ambisiøs Matematikkundervisning matematikksenteret.no Utvikle en modell med tilhørende ressurser for skolebasert

Detaljer