MAT1120 Repetisjon Kap. 1

Størrelse: px
Begynne med side:

Download "MAT1120 Repetisjon Kap. 1"

Transkript

1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer og lineære kombinasjoner Lineæravbildninger fra R n til R m Lineære likningssystemer Lineær uavhengighet av vektorer 1 / 23

2 Matriser La m og n være naturlige tall. En (reell) m n matrise A er et rektangulært objekt med m rader og n kolonner av reelle tall av typen a 11 a 12 a 1n a 21 a 22 a 2n A =.... a m1 a m2 a mn Addisjon av matriser og mult. av matrise med skalar To m n matriser A og B kan legges sammen (koeffisientvis) til en ny m n matrise A + B. En m n matrise A kan ganges med et (reelt) tall c (koeffisientvis) til en ny m n matrise c A. Disse to operajonene tilfredstiller vanlige regneregler; vi har f.eks. at c (A + B) = c A + c B, osv. 2 / 23

3 Vektorer x 1 x 2 En m 1 matrise x = kalles en kolonnevektor.. x m Ofte sier vi bare vektor istedet for kolonnevektor. Av typografiske hensyn skriver vi noen ganger x = (x 1, x 2,, x m ) for å angi en kolonnevektor x. Mengden av alle m 1 kolonnevektorer betegnes med R m. Slike vektorer kan legges sammen, og ganges med reelle tall. 3 / 23

4 En m n matrise A kan angies ved sine kolonnevektorer. Vi skriver da A = [ ] a 1 a 2 a n når a 1, a 2,, a n er kolonnevektorene til A. En 1 n matrise [y 1 y 2 y n ] kalles en radvektor. En matrise kan også angies ved sine radvektorer. 4 / 23

5 Lineære kombinasjoner La a 1, a 2,, a n R m og c 1, c 2,, c n R. Vektoren b i R m gitt ved b = c 1 a 1 + c 2 a c n a n kalles en lineær kombinasjon av vektorene a 1, a 2,, a n (med vektene c 1, c 2,, c n ). Vi lar W = Span{a 1,, a n } betegne mengden av alle slike lineære kombinasjoner, og sier da at W er utspent av a 1,, a n (eller at a 1, a 2,, a n utspenner W ). Vi har f.eks. at a 1, a 2,, a n utspenner R m når Span{a 1, a 2,, a n } = R m m.a.o. når enhver vektor i R m er en lin. komb. av a 1, a 2,, a n. 5 / 23

6 Eksempel. For j = 1,, m, la e j = (0,, 0, 1, 0,, 0) være vektoren i R m der alle komponentene er 0 ere, bortsett fra at j-te komponent er 1. Da er Span{e 1, e 2,, e m } = R m fordi hvis b = (b 1, b 2,, b m ) R m, så er b = b 1 e 1 + b 2 e b m e m Span{e 1, e 2,, e m }. Så e 1, e 2,, e m utspenner R m. 6 / 23

7 Eksempel. La a 1, a 2 være vektorer i R 3, begge forskjellige fra nullvektoren. Sett W = Span{a 1, a 2 }. Hvis a 1 og a 2 er parallelle, er W = Span{a 1 } = Span{a 2 } så W er linjen gjennom origo utspent av a 1 (eller a 2 ). Hvis a 1 og a 2 ikke er parallelle, er W planet gjennom origo utspent av a 1 og a 2. En normalvektor n til planet W gir da en vektor i R 3 som ikke er med i W. Så {a 1, a 2 } utspenner W, men ikke R 3. 7 / 23

8 Produkt av en matrise og en vektor La A være en m n matrise gitt ved A = [a 1 a 2 a n ] og la x R n være gitt ved x = (x 1, x 2,, x n ). Produktet av A og x er vektoren A x i R m gitt ved x 1 x 2 A x = [a 1 a 2 a n ]. = x 1 a 1 + x 2 a x n a n. x n 8 / 23

9 Merk : Produktet av en 1 n radvektor R = [r 1 r 2 r n ] og en x 1 x 2 vector x =. i Rn gir prikkproduktet av vektorene: x n x 1 x 2 R x = [r 1 r 2 r n ]. = r 1x 1 + r 2 x r n x n x n Produktet av A med x kan også beskrives slik: Den i-te komponenten til vektoren A x får vi ved å gange den i-te radvektoren til A med x. 9 / 23

10 Lineære avbildninger En funksjon T : R n R m kalles en lineær avbildning dersom den tilfredstiller at T (x + y) = T (x) + T (y) T (c x) = c T (x) for alle x, y R n og alle c R. Eksempel. La A være en m n matrise. Da er funksjonen T A : R n R m definert for hver x R n ved T A (x) = A x en lineær avbildning. 10 / 23

11 Enhver lineær avbildning fra R n til R m kan angies på formen T A : Teorem. La T : R n R m være en lineær avbildning. Da fins det nøyaktig en m n matrise A som er slik at T (x) = A x for alle x R n, dvs som er slik at T = T A. Matrisen A kalles standardmatrisen til T og er gitt ved A = [T (e 1 ) T (e 2 ) T (e n )] Eksempel. Hvis T : R 2 R 2 er rotasjonen (mot klokka) om origo med en vinkel ϕ, så er standardmatrisen til T gitt ved [ ] cos ϕ sin ϕ A = [T (e 1 ) T (e 2 )] =. sin ϕ cos ϕ For andre geometriske eksempler på lineæravbildninger, se i avsnittene 1.8 og 1.9 i boka. 11 / 23

12 Lineære likningssystemer Betrakt et lineært likningssystem med m likninger i variablene x 1, x 2,, x n (med reelle koeffisienter): a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 a m1 x 1 + a m2 x a mn x n = b m Den utvidede matrisen til systemet er da matrisen a 11 a 12 a 1n b 1 a 21 a 22 a 2n b 2 M =..... a m1 a m2 a mn b m 12 / 23

13 Selve koeffisientmatrisen til systemet er m n matrisen a 11 a 12 a 1n a 21 a 22 a 2n A =..... a m1 a m2 a mn Med b = (b 1, b 2,, b m ) kan systemet angies på matriseform ved A x = b. Lar vi A = [a 1 a 2 a n ] kan systemet angies på vektorform ved x 1 a 1 + x 2 a x n a n = b Vi har derfor at systemet er konsistent (dvs har minst en løsning) hvis og bare hvis b Span{a 1, a 2,, a n }. 13 / 23

14 Et lineært likningssystem kan løses ved å omforme det til et enklere system med samme løsningsmengde. Den utvidede matrisen M omformes da ved (elementære) radoperasjoner. Det finnes tre slike operasjoner : bytt om to rader multipliser en rad med et tall 0 legg et multippel av en rad til en annen rad Ved hjelp av rad-reduksjon algoritmen (også kalt Gauss-Jordan eliminasjonsmetoden) kan man omforme en matrise ved radoperasjoner til en matrise som er på redusert trappeform. 14 / 23

15 En matrise R er på redusert trappeform dersom: alle eventuelle nullrader i R er samlet i bunnen. i alle de andre radene er første tall (fra venstre) som ikke er null en 1 er. Disse 1 ere kalles pivoter. en pivot i en rad (som ikke er den første raden) ligger til høyre for pivoten i raden over. enhver kolonne i R som inneholder en pivot består ellers av bare 0-ere. En kolonne i R som inneholder en pivot kalles en pivotkolonne. Rad-reduksjonsalgoritmen repeteres best på egenhånd. (Se eksempel i boka). MATLAB beregner den reduserte trappeformen til en matrise M ved kommandoen rref(m). 15 / 23

16 Betrakt et system A x = b, med utvidet matrise M = [A b]. Sett R = rref(m). Vi har da følgende tre muligheter: systemet er inkonsistent, dvs uten løsninger: R inneholder da en rad av typen [0 0 1]. (Det svarer til at siste kolonne i R er en pivotkolonne). systemet har nøyaktig en løsning: alle kolonnene i R unntatt den siste er da pivotkolonner. (Systemet har ingen frie variabler). systemet har uendelig mange løsninger: det fins da minst en kolonne i tillegg til den siste som ikke er en pivotkolonne; variablene som svarer til slike kolonner kalles frie variabler. 16 / 23

17 To nyttige resultater: Teorem. La A være en m n matrise. Følgende påstander er ekvivalente: (1) Systemet A x = b er konsistent for enhver b i R m (2) Kolonnene til A ustpenner R m (3) Det fins en pivot i alle radene til rref(a). Teorem. Anta at vektorene a 1, a 2,, a n i R m utspenner R m. Da er m n. 17 / 23

18 Lineær uavhengighet Vektorene a 1, a 2,, a n i R m kalles lineært uavhengige dersom vektorlikningen x 1 a 1 + x 2 a x n a n = 0 har bare den trivielle løsningen x 1 = x 2 = = x n = 0. I motsatt fall kalles a 1, a 2,, a n for lineært avhengige; ved å sette inn en ikke-triviell løsning i likningen ovenfor får vi da en lineær avhengighetsrelasjon mellom vektorene. En endelig delmengde S av R m kalles lineært uavhengig dersom dens vektorer er lineært uavhengige. I motsatt fall sier vi at S er lineært avhengig. Merk: hvis n 2, så er a 1, a 2,, a n lineært avhengige hvis og bare hvis minst en av a j -ene kan skrives som en lineær kombinasjon av de andre vektorene. 18 / 23

19 Betrakt nå A = [a 1 a 2 a n ]. Vektorlikningen kan da skrives som x 1 a 1 + x 2 a x n a n = 0 A x = 0 Et slikt homogent system er alltid konsistent siden nullvektoren er alltid en løsning (den trivielle). Vi har: Teorem. Følgende påstander er ekvivalente: (1) Vektorene a 1, a 2,, a n er lineært uavhengige (2) Systemet A x = 0 har bare den trivielle løsningen (3) Alle kolonnene i rref(a) er pivotkolonner. Teorem. Anta at a 1, a 2,, a n R m er lineært uavhengige. Da er n m. 19 / 23

20 Mer om lineære avbildninger Betrakt en lineær avbildning T : R n R m. Når er T 1-1? Når er T på R m? Minner om følgende definisjoner: La T : V W være en funksjon mellom to mengder V og W. Bildet av T er delmengden av W definert ved T (V ) = {T (v) v V }. T kalles 1-1 (eller en-entydig, eller injektiv) dersom ethvert element i T (V ) kommer fra nøyaktig ett element i V. T kalles på W (eller surjektiv) dersom T (V ) = W. 20 / 23

21 La A være standardmatrisen til en lineær avbildning T : R n R m. Vi har da T (x) = T A (x) = A x for alle x R n At T = T A er 1-1 kan beskrives slik: Ethvert konsistent system av typen A x = b har nøyaktig en løsning. Slike systemer kan ikke ha noen frie variabler: enhver kolonne i rref(a) må da være en pivotkolonne. Vi får derfor: Teorem. T = T A er 1-1 alle kolonnene i rref(a) er pivotkolonner. 21 / 23

22 Det at T = T A : R n R m er på R m betyr at likningen T (x) = b har løsninger uansett valg av b R m, dvs at systemet A x = b er konsistent for enhver b R m. Ved et tidligere teorem får vi dermed: Teorem. Avbildningen T = T A er på R m alle radene i rref(a) inneholder en pivot kolonnevektorene til A utspenner R m. 22 / 23

23 En oppsummering av noen av resultatene vi har sett idag: La A være en m n matrise, A = [a 1 a 2 a n ]. La T A : R n R m være gitt ved T A (x) = A x for alle x R n. Da gjelder at a 1, a 2,, a n er lineært uavhengige i R m alle kolonnene i rref(a) er pivotkolonner T A er 1-1 systemet A x = 0 har bare den trivielle løsningen ethvert konsistent system A x = b har nøyaktig en løsning a 1, a 2,, a n utspenner R m alle radene i rref(a) inneholder en pivot T A er på R m systemet A x = b er konsistent for enhver b R m 23 / 23

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

MAT1120 Notat 1 Tillegg til avsnitt 4.4

MAT1120 Notat 1 Tillegg til avsnitt 4.4 MAT1120 Notat 1 Tillegg til avsnitt 4.4 Dette notatet tar utgangspunkt i Teorem 8 fra avsnitt 4.4 i boka. For ordens skyld gjentar vi dette teoremet her: Teorem 8 [Avsn. 4.4]: Anta at B = {b 1,..., b n

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Lineære ligningssystem og matriser

Lineære ligningssystem og matriser Lineære ligningssystem og matriser E.Malinnikova, NTNU, Institutt for matematiske fag September 15, 2009 Lineære ligningssystem Vi har et ligningssystem av m ligninger med n ukjente x 1,..., x n som kan

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise

Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise Lineære ligningssystem; Gauss-eliminasjon, Redusert echelonmatrise E.Malinnikova, NTNU, Institutt for matematiske fag 19. september 2011 Lineære ligningssystem Vi har et ligningssystem av m ligninger med

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

Mer om lineære likningssystemer, vektorer og matriser

Mer om lineære likningssystemer, vektorer og matriser Kapittel Mer om lineære likningssystemer, vektorer og matriser I dette kapittelet tar vi utgangspunkt i lineære likningssystemer, som vi lærte om i MAT, og setter dette inn i et større rammeverk, kalt

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Mer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014

Mer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014 Mer lineær algebra Kompendium i MAT Matematikk Våren 4 Inger Christin Borge Matematisk institutt, UiO Forord Dette kompendiet er skrevet til bruk i andre del av emnet MAT. I dette emnet jobber vi under

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

Oppgave 1 (25 %) - Flervalgsoppgaver

Oppgave 1 (25 %) - Flervalgsoppgaver Oppgaver og løsningsforslag for 4t eksamen 10.mai 006 i LO510D Lineær algebra med grafiske anvendelser. Fra og med oppgave skal alle svar begrunnes. Oppgave 1 (5 %) - Flervalgsoppgaver Denne oppgaven består

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Magnus Dahler Norling (magnudn@math.uio.no) September 2014 Oppgave 4.6.4 rank A = rank B = 5 (teorem 13+14). dim Nul A = n - rank A = 6-5 = 1 (teorem

Detaljer

Basis, koordinatsystem og dimensjon

Basis, koordinatsystem og dimensjon Basis, koordinatsystem og dimensjon NTNU, Institutt for matematiske fag 22.-24. oktober 2013 Basis Basis for vektorrom: En endelig mengde B = {b 1, b 2,..., b n } av vektorer i et vektorrom V er en basis

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

MAT Prøveeksamen 29. mai - Løsningsforslag

MAT Prøveeksamen 29. mai - Løsningsforslag MAT0 - Prøveeksamen 9 mai - Løsningsforslag Oppgave Sett A = 4 4 0 x 0, x = x, b =, x 0 og la v, v, v betegne kolonnevektorene til A a) Skriv A x = y som en vektorlikning x Svar : Siden A x = [v v v ]

Detaljer

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11.

Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. Generelle teoremer og denisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H. & Rorres, C.: Elementary Linear Algebra, 11. utgave Jonas Tjemsland 19. november 2014 1 Lineære likningssystemer

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 23.08.2015 Fjerde utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av linære likningsystem enkelt, men det blir fort veldig

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012.

Rom og lineæritet. Erik Bédos. Matematisk Institutt, UiO 2012. Rom og lineæritet Erik Bédos Matematisk Institutt, UiO 202. Lineær algebra er et viktig redskap i nær sagt alle grener av moderne matematikk. De fleste emnene i matematikk på masternivå bygger på en forståelse

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

6.6 Anvendelser på lineære modeller

6.6 Anvendelser på lineære modeller 6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009

Inverse matriser. E.Malinnikova, NTNU, Institutt for matematiske fag. September, 2009 Inverse matriser E.Malinnikova, NTNU, Institutt for matematiske fag September, 2009 Inverse 2 2 matriser En 2 2 matrise [ ] a b A = c d er inverterbar hvis og bare hvis ad bc 0, og da er [ ] A 1 1 d b

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

Oppgaver MAT2500 høst 2011

Oppgaver MAT2500 høst 2011 Oppgaver MAT2500 høst 2011 31. oktober 2011 Oppgaver avsnitt 1 Oppgave 1. Bruk cosinussetningen til å se at definisjonen av vinkel i planet blir riktig. Oppgave 2. Vis at d(x, y) = 0 hvis og bare hvis

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Ma Linær Algebra og Geometri Øving 1

Ma Linær Algebra og Geometri Øving 1 Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 04.02.2016 Sjuende utkast Lineære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er løsing av lineære likningsystem enkelt, det benytter bare de

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU

Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Generelle teoremer og definisjoner MA1201 Lineær Algebra og Geometri - NTNU Lærebok: Anton, H & Rorres, C: Elementary Linear Algebra, 11 utgave Jonas Tjemsland 26 april 2015 4 Generelle vektorrom 41 Reelle

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007

MA1201 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3. desember 2007 Norges teknisknaturvitenskapelige universitet Institutt for matematiske fag MA101 Lineær algebra og geometri Løsningsforslag for eksamen gitt 3 desember 007 Oppgave 1 a) Vi ser på ligningssystemet x +

Detaljer

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former

LP. Leksjon 5. Kapittel 5: dualitetsteori. motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former LP. Leksjon 5 Kapittel 5: dualitetsteori motivasjon det duale problemet svak og sterk dualitet det duale til LP problemer på andre former 1 / 26 Motivasjon Til ethvert LP problem (P) er det knyttet et

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40

Høgskolen i Oslo og Akershus. x 1 +3x 2 +11x 3 = 6 2x 2 +8x 3 = 4 18x 1 +5x 2 +62x 3 = 40 Innlevering i BYFE/EMFE 1000 Oppgavesett 4 Innleveringsfrist: 8. mars klokka 14:00 Antall oppgaver: 3 Løsningsforslag Oppgave 1 a) Om vi tenker oss at vi spiser x 1 hg banan, drikker x hg lettmelk og spiser

Detaljer

MAT UiO mai Våren 2010 MAT 1012

MAT UiO mai Våren 2010 MAT 1012 200 MAT 02 Våren 200 UiO 0-2. 200 / 48 200 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar)

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

5.6 Diskrete dynamiske systemer

5.6 Diskrete dynamiske systemer 5.6 Diskrete dynamiske systemer Egenverdier/egenvektorer er viktige for å analysere systemer av typen x k+1 = A x k, k 0, der A er en kvadratisk diagonaliserbar matrise. Tenker her at x k angir systemets

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT2 - Lineær algebra Onsdag 29 mai, 20, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile

MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile MAUMAT644 ALGEBRA vår 2016 Første samling Runar Ile 1 Introduksjon: Grupper og ringer Ringer En ring er et sted hvor du kan addere, subtrahere og multiplisere. Hvis du også kan dividere kalles ringen for

Detaljer

Pensum i lineæralgebra inneholder disse punktene.

Pensum i lineæralgebra inneholder disse punktene. Pensum i lineæralgebra inneholder disse punktene. 1) Løsning av lineære ligningssystem. Finne løsning hvis den fins og også avgjøre om løsning ikke fins. Entydig, flertydig løsning. 2) Overføre en matrise

Detaljer

Lineær algebra. H. Fausk

Lineær algebra. H. Fausk Lineær algebra H. Fausk 11.02.2016 Sjuende utkast Flere lineære likninger som samtidig skal oppfylles kalles lineære likningssystem. I prinsippet er løsing av lineære likningsystem enkelt, det benytter

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009

Matriseoperasjoner. E.Malinnikova, NTNU, Institutt for matematiske fag. September 22, 2009 Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2009 Addisjon av matriser Hvis A = [a ij ] og B = [b ij ] er matriser med samme størrelse, så er summen A + B matrisen

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer