,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

Størrelse: px
Begynne med side:

Download ",QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ"

Transkript

1 3-1/ )DJ 67( 6W\LQJ DY RPIDW \ / VQLQJVIRVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre referanser ikke er gitt eksplisitt. SSJDYH. Se udelt notat (Kaplan, 1976). Det er to fremgangsmåter for å vise dette meget viktige resultatet. Den første går ut på å dekomponere vektoren i systemet som roterer, slik at (se Figur 1.8 i notatet) % [L + \M + ]N derivasjon relativt det inertielle systemet, gir %, [%L + \%M + N +[L % +\M % +]N % Nå gjenstår det bare å innse at enhetsvektorene L,M,N kun kan ha en endring som følge av rotasjonen g, som er vinkelrett både på enhetsvektoren og rotasjonsvektoren, altså f.eks. L % g ¼ L. Dette innser en lett dersom rotasjonen foregår om en av aksene L, M eller N. Litt verre blir det dersom rotasjonsvektoren ikke er vinkelrett på aksene, men også i dette tilfellet vil en kunne innse at påstanden stemmer, se eventuelt nedenfor. Dermed får en %, G + g ¼ GW % der subskript % indikerer derivasjon relativt det roterende systemet. En må passe på at samme koordinatsystem benyttes ved addisjon av vektorer G på komponentform. Slik beregningene er utført over, vil en altså komme frem til % derivert relativt,, men dersom vektorene, g, og er GW % dekomponert i %, vil den deriverte være uttrykt i %. Denne vektoren kan imidlertid roteres til et hvilket som helst system, og får da komponenter med andre verdier. Den andre fremgangsmåte for å vise dette resultatet er ved å betrakte grenseverdien for endringen i en konstant vektor pga. rotasjon g når AW, dvs.

2 G Â +AÃ? lim GW AW AW lim AW A AW Har videre A ASÂ sin dã, se Figur 1.9 i notatet. Enhetsvektoren er parallell med A,ogd er vinkelen mellom og g.vedå sette A Â sin dã AW AS AW og beregne grenseverdien når AW, finner en G limâ sin dã AS gâ sin dã g ¼ GW AW AW Dersom ikke er konstant må den deriverte av i %, dvs. bidraget som ikke skyldes rotasjonen, adderes til uttrykket ovenfor, dvs. G GW, % % +g ¼ Denne fremgangsmåten egner seg kanskje best for å utlede den deriverte av konstante enhetsvektorer pga. rotasjon, som over.. La g Ä,g \,Å 7, L Ä[ L,\ L,] LÅ L ¼ Âg ¼ L Ã [ L \ L ¼ ] L g \ ¼ [ L \ L ] L Â\ L + ] L Ã? \ L g \ [ L? ] L [ L g \ Â] L + [ L Ã? ] L \ L? [ L \ L Â[ L + \ L Ã? [ L ] L? \ L g \ ] L Summasjon over L gir nå (4..7).. Se Avsnitt Med hovedtreghetsakser mener man et sett av akser i et ortogonalt referansesystem, som er orientert slik i et stivt legeme at dersom en beregner krysstreghetsmomentene, ]\,, [] og, \[ i dette systemet, så vil disse være lik null, dvs. at treghetsmatrisen er diagonal (kun, [[,, \\ og, ]] er ulik null). Origo i aksesystemet er i massesenteret til legemet. Fra ethvert aksesystem med origo i legemets massesenter kan en ved rotasjon av systemet komme frem til en orientering som medførere at aksene blir hovedtreghetsakser. Ved å benytte hovedtreghetsakser oppnår en at bevegelsesligningene forenkles, siden kryssleddene faller bort.

3 4?. Beregner egenverdiene og egenvektorene til matrisen Ä,Å :? 6, 4 Egenverdier:, [[ 4,, \\ ,, ]] 5? 1 5.Transformasjonsmatrise med tilsvarende egenvektorer: Â 1? 1 5 Ã/Â 1 1? 5 Ã Â Ã/Â Ã Ä$Å 1/Â 1 1? 5 Ã 1/Â Ã 1. Sjekker at Ä$Å 7 Ä,ÅÄ$Å er lik matrisen med hovedtreghetsmomenter på diagonalen tilsvarende egenverdiene: 1 1? 1 5 1? ? ?? 6 4 Â 1? 1 5 Ã/Â 1 1? 5 Ã Â Ã/Â Ã 1/Â 1 1? 5 Ã 1/Â Ã ? 1 5. Se s. 94 ligning (4.4.11)-(4.4.1). Anta at spinnet, rotasjonenergien og treghetsmomentene for et roterende legeme er gitt. Ellipsoiden som følger av ligningen for rotasjonsenergi representerer alle mulige vinkelhastigheter som gir en bestemt verdi av rotasjonsenergien. Tilsvarende gir ellipsoiden som følger av uttrykket for spinnet alle mulige vinkelhastigheter som gir en bestemt verdi av spinnet. Det er åpenbart at de to ligningene må tilfredstilles samtidig, hvilket betyr at skjæringskurven mellom ellipsoidene (polhode) definerer alle mulige vinkelhastigheter for en gitt energi og et gitt spinn, se Figur Dersom en i tillegg definerer treghetselliopsoiden, vil tre ellipsoider definere alle mulige verdier av treghetsmomenter om rotasjonaksen og vinkelhastigheter for legemet.. Har

4 , [ [ K, \ g \,g, ] g \, \, K %, K % % + g ¼ K ] Får nå [ \ ], [ g% [, \ g% \ +, ] g% ] g \ ¼, [, \ g \, ], [ g% [ + g \ Â, ]?, \ Ã, \ g% \ + Â, [?, ] Ã, ] g% ] + g \ Â, \?, [ Ã. Se Avsnitt Treghetsmomentene må tilfredstille et innbyrdes størrelsesforhold for at rotasjonsbevegelsen skal være stabil om en akse. Spesielt er det i Avsnitt 4.5. vist at dersom rotasjonen om en akse skal være stabil, må denne aksen ha det største eller det minste treghetsmomentet. I Avsnitt er det så vist at dersom det foregår dissipasjon av energi, må rotasjonen være om den aksen som har størst treghetsmoment for at bevegelsen skal være stabil. Dersom rotasjonen ikke foregår om den aksen som har størst treghetsmoment, vil rotasjonaksen for legemet endre seg, slik at rotasjonen til slutt foregår om aksen med størst treghetsmoment. Dette er av stor betydning f.eks. for spinnstabiliserte satellitter, der slik rotasjonsustabilitet har ført til bortfall av kommunikasjon med bakken, med tap av satellitten som følge.. Se Avsnitt og Figur Nutasjon er en rotasjonbevegelse der rotasjonsaksen ikke er sammenfallende med en hovedakse. Merk at hovedaksene til legemet er definert av massedistribusjonen, og har følgelig en konstant orientering i legemet. Orienteringen av aksene til det legemefaste koordinatsystemet kan velges fritt. Nutasjonsvinkelen er definert som vinkelen mellom den fysiske (geometriske) %?aksen i det legemefaste koordinatsystemet og spinnaksen K.Både %?aksen og rotasjonsaksen g roterer om K som har konstant orientering i rommet. Ved dissipasjon av energi vil nutasjonsvinkelen endre seg, slik at rotasjonen til slutt foregår om den aksen som har størst treghetsmoment. Det finnes to andre typer rotasjonbevegelse. Ren rotasjon defineres som en rotasjonbevegelse der en hovedakse, rotasjonaksen og den fysiske aksen i det legemefaste koordinatsystemet har sammen orientering, mens koning er en rotasjonsbevegelse der den fysiske aksen ikke er sammenfallende med en hovedakse. Koning skyldes altså en feilorientering av det valgte legemefaste koordinatsystemet.. Se Avsnitt 4.7. og Figur Det benyttes et inertielt referansesystem med origo i jordas massesenter. Et annet koordinatsystem følger satellitten i banen rundt jorda, har origo i satellittens massesenter og 5 -aksen pekende mot jordas massesenter, mens ; 5 -aksen peker langs banehastighetsvektoren. Et tredje koordinatsystem er fast i satellitten med origo i massesenteret. De to siste koordinatsystemne har samme origo men ikke nødvendigvis samme orientering. Orienteringen av det legemefaste systemet relativt det banefaste systemet beskrives med Eulervinkler, rotasjonsmatriser eller kvaternioner. Det banefaste systemet endrer orientering som følge av rotasjonen rundt jorda, mens det legemefaste systemet endrer orientering som følge av krefter (forstyrrelser, pådrag) som virker på satellitten.. Rotasjonene S, d,ogf er om rotasjonsaksene <, ; og. Må beregne rotasjonsmatrisen Ä$ Sdf Å gitt av

5 cosf sin f 1 coss? sin S? sin f cosf cosd sin d 1 1? sin d cosd sin S coss cosfcoss + sin fsin d sin S sin fcosd? cosfsin S + sin fsin d coss? sin fcoss + cosfsin d sin S cosfcosd sin fsin S + cosfsin d coss cosdsin S? sin d cosdcoss. Se s. 13. S cosfcoss + sin fsin d sin S sin fcosd? cosfsin S + sin fsin d coss T? sin fcoss + cosfsin d sin S cosfcosd sin fsin S + cosfsin d coss cosdsin S? sin d cosdcoss S% cosf sin f 1 d% cosf sin f +? sin f cosf cosd sin d +? sin f cosf 1? sin d cosd 1 f% S T Âsin fcosdãs% + ÂcosfÃd% ÂcosfcosdÃS%? Âsin fãd% cosf sin fcosd? sin f cosfcosd d% S%?Âsin dãs% + f%? sin d 1 f%. En kinematisk singularitet er en kombinasjon av vinkler som medfører at transformasjonen mellom deriverte av Eulervinkler og legemefaste vinkelhastigheter ikke har noen invers. d% S% f% cosf? sin f sin f cos d Âsin fã sin d cos d cos f cos d Âcosfà sin d cos d 1 S T Transformasjonen har en singularitet for d 9 R 18 R. En kan altså ikke beregne de deriverte av Eulervinklene utfra vinkelhastigheten S, T,

6 for denne orienteringen. Ved regulering av satellitter er det ikke holdbart at noen av de variable en benytter i regulatoren, i dette tilfellet vinkelhastighetene, plutselig går mot uendelig og dermed medfører numeriske problemer. Slike singulariteter vanskeliggjør også beregning av vinkler utfra vinkelhastigheter.. En kan unngå problemer med singulariteter i hastighetstransformasjonene ved å benytte en 4 parameterbeskrivelse som f.eks. kvaternioner, eller ved å benytte to sett av Eulervinkler med singulariteter for to forskjellige vinkler, og så bytte mellom beskrivelsene når en vinkel nærmer seg en singularitet. En kan også klare seg med en rotasjonsbeskrivelse som gir en singularitet, dersom en bare passer på at legemet aldri kommer i en orientering tilsvarende en singularitet.dette kan imidlertid være vanskelig for raketter, fly (spesielt jagerfly), satellitter og undervannsbåter.. Se ligning (4.8.) i Avsnitt 4.8., samt ligning (4..8). Ta utgangspunkt i spinnsatsen som vist i (4.8.1). Del opp momentvektoren i to komponenter som representerer henholdsvis forstyrrende momenter og pådrag fra regulatorer. Del også opp spinnvektoren i to deler, som representerer spinnet til det stive legemet og spinnet til eventuelle reaksjonshjul. Merk at en ofte velger å ta med dette bidraget fra reaksjonshjul som en del av spinnet, istdenfor å ta med momentet som genereres av hjulene i pådragsvektoren. Momentet som følge av gravitasjonkreftene er gitt i ligning (4.8.8). Dette er en del av forstyrrelsene som det er naturlig å ta med ved utledning av bevegelsesligningene. Sammenhengen mellom spinnvektoren, vinkelhastighetene og treghetsmomentene er gitt i ligning (4..8). Merk at det er vinkelhastighetene relativt det inertielle systemet som må benyttes (husk at spinnsatsen er utledet av Newtons. lov, som forutsetter at referansesystemet er inertielt). Spinnet til eventuelle reaksjonshjul er lik produktet av treghetsmomentet til hjulet og rotasjonshastigheten. En velger å utvikle bevegelsesligningene i det legemefaste systemet, fordi det i dette systemet er lettest å beskrive kreftene som virker på satellitten. Da må en passe på at kryssleddet i (4.8.1) tas med, og at korrekte vinkelhastigheter benyttes.. Se ligning (4.8.1) -(4.8.13) i Avsnitt I ligning (4.8.1) er den lineariserte versjonen av rotasjonsmatrisen benyttet, og lineariseringen er basert på at Eulervinklene er små, slik at cosj u 1, sinj u J. En antar også at andreordens ledd er tilnærmet lik null, f.eks. sinjsin K u JK u. Den ulineære versjonen av rotasjonsmatrisen er gitt av (4.7.3), dersom en velger rotasjonsrekkefølgen f S d. Matrisen for andre kombinasjoner finnes i Appendiks A. Merk forøvrig at den lineariserte versjonen av rotasjonsmatrisen er den samme uansett valg av rotasjonrekkefølge, dvs. Ä$ JKL Å 1 f?s?f 1 d S?d 1 Vinkelhastigheten til banereferansesystemet (relativt det inertielle systemet) må først roteres til det legemfaste systemet:

7 g 5,%[ g 5,%\ g 5,%] cosscosf cosssin f? sin S? cosdsin f + sin d sin S cosf cosdcosf + sin d sin S sin f sin d coss sin d sin f + cosdsin S cosf? sin d cosf + cosdsin S sin f cosdcoss?g?âsin fcossãg?âcosfcosd + sin fsin d sin SÃg?Â? cosfsin d + cosdsin S sin fãg Må dessuten ta med bidraget fra rotasjon av det legemefaste systemet relativt banereferansesystemet: S g 5,%[ g \ T + g 5,%\ g 5,%] Følgende sammenheng gjelder også: S T d%? f% sin S S% cosd + f% cosssin d f% cosscosd? S% sin d Får nå d%? f% sin S?Âsin fcossãg g \ S% cosd + f% cosssin d f% cosscosd? S% sin d +?Âcosfcosd + sin fsin d sin SÃg?Â? cosfsin d + cosdsin S sin fãg d%? f% sin S? Âsin fcossãg S% cosd + f% cosssin d? g cosfcosd? g sin fsin d sin S f% cosscosd? Âsin dãs% + g cosfsin d? g cosdsin S sin f

8 . Se ligning (4.8.14) i Avsnitt Først må momentkomponentene som følge av gravitasjonskreftene lineariseres. Resultatet er gitt i ligning (4.8.9). Deretter må de kinematiske differensialligningene lineariseres, se ligning (4.8.1). Merk at produkter av små størrelser antas å være tilnærmet lik null, f.eks. f% sin S u f% S u. Innsetting i (4.8.) med bruk av (4..8) og de kinematisk differensialligningene gir nå (4.8.14).. Orienteringen kan styres ved å manipulere pådragene i vektoren 7 F (dvs. ved å aktivere raketter, magnetspoler, etc. ). En annen mulighet er å endre vinkelhastigheten til reaksjonshjulene, dvs. ved å endre K Z. Dette medfører at moment genereres fra momenthjulene på satellitten. Pådragene beregnes av en eller annen regulator på basis av målte eller estimerte vinkler og vinkelhastigheter. Ved regulatorutvikling er det vanlig å anta at vinkelutslagene er ganske små, slik at bevegelsesligningene kan antas å være lineære. nder denne forutsetningen kan en dekoblet PD-regulator benyttes til stabilisering (dvs. at referansen for vinkelhastighetene er lik null), slik at 7 F[. [ Âd FRP? dã +. [G d% 7 F\. \ ÂS FRP? SÃ +. \G S% 7 F]. ] Âf FRP? fã +. ]G f% Pådraget 7 representerer her en momentvektor som må oversettes til fysiske pådrag for ulike thrustere. Dersom en benytter reaksjonhjul må pådraget f.eks. oversettes til en endring i rotasjonshastigheter for hjulene. Det kan også hende at en kraften/momentet fra thrusterne ikke er parallelle med de tre aksene, og da må en vha. en algortime bestemme hvilke fysiske pådrag en gitt momentvektor skal gi for de ulike thrusterne. Dette kalles pådragsallokasjon. Det kan f.eks. være mange mulige kombinasjoner av fysiske pådrag som gir den samme momentvektoren, og en må da avgjøre hvilke pådrag en skal benytte ut fra et eller annet kriterium, f.eks. energioptimalisering. En kan også benytte andre regulatorer (LQ dvs. optimale multivariable regulatorer). Det er også mulig å utvikle regulatorer basert på de ulineære bevegelsesligningene og ulineær reguleringsteori (linearisering ved tilbakekobling, passivitetstoeri, rekursiv Lyapunov analyse, fuzzy regulering, osv.). Disse regulatorene er forholdsvis lite utprøvd i praksis for satellitter, selv om styring av satellitter er et benchmark problem for utvikling av nye reguleringsteori. De fleste anvente reguleringsstrategier er basert på kjente prinsipper som har vært utprøvd over lang tid, og det er svært vanskelig å få innført nye reguleringstrategier. Dette gjelder forøvrig også i flyindustrien. Det tar lang tid å få godkjent nye reguleringstrategier og det er dyrt. Derfor baserer en seg ofte på bruk av kjente prinsipper, slik at en ikke risikerer tap av kostbart utstyr pga. ukjente fenomener som ikke er forutsatt (jfr. tap av de første gravitasjonsstabiliserte satellitter pga. forhold en ikke hadde forutsett).

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag

KONTINUASJONSEKSAMEN Tirsdag 07.05.2002 STE 6159 Styring av romfartøy Løsningsforslag + *6.2/(1, 1$59,. Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet RT KONTINUASJONSEKSAMEN Tirsdag 7.5.22 STE 6159 Styring av romfartøy Løsningsforslag 2SSJDYH (%) D) Kvaternioner benyttes

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 4 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Tirsdag 18.01.2005,

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 5 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Torsdag 14.1.24,

Detaljer

EKSAMEN Styring av romfartøy Fagkode: STE 6122

EKSAMEN Styring av romfartøy Fagkode: STE 6122 Avdeling for teknologi Sivilingeniørstudiet RT Side 1 av 5 EKSAMEN Styring av romfartøy Fagkode: STE 6122 Tid: Fredag 16.02.2001, kl: 09:00-14:00 Tillatte hjelpemidler: Godkjent programmerbar kalkulator,

Detaljer

LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy

LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNING TIL KONTINUASJONSEKSAMEN STE 6251 Styring av romfartøy Tid: Onsdag 17.01.2007, kl: 09:00-12:00

Detaljer

KONTINUASJONSEKSAMEN STE 6159 Styring av romfartøy

KONTINUASJONSEKSAMEN STE 6159 Styring av romfartøy + *6.2/(1, 1$59,. Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet RT Side 1 av 4 KONTINUASJONSEKSAMEN STE 6159 Styring av romfartøy Tid: Tirsdag 07.05.2002, kl: 09:00-12:00 Tillatte

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 21.10.2005, kl: 09:00-12:00

Detaljer

KORT INTRODUKSJON TIL TENSORER

KORT INTRODUKSJON TIL TENSORER KORT INTRODUKSJON TIL TENSORER Tensorer har vi allerede møtt i form av skalarer (tall) og vektorer. En skalar kan betraktes som en tensor av rang null (en komponent), mens en vektor er en tensor av rang

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Tid: Fredag 15.12.2006, kl: 09:00-12:00

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Avdeling for teknologi Sivilingeniørstudiet RT. Løsningsforslag til eksamen i STE6122 Styring av romfartøy Fredag 16.02.2001

Avdeling for teknologi Sivilingeniørstudiet RT. Løsningsforslag til eksamen i STE6122 Styring av romfartøy Fredag 16.02.2001 Avdeling for teknologi Sivilingeniørstudiet RT Løsningsforslag til eksamen i STE6122 Styring av romfartøy Fredag 16.02.2001 (%) ) : Med Keplarske baner mener man baner til legemer som beveger seg i et

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy. Kontinuasjonseksamen

LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy. Kontinuasjonseksamen HØGSKOLEN I NARVIK Institutt for data-, elektro-, og romteknologi MSc-studiet Studieretning for romteknologi Side 1 av 4 LØSNINGSFORSLAG TIL EKSAMEN STE 6251 Styring av romfartøy Kontinuasjonseksamen Tid:

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

EKSAMEN STE 6159 Styring av romfartøy

EKSAMEN STE 6159 Styring av romfartøy + *6.2/(1, 1$59,. Institutt for data-, elektro-, og romteknologi Sivilingeniørstudiet RT Side 1 av 4 EKSAMEN STE 6159 Styring av romfartøy Tid: Fredag 08.02.2002, kl: 09:00-12:00 Tillatte hjelpemidler:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Forelesningsnotater SIF8039/ Grafisk databehandling

Forelesningsnotater SIF8039/ Grafisk databehandling Forelesningsnotater SIF839/ Grafisk databehandling Notater til forelesninger over: Kapittel 4: Geometric Objects and ransformations i: Edward Angel: Interactive Computer Graphics Vårsemesteret 22 orbjørn

Detaljer

Corioliskraften. Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006

Corioliskraften. Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006 1 Corioliskraften Forsøk på å forstå et eksotisk fenomen Arnt Inge Vistnes, 27. mars 2006 Fiktive krefter I FYS-MEK/F1110 lærer vi om hvorfor det kan være praktisk å innføre fiktive krefter i visse sammenhenger.

Detaljer

FORSØK MED ROTERENDE SYSTEMER

FORSØK MED ROTERENDE SYSTEMER FORSØK MED ROTERENDE SYSTEMER Laboratorieøvelsen består av 3 forsøk. Forsøk 1: Bestemmelse av treghetsmomentet til roterende punktmasser Hensikt Hensikt med dette forsøket er å bestemme treghetsmomentet

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Sykloide (et punkt på felgen ved rulling)

Sykloide (et punkt på felgen ved rulling) Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Emne 6. Lineære transformasjoner. Del 1

Emne 6. Lineære transformasjoner. Del 1 Emne 6. Lineære transformasjoner. Del 1 Lineære transformasjoner kan sammenliknes med vanlig funksjonslære. X x 1 x 2 x 3 f Y Gitt to tallmengder X og Y. y 1 En funksjon f er her en regel som y 2 knytter

Detaljer

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter!

Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Vær OBS på at svarene på mange av oppgavene kan skrives på flere ulike måter! Oppgave.. a x y = x + y = r r r +r r x y = y fri x y = y fri Vi får én fri variabel, og løsningens har følgelig dimensjon.

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2013

MA0002 Brukerkurs i matematikk B Vår 2013 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA0002 Brukerkurs i matematikk B Vår 2013 Løsningsforslag Øving 3 8.2.1 Anta at dy = y2 y) dx a) Finn likevektspunktene til

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Arbeidsoppgaver i vektorregning

Arbeidsoppgaver i vektorregning Arbeidsoppgaver i vektorregning Fagdag 17.03.2016 Løsningsskisser! God arbeidsinnsats på disse oppgavene vil som vanlig gi stor gevinst på prøven 18.03.16! Hva man bør kunne etter å ha gjort disse arbeidsoppgavene:

Detaljer

Fiktive krefter. Gravitasjon og planetenes bevegelser

Fiktive krefter. Gravitasjon og planetenes bevegelser iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

Prosjektoppgave i FYS-MEK 1110

Prosjektoppgave i FYS-MEK 1110 Prosjektoppgave i FYS-MEK 1110 03.05.2005 Kari Alterskjær Gruppe 1 Prosjektoppgave i FYS-MEK 1110 våren 2005 Hensikten med prosjektoppgaven er å studere Jordas bevegelse rundt sola og beregne bevegelsen

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z

a. Hva er de inverse transformasjonene avfølgende tre transformasjoner T, R og S: θ θ sin( ) cos( ) Fasit: 1 s x cos( θ) sin( θ) 0 0 y y z Kommentar: Svar kort og konsist. Husk at eksamen har tre oppgaver. Poengene for hver (del-) oppgave bør gi en indikasjon på hvor me tid som bør benttes per oppgave. Oppgave 1: Forskjellige emner (40 poeng)

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Alle svar skal grunngis. Alle deloppgaver har lik vekt.

Alle svar skal grunngis. Alle deloppgaver har lik vekt. Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave Vi denerer matrisene A, B, og C som A = [ ] 3, B = 5 9, C = 3 3. a) Regn ut følgende matrisesummer og matriseprodukter, om mulig. Dersom

Detaljer

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

7.1 forts. Schur triangularisering og spektralteoremet

7.1 forts. Schur triangularisering og spektralteoremet 7.1 forts. Schur triangularisering og spektralteoremet Vi skal vise to svært sentrale resultat i lineær algebra. Spektralteoremet (Teorem 3 i Lay): dette sier bl.a. at reelle symmetriske matriser er ortogonalt

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 2.2.217 Innleveringsfrist oblig 1: Mandag, 6.eb. kl.14 Innlevering kun via: https://devilry.ifi.uio.no/ Mulig å levere som gruppe (i Devilry, N 3) Bruk gjerne Piazza

Detaljer

Fiktive krefter. Gravitasjon og ekvivalensprinsippet

Fiktive krefter. Gravitasjon og ekvivalensprinsippet iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

Løsningsforslag Eksamen M001 Våren 2002

Løsningsforslag Eksamen M001 Våren 2002 Løsningsforslag Eksamen M Våren Oppgave f(x) = (x )e x Bruker produktregelen i derivasjonen f (x) = e x + (x ) (e x ) For å derivere e x velges kjernen u = x, og vi får (e x ) = e u. f (x) = e x + (x )

Detaljer

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING

Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Institutt for matematiske fag Eksamensoppgave i MA0002 Brukerkurs i matematikk B - LØSNING Faglig kontakt under eksamen: Frode Rønning Tlf: 95 21 81 38 Eksamensdato: 7. august 2017 Eksamenstid (fra til):

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

Fasit MAT102 juni 2016

Fasit MAT102 juni 2016 Fasit MAT02 juni 206. (a) Finn egenverdiene og egenvektorene til matrisen ( ) 6 A = 2 7 Svar: λ = 8 og ( ) x = y y ( ) /2, λ = 5 og ( ) x = y y ( ) for alle y 0. (b) Finn den generelle løsningen på systemet

Detaljer

MAT feb feb mars 2010 MAT Våren 2010

MAT feb feb mars 2010 MAT Våren 2010 MAT 1012 Våren 2010 Mandag 22. februar 2010 Forelesning Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen.

Detaljer

Bestemmelse av skjærmodulen til stål

Bestemmelse av skjærmodulen til stål Bestemmelse av skjærmodulen til stål Rune Strandberg Institutt for fysikk, NTNU, N-7491 Trondheim, Norge 9. oktober 2007 Sammendrag Skjærmodulen til stål har blitt bestemt ved en statisk og en dynamisk

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T.

Løsninger for eksamen i MAT Lineær algebra og M102 - Lineær algebra, fredag 28. mai 2004, Oppgave 1. M s = = 1 2 (cofm 2) T. Løsninger for eksamen i MAT - Lineær algebra og M - Lineær algebra, fredag 8. mai 4, (a) Finn determinanten til matrisen M s = Oppgave s uttrykt ved s, og bruk dette til å avgjøre for hvilke s matrisen

Detaljer

Forelesningsnotat, lørdagsverksted i fysikk

Forelesningsnotat, lørdagsverksted i fysikk Forelesningsnotat, lørdagsverksted i fysikk Kristian Etienne Einarsrud 1 Vektorer, grunnleggende matematikk og bevegelse 1.1 Introduksjon Fysikk er en vitenskap som har som mål å beskrive verden rundt

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B

Løsningsforslag til eksamen i MA0002, Brukerkurs i matematikk B Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 7 Løsningsforslag til eksamen i MA000, Brukerkurs i matematikk B 9. mai 01 Oppgave 1 a) Et plan i rommet har ligning

Detaljer

Løsningsforslag, eksamen MA1101/MA

Løsningsforslag, eksamen MA1101/MA Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 7 Løsningsforslag, eksamen MA0/MA60 07.2.09 Oppgave La f() = e 4 2 2 8. a) Finn alle ekstremalpunktene til funksjonen

Detaljer

Løsningsforslag Fys-mek1110 V2012

Løsningsforslag Fys-mek1110 V2012 Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

16 Ortogonal diagonalisering

16 Ortogonal diagonalisering Ortogonal diagonalisering Ortogonale matriser Definisjon (Def 7) En n n matrise A kalles ortogonal dersom den er invertibel og A A T Denne betingelsen er ekvivalent til at der I n er n n identitesmatrisen

Detaljer

Løsningsforslag til Øving 6 Høst 2016

Løsningsforslag til Øving 6 Høst 2016 TEP4105: Fluidmekanikk Løsningsforslag til Øving 6 Høst 016 Oppgave 3.13 Skal finne utløpshastigheten fra røret i eksempel 3. når vi tar hensyn til friksjon Hvis vi antar at røret er m langt er friksjonen

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014

Oppgaver MAT2500. Fredrik Meyer. 29. august 2014 Oppgaver MAT500 Fredrik Meyer 9. august 04 Oppgave. Bruk cosinus-setningen til å se at definisjonen av vinkel i planet blir riktig. Løsning. Dette er en litt rar oppgave. Husk at cosinus-setningen sier

Detaljer

Kap. 9+10 Rotasjon av stive legemer

Kap. 9+10 Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π)

(s + 1) s(s 2 +2s+2) : 1 2 s s + 2 = 1 2. s 2 + 2s cos(t π) e (t π) sin(t π) e (t π)) u(t π) NTNU Institutt for matematiske fag Eksamen i TMA4 Matematikk 4K og MA5 Kompl. f.teori med diff.likninger.8.4 Løsningsforslag Laplace-transformasjon av initialverdiproblemet gir y + y + y ut π), y), y )

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning

HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning HØGSKOLEN I BERGEN Avdeling for Ingeniørutdanning EKSAMEN I Matematisk analyse og vektoralgebra, FOA150 KLASSE : Alle DATO : 11. august 006 TID: : Kl. 0900-100 (4 timer) ANTALL OPPGAVER : 5 VARIGHET ANTALL

Detaljer

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter

Detaljer

TMA4100 Matematikk 1 Høst 2014

TMA4100 Matematikk 1 Høst 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA400 Matematikk Høst 04 Løsningsforslag Øving 04 30 For å vise at f er en injektiv one-to-one funksjon, ser vi på den deriverte,

Detaljer

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/

Løsningsforslag Eksamen i MA1102/MA6102 Grunnkurs i analyse II 17/ Løsningsforslag Eksamen i MA0/MA60 Grunnkurs i analyse II 7/ 008 Oppgave y = y +, y(0) = 0 a) n n y n y = n y n + y = y y n+ 0 0 0 / / / / / 5/4 / 5/8 9/8 9/8 så Eulers metode med steglengde / gir oss

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

Numerisk løsning av ODL

Numerisk løsning av ODL Numerisk løsning av ODL Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology 5. November 2007 Problem og framgangsmåte Vi vil finne en tilnærming til

Detaljer

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3

Løsningsforslag. Oppgave 1 Gitt matrisene ] [ og C = A = 4 1 B = 2 1 3 Prøve i Matematikk BYFE DAFE Dato: 27. mai 26 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Løsningsforslag Oppgave Gitt matrisene [ 2 A 4 B [ 2 og C [ 2

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Kinematikk i to og tre dimensjoner

Kinematikk i to og tre dimensjoner Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:

Detaljer

A.3.e: Ortogonale egenfunksjonssett

A.3.e: Ortogonale egenfunksjonssett TFY4250/FY2045 Tillegg 2 1 Tillegg 2: A.3.e: Ortogonale egenfunksjonssett Ikke-degenererte egenverdier La oss først anta at en operator ˆF har et diskret og ikke-degeneret spektrum. Det siste betyr at

Detaljer

STREAMFLOW ROUTING. Estimere nedstrøms hydrogram, gitt oppstrøms. Skiller mellom. hydrologisk routing hydraulisk routing

STREAMFLOW ROUTING. Estimere nedstrøms hydrogram, gitt oppstrøms. Skiller mellom. hydrologisk routing hydraulisk routing STREAMFLOW ROUTING Estimere nedstrøms hydrogram, gitt oppstrøms Skiller mellom hydrologisk routing hydraulisk routing Hydraulisk routing er basert på løsning av de grunnleggende differensial ligninger

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

MAT Grublegruppen Notat 11

MAT Grublegruppen Notat 11 MAT1100 - Grublegruppen Notat 11 Jørgen O. Lye Matrisegrupper Den store gruppen vi skal se på er GL(n, K) = {inverterbare n n matriser med koesienter i K} Forkortelsen står for den generelle lineære gruppen

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

EKSAMEN I MATEMATIKK 1000

EKSAMEN I MATEMATIKK 1000 EKSAMEN I MATEMATIKK 1000 Oppgave 1 a) Finn den deriverte av disse funksjonene: f(x) = x 3 e 5x og g(x) = ln(tan(x)) + x 3. b) Finn de følgende ubestemte integralene: i) (x 3 + xe x2 ) dx og ii) cos 2

Detaljer

MA0002 Brukerkurs i matematikk B Vår 2014

MA0002 Brukerkurs i matematikk B Vår 2014 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag MA000 Brukerkurs i matematikk B Vår 04 Løsningsforslag. Eksamen 6. mai Løsning: Oppgave a) dy dx y y y )y ) : gy), så likevektsløsningene

Detaljer

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen:

Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: . 2 65 Løsning E.1 Foreta omskrivninger av den stedsderiverte av et produkt som forekommer i den vanlige formen: Dette er den søkte formen. " Løsning E.2 %'& Legg en -akse i # s retning, dvs. # () -,&

Detaljer

Løsning IM

Løsning IM Løsning IM Oppgave Den retningsderiverte er D f ( a) u f ( a), når funksjonen er deriverbar i punktet u f f ( y ) ( y ) Innsatt f,, ( y, y ) Den derivertes verdi i punktet er f (,) ( ( ),( ) ) (,) (,)

Detaljer

Anbefalte oppgaver - Løsningsforslag

Anbefalte oppgaver - Løsningsforslag Anbefalte oppgaver - Løsningsforslag Uke 5 1.3.5: Vi ønsker å finne de første ordens deriverte til funksjonen f definert ved f(, y) arctan(y/). Først finner vi den deriverte med ensyn på, ved å betrakte

Detaljer