F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "F B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1"

Transkript

1 TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning er null og at dreiemomentet om enhver akse er lik null. Vi ser da umiddelbart at kraften F A er rettet nedover for å gi null dreiemoment om B. Vi ser videre at kraften F B er rettet oppover for å gi null dreiemoment om A. a)vivelgerherførståberegnedreiemomenteneoma.kraften F A har da null arm og dermed null dreiemoment. Dreiemomentene pga tyngdekreftene er negative siden de prøver å dreie med klokka om A. Tyngdekraften for stupebrettet angriper i tyngdepunktet som ligger i avstand L/2 fra A. Dreiemomentet pga F B er positivt siden det prøver å dreie mot klokka om A. Totalt dreiemoment om A lik null gir 0 = F A 0 mg L 2 L+F Bd F B = gl M + m ) d 2 iktig svar: C. b) Kraftbalanse i vertikal retning gir med positiv retning valgt oppover) iktig svar: D. 0 = F A mg +F B F A = F B m+m)g = gl M + m ) m+m)g d 2 La oss bruke dreiemomentbalanse om B til å kontrollere at vi har riktig uttrykk for F A : Ser bra ut! ) L τ B = F A d mg 2 d L d) = gl M + m ) m+m)gd mg 2 = 0. ) L 2 d L d) 1

2 Oppgave 2 N θ S θ B a) Det er tre krefter som virker på ballen, snordraget S, tyngdekraften G = og normalkraften fra veggen, N. Ballen er i ro, dvs i statisk likevekt. Da må f.eks det totale dreiemomentet om ballens tyngdepunkt B være null. Både N og G har null arm mhp en akse gjennom B, og bidrar derfor ikke til τ B. Da kan heller ikke S gi noe dreiemoment om B, og snoras forlengelse må passere gjennom B. La oss kalle vinkelen mellom veggen og snora for θ. Null nettokraft på ballen horisontalt gir da N Ssinθ = 0, mens null nettokraft vertikalt gir Scosθ = 0. Siden snoras forlengelse går gjennom B, har vi og cosθ = L+) 2 2 L+ tanθ = = LL+2), LL+2) L+ slik at og S = cosθ = L+ LL+2) N = Ssinθ = tanθ = LL+2). iktig svar: A. Hvis snora er veldig lang, L, er S og N 0. Det er rimelig for en ball som henger i ei praktisk talt vertikal snor. Hvis snora er kort, L, blir både S og N store, og tilnærmet lik S N 2L. Eksempelvis blir S = N = 10 hvis L = /200. F.eks ball med radius 10 cm og snor med lengde 0.5 mm.) Litt friksjon mellom ball og vegg vil endre på dette. f N α S B b) La oss her kalle vinkelen mellom vegg og snor for α. Null dreiemoment om B gir da Ssinα f = 0, dvs f = Ssinα. Maksimal friksjonskraft er f max = µn. Null nettokraft horisontalt gir da N = Ssinα = f = µn, dvs µ = 1, som akkurat gjør det mulig å ha snorfestet øverst på ballen. iktig svar: B. En mye enklere løsning finnes ved å bruke snoras festepunkt som referansepunkt. Da har f og N like stor arm,, slik at f = N og µ = 1 følger umiddelbart.) 2

3 Oppgave 3. S N 2 f θ 2r a) Her harvi fireukjente: θ 0, S, f,n. Dette krever fireligninger. Når snella holdes i roav snoraogfriksjonen, gjelder N1: Normalt skråplanet: F = 0 N = cosθ I) Langs skråplanet: F = 0 sinθ = f +S II) der f er friksjonskrafta. N1 for rotasjon mhp snellas massesenter): τ = 0 Sr = f III) Statisk friksjonskraft kan ligge mellom null og en øvre grense: f µ s N = µ s cosθ IV) Ved grensa θ = θ 0 dvs der hvor snella akkurat glipper fra underlaget og begynner å rulle/slure er friksjonskraften lik det maksimale: f = µ s cosθ 0. Ligning III) gir S = /r)f, som innsatt i ligning II) gir sinθ 0 f /r)f = 0. Innsetting av maksimalverdien av f gir en ligning for θ 0 : sinθ 0 = µ s cosθ 0 1+/r) tanθ 0 = µ s 1+/r), og dermed iktig svar: A. θ 0 = arctan[µ s 1+/r)]. b) Snorkrafta: S = r f = r µ scosθ 0, Alternative uttrykk: S = r+ sinθ 0 = sinθ 0 µ s cosθ 0 ). iktig svar: C. c) Når snella har begynt å slure, må ligning II) og III) erstattes av N2. Vinkelen er nå gitt lik θ θ 0 ), og de fire ukjente blir: a, S 1, f, N. Snorkraften blir en annen enn tidligere, derfor nytt symbol for den, og akselerasjonen a langs skråplanet blir en ukjent. Friksjonskraften nå er gitt av den kinetiske friksjonskoeffisienten µ k : f = µ k N = µ k cosθ. LigningI)bestemmer N ogligning ) bestemmer f,slik at vi har igjenbareto ukjente, a og S 1. To ligninger: 3

4 N2 langs skråplanet: F = Ma sinθ f S 1 = Ma IIb) N2 for rotasjon om snellas massesenter): τ = I ω f +S1 r = I ω IIIb) der I = treghetsmomentet om snellas akse. Vi har valgt a positiv nedover og positiv ω mot klokka = den retningen det virkelig går). Når snella rutsjer nedover, rulles snora ut med hastighet v = ωr IKKE v = ω!), og ω = v/r = a/r. N2-ligningene IIb) og IIIb) gir da vi venter litt med å sette inn for f): M gsinθ f S 1 = Ma 1) f+s 1 r = I a/r). 2) To ligninger og to ukjente a og S 1 ). Eliminerer S 1 fra ligning 1) og setter inn i ligning 2): S 1 = M gsinθ f Ma 2) = f+rsinθ fr = I a/r)+mar. 3) Løsning av a, med litt smarte divisjoner og innsetting av f gir ) a = g sinθ µ kcosθ 1+ r 1+I/Mr 2. ) iktig svar: A. Oppgave 4. + h F y r x a) Det kortvarige, kraftige støtet gir kula en lineær) impuls og en dreieimpuls relativt massesenteret): F t = M V = MV 0 τ t = Fh t = I 0 ω = I 0 ω 0. Fortegnsvalg: Positiv translasjon i positiv x-retning og positiv rotasjon med klokka, vist i figuren. Vi har som oppgitt neglisjert friksjonskraftens bidrag i det korte tidsrommet t, noe som er rimelig unntatt for slag som er veldig svake. En god snookerspiller kan mobilisere en langt større kraft F når det er hensiktsmessig. Vi eliminerer den ukjente størrelsen F t fra de to ligningene, og får derved en relasjon mellom V 0 og ω 0, iktig svar: D. MhV 0 = I 0 ω 0 V 0 = 22 5h ω 0 eller ω 0 = 5h 2 2 V 0. 4) b)enrullingforutsetter atv 0 = ω 0,ogdennebetingelsenerbareoppfyltnårh 0 / = +2/5.iktigsvar:B. 4

5 c) Dersom h > 2/5, vil ω 0 > V 0 /, dvs kula roterer for fort i forhold til ren rulling. Det innebærer at undersiden av kula glir mot venstre på underlaget, og friksjonskraften vil derfor være rettet mot høyre. etningen kan også fastlegges ved at friksjonskraften forsøker å oppnå perfekt rulling ved å redusere vinkelhastigheten og øke translasjonshastigheten. Med kinetisk friksjon er f = µ k N = µ k ; ingen bevegelse vertikalt, så N =. iktig svar: B. Dersom h < 2/5, er situasjonen den motsatte: Friksjonskraften virker mot venstre og gir kula rotasjonsakselerasjon og translasjonsretardasjon. For h < 0 vil ω 0 < 0, dvs kula roterer feil vei. Friksjonen virker fortsatt mot venstre, dvs den forsøker å få kula til å rotere rett vei.) Velger vi referansepunktet hvor som helst) langs x-aksen, vil r f f = 0, der r f er f s angrepspunkt, som er i kontaktpunktet mellom kule og bord. De to vektorene er parallelle. Ingen andre krefter gir noe dreiemoment om origo etter at støtet er avsluttet, og total dreieimpuls relativt origo må derfor være bevart. Luftmotstanden, som vi har neglisjert, gir selvsagt et ørlite dreiemoment, noe som ødelegger for perfekt dreieimpulsbevarelse.) d) Total dreieimpuls blir L z = L = M[r V ] z +I 0 ω = MV +I 0 ω start: L 0 = MV 0 +2/5)M 2 ω 0 4) = MV 0 1+h/) ved ren rulling: L r = MV r +2/5)M 2 V r / = 7/5)MV r. Da dreieimpulsen er bevart, må vi ha L 0 = L r, som gir hastigheten når ren rulling er oppnådd: V r = h ) V 0. 5) iktig svar: C. V r /V 0 10/7 5/ /5 1 h/ Når h/ = + 2 5, finner vi V r = V 0, som vi burde. Når h/ > 2 5, vil altså massesenterhastigheten øke på vei mot den endelige rullebevegelsen, ellers vil den avta. Merk at V r 0 alltid, uansett hvor lavt på kula køen treffer, dvs det er ikke mulig å få kula til å trille tilbake etter at ren rulling er oppnådd. For h = vanskelig i praksis!) stopper kula. e) Når translasjonshastigheten endres fra V 0 til V r i løpet av en tid t r som skal bestemmes), er det ene og alene friksjonskraften f = µ k som gir denne akselerasjonen. Akselerasjonen a = f/m = µ k g er konstant, og vi kan bruke konstant-akselerasjonsligningen V r = V 0 + at r til å bestemme t r. Som funnet i b) peker f mot høyre, og a er positiv når h/ > 2/5, mens f peker mot mot venstre og a er negativ når h/ < 2/5. 5

6 Vi tar for oss tilfellet positiv a: iktig svar: A. V r = V 0 +at r og V r = 5 1+ h V 0 7 t r = 1 a V r V 0 ) = 1 2 µ k g ) ) h 2 5 h V 0 = V 0 7 7µ k g 2 1 ) når h/ > 2/5. Når h/ < 2/5, blir a = µ k g, og fortegnet snus: 2 t r = V ) h 7µ k g 2 når h/ < 2/5. Om ønsket kan vi sammenfatte dette til en ligning: t r = 2V 0 7µ k g 1 5 h 2 for alle h/ 1,1. Verdien er 0 bare for h/ = 2/5, i tråd med det vi visste fra før. f) Energiberegninger: Først startenergien uttrykt ved translasjonsenergien 1 2 MV 2 K 0 = 1 2 MV I 0ω0 2 4) = 1 2 MV Dernest energi for den rullende kula med ω r = V r /: Og vi kan uttrykke energitapet: K = K r K 0 = 1 2 MV 2 0 h 2 ) 2 K r = 1 2 MV r I 0ωr 2 = 1 2 MV r 2 5 5) = MV h 2. 7 ) [ h ) 7 + h h 2 )] 2. 0 : = 1 2 MV etter litt algebra. Vi kan også uttrykke relativ energi etter at rulling er oppnådd: ǫ = K r K 0 = 5 7 ) 2 1+ h h h 2 En kontroll: Med et støt som gir ren rulling h/ = 2/5) er ǫ = 1, dvs ikke energitap. Med h = er ǫ = 0, dvs 100% energitap. Dessuten: Med h = + er ǫ = 40/49 og med h = 0 er ǫ = 5/7. g) Det er konstant akselerasjon slik at lengden som kula glir langs underlaget før ren rulling oppnås, finnes fra gjennomsnittsfarten V : x r = V t r = 1 2 V r +V 0 )t r = 2V h ) 1 5h 49µ k g 2 2, der vi har brukt uttrykk for V r og t r ovenfra. Kontroll: x r = 0 når h/ = 2/5. Vi har lært at det kreves relativt omfattende regningfor å bestemme t r eller x r, mens V r i pkt d) og dermed, med litt ekstra faktoriseringsstrev, K) faller nesten rett ut ved bruk av dreieimpulsbevarelse. Det ville også ha vært interessant å analysere bevegelsen etter et støt som treffer til høyre eller venstre for xy-planet. Dette vil gi sidelengs rotasjon ω vertikal), noe som kan gi en ikkelineær bane. For curlingspillere er vertikal ω viktig for curlingsteinens videre bevegelse. Men det er utfordrende å regne på! ) 2 6

F B L/2. d A. mg Mg F A. Løsningsforslag til øving 5. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014.

F B L/2. d A. mg Mg F A. Løsningsforslag til øving 5. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014. Løsningsforslag til øving 5 Oppgave 1 L/2 d A F A B F B L mg Mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. m 1 gl = 1 2 m 1v 2 1. = v 1 = 2gL TFY46 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 4. Oppgave. a) Hastigheten v til kule like før kollisjonen finnes lettest ved å bruke energibevarelse: Riktig svar: C. m gl = 2 m v 2

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark

Detaljer

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl

TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

Øving 2: Krefter. Newtons lover. Dreiemoment.

Øving 2: Krefter. Newtons lover. Dreiemoment. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014

FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn

Detaljer

Kap Rotasjon av stive legemer

Kap Rotasjon av stive legemer Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017

LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer

Detaljer

A) 1 B) 2 C) 3 D) 4 E) 5

A) 1 B) 2 C) 3 D) 4 E) 5 Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2010

Løsningsforslag Eksamen i Fys-mek1110 våren 2010 Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider

Detaljer

Repetisjon

Repetisjon Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:

Detaljer

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt.

Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 27. Veiledning: 29. september kl 12:15 15:. Løsningsforslag til øving 4: Coulombs lov. Elektrisk felt. Magnetfelt. Oppgave 1 a) C. Elektrisk

Detaljer

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.

Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)

Detaljer

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007

Løsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007 Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det

Detaljer

Sykloide (et punkt på felgen ved rulling)

Sykloide (et punkt på felgen ved rulling) Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:

Detaljer

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)

FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:

Detaljer

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK

EKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål

Detaljer

Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008

Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 Institutt for fysikk, NTNU TFY4115 Fysikk, høsten 200 Løsningsforslag: Kontinuasjonseksamen TFY4115, august 2008 I tilknytning til oppgavene finner du her mer utførlige diskusjoner og kommentarer enn det

Detaljer

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!

Newtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!! TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene

Detaljer

Krefter, Newtons lover, dreiemoment

Krefter, Newtons lover, dreiemoment Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Stivt legemers dynamikk

Stivt legemers dynamikk Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3

Detaljer

Oppsummert: Kap 1: Størrelser og enheter

Oppsummert: Kap 1: Størrelser og enheter Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk

Detaljer

FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20

FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 1) Ei kule slippes (dvs med null starthastighet) fra en høyde 2.0 m over gulvet. Hva er kulas hastighet 0.5 s etter at den ble sluppet?

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2009

Løsningsforslag Eksamen i Fys-mek1110 våren 2009 Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.

Detaljer

T 1 = (m k + m s ) a (1)

T 1 = (m k + m s ) a (1) Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi

Detaljer

6. Rotasjon. Løsning på blandede oppgaver.

6. Rotasjon. Løsning på blandede oppgaver. 6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde

Detaljer

TFY4108 Fysikk, haust 2013: Løysing til ordinær eksamen 18. des.

TFY4108 Fysikk, haust 2013: Løysing til ordinær eksamen 18. des. TFY408 Fysikk, haust 0: Løysing til ordinær eksamen 8. des. Oppgåve Den følgjande diskusjonen av denne oppgåva er ganske lang. Grunnen er at for fleire av deloppgåvene diskuterer eg alternative løysingsmetodar.

Detaljer

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N =

5) Tyngdens komponent langs skråplanet, mg sin β, lik maksimal statisk friksjonskraft, f max = µ s N = FY1001/TFY4145 Mekanisk Fysikk ksamen 9. august 2016 Løsningsforslag 1) Her har vi bevegelse med konstant akselerasjon: v = at = 9.81 0.5 m/s = 4.9 m/s. (Kula er fortsatt i fritt fall, siden h = at 2 /2

Detaljer

Obligatorisk oppgave i fysikk våren 2002

Obligatorisk oppgave i fysikk våren 2002 Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger

Detaljer

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:

EKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver: Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501

Detaljer

Fasit eksamen Fys1000 vår 2009

Fasit eksamen Fys1000 vår 2009 Fasit eksamen Fys1000 vår 2009 Oppgave 1 a) Klossen A er påvirka av tre krefter: 1) Tyngda m A g som peker loddrett nedover. Denne er det lurt å dekomponere i en komponent m A g sinθ langs skråplanet nedover

Detaljer

Vektorstørrelser (har størrelse og retning):

Vektorstørrelser (har størrelse og retning): Kap..1. Kinematikk Posisjon: rt () = xtx () + yt () y + zt () z Hastighet: v(t) = dr(t)/dt = endring i posisjon per tid Akselerasjon: a(t) = dv(t)/dt = endring i hastighet per tid Vektorstørrelser (har

Detaljer

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG

FAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består

Detaljer

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k

Aristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen trekke med kraft R O =S k TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00

EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00 Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:

Detaljer

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30?

1) Hva blir akselerasjonen til en kloss som glir nedover et friksjonsfritt skråplan med helningsvinkel 30? FY1001/TFY4145 Mekanisk Fysikk Eksaen Tirsdag 16. Deseber 2014 OKMÅL OPPGVE 1: Flervalgsoppgaver (Teller 45%, 18 stk so teller 2.5% hver) 1) Hva blir akselerasjonen til en kloss so glir nedover et friksjonsfritt

Detaljer

SG: Spinn og fiktive krefter. Oppgaver

SG: Spinn og fiktive krefter. Oppgaver FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =

Detaljer

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?

Kap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst? TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn

Detaljer

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /

EKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer / Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige

Detaljer

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154

EKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte

Detaljer

FY0001 Brukerkurs i fysikk

FY0001 Brukerkurs i fysikk NTNU Institutt for Fysikk Løsningsforslag til øving FY0001 Brukerkurs i fysikk Oppgave 1 a Det er fire krefter som virker på lokomotivet. Først har vi tyngdekraften, som virker nedover, og som er på F

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001

Detaljer

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011

Løsningsforslag. Eksamen i Fys-mek1110 våren 2011 Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,

Detaljer

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010

Løysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:

Detaljer

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg

TFY4104 Fysikk Eksamen 17. august Løsningsforslag. M k = ρv = ρ 4πR 3 /3 = π /3 = 2.10kg. E) 2.10 kg TFY4104 Fysikk ksamen 17. august 2016 Løsningsforslag 1) M k = ρv = ρ 4πR 3 /3 = 7850 4π 0.0400 3 /3 = 2.10kg. ) 2.10 kg 2) Med indre radius r og ytre radius R er kuleskallets masse dvs M = ρ 4 3 π ( R

Detaljer

r+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag

r+r TFY4115 Fysikk Eksamenstrening: Løsningsforslag TFY45 Fysikk Eksamenstrening: Løsningsforslag ) I oljebransjen tilsvarer fat ca 0.59 m 3. I går var risen for WTI Crude Oil 97.44 US dollar r fat. Hva er dette i norske kroner r liter, når NOK tilsvarer

Detaljer

Løsningsforslag Eksamen i Fys-mek1110 våren 2008

Løsningsforslag Eksamen i Fys-mek1110 våren 2008 Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >

Detaljer

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl

LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag 3. desember 2007 kl NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Jon Andreas Støvneng Telefon: 7 59 6 6 / 45 45 55 LØSNINGSFORSLAG TIL EKSAMEN I TFY4160 BØLGEFYSIKK Mandag.

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte

Detaljer

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009

Løsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009 Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen

Detaljer

TFY4109 Fysikk Eksamen 9. august Løsningsforslag

TFY4109 Fysikk Eksamen 9. august Løsningsforslag TFY4109 Fysikk ksamen 9. august 2016 Løsningsforslag 1) 1 TU = 1055 J; 200 cal = 837 J; 0.0004 kwh = 1440 J; 10 20 Ry = 218 J; 10 22 ev = 1600 J. Sistnevnte er altså mest energi. 2) Periode T = 1/500 minutt

Detaljer

EKSAMENSOPPGAVE I FYS-1001

EKSAMENSOPPGAVE I FYS-1001 side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler

Detaljer

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014

TFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014 TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark

Detaljer

Løysingsframlegg TFY 4104 Fysikk Hausten 2009

Løysingsframlegg TFY 4104 Fysikk Hausten 2009 NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 4104 Fysikk Hausten 2009 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon: 73593131 Mandag 30

Detaljer

Norges Informasjonstekonlogiske Høgskole

Norges Informasjonstekonlogiske Høgskole Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember

Detaljer

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG

EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG Tisdag 18. desembe 01 kl. 0900-100 Oppgave 1. Ti flevalgsspøsmål. (Telle

Detaljer

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22

EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7. mai 2001 Tid: Sensur: Uke 22 NORGES TEKNISK- NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK [bokmål] Faglig kontakt under eksamen: Navn: Helge Redvald Skullerud Tlf: 73593625 EKSAMEN I FAG SIF 4002 FYSIKK Mandag 7 mai 2001 Tid:

Detaljer

Impuls, bevegelsesmengde, energi. Bevaringslover.

Impuls, bevegelsesmengde, energi. Bevaringslover. Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde

Detaljer

FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten Veiledning: oktober. Innleveringsfrist: Mandag 13. oktober kl 14.

FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten Veiledning: oktober. Innleveringsfrist: Mandag 13. oktober kl 14. FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 2014. Veiledning: 7. - 10. oktober. Innleveringsfrist: Mandag 13. oktober kl 14. Øving 6 Obligatorisk øving som i stor grad er basert

Detaljer

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 1.

TFY4106 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving 1. TFY406 Fysikk. Institutt for fysikk, NTNU. Løsningsforslag til øving. Oppgave. Det er 000 L i m 3, dvs 0 6 ml i m 3. Dermed: 568 ml = 568 0 6 m 3 = 5.68 0 4 m 3. Riktig svar: C. Oppgave. UP = 473 ml /

Detaljer

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006

Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Løsningsskisse EKSAMEN i FYSIKK, 30. mai 2006 Oppgave 1. Flervalgsspørsmål Fasit 1. C 2. D 3. D 4. B 5. C 6. E 7. E 8. B 9. E 10. D 11. B 12. D Løsningsforslag Oppgave 2 a) Reversibel prosess: En prosess

Detaljer

Løsningsforslag til eksamen i FYS1000, 13/6 2016

Løsningsforslag til eksamen i FYS1000, 13/6 2016 Løsningsforslag til eksamen i FYS1000, 13/6 2016 Oppgave 1 a) Sola skinner både på snøen og på treet. Men snøen er hvit og reflekterer det meste av sollyset. Derfor varmes den ikke så mye opp. Treet er

Detaljer

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL. EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk Side 1 av 10 NORGES TEKNISK NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Navn: Anne Borg Tlf. 93413 BOKMÅL EKSAMEN I EMNE TFY4115 Fysikk Elektronikk og Teknisk kybernetikk

Detaljer

Kap. 9+10 Rotasjon av stive legemer

Kap. 9+10 Rotasjon av stive legemer Kap. 9+10 Rotasjon a stie legemer Vi skal se på: Vinkelhastighet, inkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment

Detaljer

TFY4106 Fysikk Eksamen August 2015

TFY4106 Fysikk Eksamen August 2015 TFY4106 Fysikk Eksamen August 2015 1) Hyttegulvet skal renoveres, og du trenger planker med dimensjon (tverrsnitt) 48 mm 148 mm og massetetthet 400 kg/m 3. Du har en tilhenger som tåler et lass på 600

Detaljer

Repetisjon

Repetisjon Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t

Detaljer

TFY4104 Fysikk Eksamen 28. november Løsningsforslag. L = V/A = m/ρπ(d/2) 2 = / π ( /2) 2 = 4.

TFY4104 Fysikk Eksamen 28. november Løsningsforslag. L = V/A = m/ρπ(d/2) 2 = / π ( /2) 2 = 4. TFY4104 Fysikk ksamen 28. november 2016 Løsningsforslag 1) L = V/ = m/ρπ(d/2) 2 = 1.0 10 3 /10.5 10 3 π (55 10 9 /2) 2 = 4.0 10 7 m 2) Med startposisjon x = y = 0 har vi ligningene for konstant akselerasjon:

Detaljer

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006

Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Løsningsforslag til MEF1000 Material og energi - Kapittel 2 Høsten 2006 Utarbeidet av A. E. Gunnæs. Revidert (TN) Aug. 06. Øvelse 2-4* a) Totale bevegelsemengde til de to bilene er P = 0 siden vi adderer

Detaljer

TFY4104 Fysikk Eksamen 28. november 2016 Side 1 av 22

TFY4104 Fysikk Eksamen 28. november 2016 Side 1 av 22 TFY4104 Fysikk Eksamen 28. november 2016 Side 1 av 22 1) ed moderne nanoteknologi er det mulig å lage svært tynne metalltråder. Hva blir total lengde av tråder av rent sølv med diameter 55 nm og total

Detaljer

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.

Theory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv

Detaljer

Fysikk-OL Norsk finale 2004

Fysikk-OL Norsk finale 2004 Universitetet i Oslo Norsk Fysikklærerforening Fysikk-OL Norsk finale 004 3. uttakingsrunde Fredag. april kl 09.00 til.00 Hjelpeidler: abell/forelsaling og loeregner Oppgavesettet består av 6 oppgaver

Detaljer

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid

7.201 Levende pendel. Eksperimenter. I denne øvingen skal du måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid RST 1 7 Arbeid og energi 38 7.201 Levende pendel måle med bevegelsessensor beregne mekanisk energitap og friksjonsarbeid Eksperimenter Ta en bevegelsessensor og logger med i gymnastikksalen eller et sted

Detaljer

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på:

Flervalgsoppgave. Arbeid og energi. Energibevaring. Kollisjoner REP Konstant-akselerasjonslikninger. Vi har sett på: Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt: E p

Detaljer

Eksamensoppgave i TFY4108 Fysikk

Eksamensoppgave i TFY4108 Fysikk Institutt for fysikk Eksamensoppgave i TFY4108 Fysikk Faglig kontakt under eksamen: Førsteamanuensis John Ove Fjærestad Tlf: 97 94 00 36 Eksamensdato: 16 august 2013 Eksamenstid (fra-til): 9-13 Hjelpemiddelkode/Tillatte

Detaljer

Fysikkolympiaden 1. runde 27. oktober 7. november 2014

Fysikkolympiaden 1. runde 27. oktober 7. november 2014 Norsk Fysikklærerforening i samarbeid med Skolelaboratoriet Universitetet i Oslo Fysikkolympiaden 1. runde 7. oktober 7. november 014 Hjelpemidler: Tabell og formelsamlinger i fysikk og matematikk Lommeregner

Detaljer

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8)

Vi skal se på: Lineær bevegelsesmengde, kollisjoner (Kap. 8) kap8.ppt 03.0.203 TFY445/FY00 ekanisk fysikk Størrelser og enheter (Kap ) Kinematikk i en, to og tre dimensjoner (Kap. 2+3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons

Detaljer

Kortfattet løsningsforslag / fasit

Kortfattet løsningsforslag / fasit 1 Kortfattet løsningsforslag / fasit Eksamen i: YS-MEK 1110 - Mekanikk / YS-ME 1110 - Mekanikk for ME Eksamensdag: redag 9. juni 006 Det tas forbehold om at løsningsforslaget kan inneholde feil! Denne

Detaljer

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28

FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 FY1001/TFY4145 Mekanisk Fysikk Eksamen 18. desember 2015 BOKMÅL Side 1 av 28 1) Ei lita metallkule slippes (dvs med null starthastighet) fra fjerde etasje i Realfagbygget. Hvor lang tid tar det før kula

Detaljer

Løsningsforslag for øvningsoppgaver: Kapittel 14

Løsningsforslag for øvningsoppgaver: Kapittel 14 Løsningsforslag for øvningsoppgaver: Kapittel 14 Jon Walter Lundberg 15.05.015 14.01 En kule henger i et tau. Med en snor som vi holder horisontalt, trekker vi kula mot høyre med en kraft på 90N. Tauet

Detaljer

Matematikk og fysikk RF3100

Matematikk og fysikk RF3100 DUMMY Matematikk og fysikk RF3100 Løsningsforslag 7. april 015 Tidsfrist: 15. april 015 Oppgave 1 Her studerer vi et stivt 1 system som består av tre punktmasser m 1 1 kg, m kg, m 3 3 kg. Ved t 0 ligger

Detaljer