Lineære likningssystemer

Save this PDF as:
 WORD  PNG  TXT  JPG

Størrelse: px
Begynne med side:

Download "Lineære likningssystemer"

Transkript

1 Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så må løses. I lineær algebra studerer vi spesielt systemer av lineære likninger og deres løsninger. For eksempel kan problemet med å finne et tall slik at π ganger tallet er 12 gjøres om til en likning ved å kalle tallet vi vil finne for x. Problemet blir nå å finne x der x oppfyller likningen πx = 12. I likningsspråket kalles x en variabel (den ukjente i problemet vi vil løse). Vi må også kunne behandle likninger med flere variable, eller problemer med flere ukjente om man vil: For eksempel kan vi tenke på fire tall slik at summen av dem er 12. Hvis vi kaller de ukjente tallene for x 1, x 2, x 3 og x 4, blir problemet vårt gjort om til likningen x 1 + x 2 + x 3 + x 4 = 12. Begge likningene vi har sett til nå er eksempler på lineære likninger. Definisjon 1.1 La n N. En (reell) lineær likning i n variable (eller ukjente) x 1, x 2,..., x n er en likning på formen a 1 x 1 + a 2 x a n x n = b 1

2 der a 1, a 2,..., a n og b er (reelle) konstanter. Tallene a 1, a 2,..., a n kalles koeffisientene til likningen. Matematikk er den mest eksakte vitenskapen vi har. Og uten definisjonene klarer vi oss ikke lenge. De sier nemlig nøyaktig hva vi mener med de ulike begrepene vi jobber med. For at vi skal kalle en likning lineær, kan vi kun ha ledd der vi ganger variablene med konstanter (også kalt skalarer) og i tillegg har vi lov til å ta summer av slike ledd. Lineære likninger inneholder dermed ikke produkter eller røtter av variablene, og variablene er heller ikke argumenter for for eksempel trigonometriske, logaritmiske eller eksponentiale funksjoner. Dette vil videre si at problemer der for eksempel ordet produkt dukker opp, slik som Finn to tall slik at produktet er 5 ikke vil gi opphav til lineære likninger. Areal- og volum-problemer er andre eksempler som involverer produkter av de ukjente. Eksempel 1.2 Likningen 5x1 + x 2 3x 3 = 0 er en lineær likning i x 1, x 2 og x 3 fordi den er på formen a 1 x 1 +a 2 x 2 +a 3 x 3 = b der a 1, a 2, a 3 og b er reelle konstanter (a 1 = 5, a 2 = 1, a 3 = 3 og b = 0). Likningen 4x 1 x 2 + 4x 3 + x 3 4 = x 1 er ikke lineær, siden vi har leddet x 3 4 som ikke er på formen a 4 x 4 for en reell konstant a Vektorer og n-tupler Før vi går løs på løsninger og anvendelser av lineære likninger, skal vi definere noen begreper. Definisjon 1.3 La n være et naturlig tall. Et n-tuppel, skrevet x = (x 1,..., x n ), er n tall ordnet i en bestemt rekkefølge. 2

3 Eksempel 1.4 Tallene 1, 2, 3 og 4 kan danne flere 4-tupler. Når vi skriver 4-tuppelet (1, 3, 2, 4) har vi bestemt at 1 er det første tallet, 3 er det andre, 2 det tredje og 4 det fjerde tallet. Et 1-tuppel (x 1 ) gir oss et tall, dvs. geometrisk får vi et punkt på tallinjen R. Et 2-tuppel (x 1, x 2 ) gir oss et punkt i planet (skrives R 2 ), som er 2- dimensjonalt. Matematikere er ikke redde for å generalisere, og snakker gjerne om det n-dimensjonale rommet R n. Det er mengden av alle n-tupler, dvs. R n = {(x 1,..., x n ): x i R} som leses R i n-te er lik mengden av n-tupler x 1 opp til x n der x i -ene er elementer i R. Vi må kunne regne med n-tupler, og addisjon av n-tupler og multiplikasjon av n-tupler med konstanter (de lineære regneoperasjonene) skal gi oss nye n-tupler. Det bringer oss til følgende definisjon. Definisjon 1.5 La x = (x 1,..., x n ) og y = (y 1,..., y n ) være to n-tupler og la a være en konstant i R. Vi definerer x + y = (x 1 + y 1,..., x n + y n ); ax = (ax 1,..., ax n ). Vi kan ikke addere et m-tuppel og et n-tuppel hvis m n. Eksempel 1.6 La x = (5, 3, 8, 2) og y = (7, 6, 1, 0). Da er x 1y 2 = (5, 3, 8, 2) 1 (7, 6, 1, 0) 2 = (5, 3, 8, 2) + ( 7, 3, 1, 0) 2 2 = ( 3 2, 0, 15 2, 2), som er et nytt 4-tuppel. Vi har bruk for å kunne multiplisere n-tupler også. Det er flere måter å gjøre dette på, og vi skal se på følgende produkt: 3

4 Definisjon 1.7 La x = (x 1,..., x n ) og y = (y 1,..., y n ) være to n-tupler. Vi definerer skalarproduktet av x og y som x y = x 1 y x n y n. Vi ser at skalarproduktet ikke gir oss noe nytt n-tuppel, men et tall (en skalar, derav navnet). Eksempel 1.8 La x = (5, 3, 8, 2) og y = (7, 6, 1, 0). Da er x y = (5, 3, 8, 2) (7, 6, 1, 0) = ( 2) 0 = = 61, så skalarproduktet av to 4-tupler gir oss et 1-tuppel (ett tall) i R. For dere som har møtt vektorer før, vil nok regningene med n-tupler virke litt kjente. I 2MX lærte dere å regne med vektorer i planet, og at en vektor er et rett linjestykke med en retning. En vektor i planet (R 2 ) kan sees på som et 2-tuppel. Forklaring: En vektor i R 2 skrives gjerne x = [x 1, x 2 ], mens 2-tuppelet skrives x = (x 1, x 2 ). Geometrisk kan 2-tuppelet x tegnes som et punkt i R 2. Dette punktet gir oss en vektor x ved at vi tegner linjestykket fra origo ut til punktet x og følger retningen fra origo langs linjestykket. Omvendt, hvis vi har en vektor x i planet, parallellforskyver vi linjestykket slik at startpunktet på linjestykket i forhold til retningen blir liggende i origo. Da vil endepunktet på linjestykket gi oss punktet x. Her er en figur til forklaringen: x x = (x 1, x 2 ) 2 x 0 x 1 4

5 Ved å bruke analogien til 2-tupler vil vi tenke på n-tupler som vektorer i R n. Noen ganger er det mest hensiktsmessig å bruke ordet tuppel (når vi fokuserer på mengder av ordnede tall), mens andre ganger (faktisk veldig ofte) vil ordet vektor dukke opp. Vi skal møte søkevektorer, svarvektorer, egenvektorer, kolonnevektorer og radvektorer. De kunne godt hatt navn søketuppel osv. Vi tar også med at vektoren (eventuelt tuppelet) 0 = (0,..., 0) kalles nullvektoren. 1.3 Løsningsmengde og parameterfremstilling Hvordan løser vi lineære likninger? Hvordan finner vi x i likningen πx = 12? Den som leter, den finner, og blant tallene våre finner vi at x = 12 passer inn π i likningen. Det finnes ingen andre tall som oppfyller likningen. Altså var det tallet 12 vi tenkte på i starten av kapittelet. Dette er forøvrig diameteren i π en sirkel med omkrets 12. Hva med løsningen av likningen x 1 + x 2 + x 3 + x 4 = 12? (1.1) La oss først definerer hva vi mener med en løsning av en lineær likning: Definisjon 1.9 En løsning av en lineær likning a 1 x 1 + a 2 x a n x n = b er et n-tuppel (s 1, s 2,..., s n ) slik at likningen er oppfylt når vi setter x 1 = s 1, x 2 = s 2,..., x n = s n. Mengden av alle løsninger kalles løsningsmengden, eller den generelle løsningen, til likningen. Eksempel 1.10 For likningen πx = 12 er løsningsmengden { 12 } siden likningen er oppfylt når vi setter x = 12 og det er den eneste løsningen. π π 5

6 Bemerkning 1.11 Bruken av {}-parentesene i eksemplet skyldes at vi snakker om en løsningsmengde. Når vi kun har én løsning, kan de gjerne droppes. Hva med de fire tallene hvorav summen er 12 i likning (1.1)? Her har vi flere løsninger. For eksempel er 4-tuppelet (1, 1, 1, 9) en løsning, siden likningen er oppfylt når vi setter x 1 = 1, x 2 = 1, x 3 = 1 og x 4 = 9. Videre har vi løsninger ( 5, 5, 11, 1), ( 1, 3, 7, 3) osv. Vi kan faktisk fortsette i det 2 2 uendelige med å finne løsninger. Hvordan kan vi presentere mengden av alle disse løsningene? La oss bestemme oss for at tallet x 1 er s 1. Vi tenker på s 1 som et symbol som kan anta alle verdier i R. Dette symbolet kalles en parameter. På denne måten kvitter vi oss med variabelen x 1 og har redusert likningen (1.1) til x 2 + x 3 + x 4 = 12 s 1. Nå leter vi etter tre tall slik at summen av dem er 12 s 1. Hvis for eksempel s 1 = 3, så er (1, 1, 7), (3, 3, 3) og ( 5, 7, 3) eksempler på løsninger. Vi har 2 2 fortsatt ikke sagt hvordan vi kan holde orden på alle disse løsningene. For det første skal vi jo finne x 2, x 3 og x 4. I tillegg kan vi velge hvilken verdi vi vil for s 1. Vi innfører en parameter for x 2 også, så kvitter vi oss med en variabel til. La parameteren s 2 erstatte x 2. Da har vi redusert likning (1.1) videre til x 3 + x 4 = 12 s 1 s 2. Fortsatt har vi samme problem som ovenfor: vi kan velge hvilke verdier vi vil for s 1 og s 2, og vi har fortsatt to variable igjen i likningen. Siden vi har to variable igjen, er det ikke usannsynlig at det hjelper å kvitte seg med enda en av dem. Så vi gir oss ikke, og innfører parameteren s 3 for x 3. Dermed er likningen (1.1) redusert til x 4 = 12 s 1 s 2 s 3. Vi kan fortsatt velge hvilke verdier vi vil for de tre parameterne, men når vi har gjort det, vet vi også hva x 4 er, dvs. vi har ikke noen ukjente igjen, men 6

7 bare parametere. Dermed kan vi presentere løsningsmengden til likningen (1.1): {(s 1, s 2, s 3, 12 s 1 s 2 s 3 ): s 1, s 2, s 3 R}. (1.2) Definisjon 1.12 Denne måten å presentere løsningsmengden til en likning på kalles en parameterfremstilling av løsningsmengden. Alternativt skriver vi at løsningsmengden (1.2) består av alle (x 1, x 2, x 3, x 4 ) slik at (x 1, x 2, x 3, x 4 ) = (s 1, s 2, s 3, 12 s 1 s 2 s 3 ) der s 1, s 2, s 3 R. Vi får altså alle løsninger av (1.1) ved å velge forskjellige verdier for s 1, s 2 og s 3. Dette gir uendelig mange løsninger. For eksempel kan vi velge s 1 = 1, s 2 = 1, s 3 = 1, som gir oss 4-tuplet (1, 1, 1, 9). Generelt ser vi at alle 4-tupler (s 1, s 2, s 3, 12 s 1 s 2 s 3 ) passer inn i likningen x 1 +x 2 +x 3 +x 4 = 12 siden s 1 + s 2 + s 3 + (12 s 1 s 2 s 3 ) = 12. Bemerkning 1.13 En parameter er også en variabel, men den varierer innenfor hvert enkelt problem vi studerer. Det er altså en forskjell på en variabel og en parameter annet enn at den ene heter x og den andre heter s. Vi kan tenke på en parameter som en variabel som har fått en spesiell rolle. Vi vil treffe både varible og parameter utover i kurset, og vil påpeke parameternes rolle i de ulike problemene vi studerer. Eksempel 1.14 For å finne løsningsmengden til likningen 5x 1 + 3x 2 = 15, løser vi ut for en av variablene, og erstatter denne med en parameter (vi har en likning med to ukjente, og har ikke nok informasjon til å finne bare en løsning): x 1 = x 2 7

8 Ved å sette x 2 = s 2 får vi at løsningsmengden er {(3 3 5 s 2, s 2 ): s 2 R}. (1.3) Vi ser at vi startet med en likning med to variable (der vi bruker x-navn ), men for å presentere løsningen av likningen trenger vi bare én parameter (til dette bruker vi s-navn ). Bemerkning 1.15 Det fins uendelig mange parameterfremstillinger for én og samme mengde dersom mengden er uendelig stor. Eksempel 1.16 I Eksempel 1.14 kan vi løse ut for x 2 istedenfor x 1. Da får vi x 2 = x 1. Vi setter x 1 = s 1. En annen parameterfremstilling av løsningsmengden blir da {(s 1, s 1): s 1 R}. (1.4) Hvis vi har veldig lyst, kan vi lage andre parameterfremstillinger ved å multiplisere parameteren med en konstant, og dermed få uendelig mange parameterfremstillinger. For eksempel er en tredje mulighet å multiplisere s 1 i (1.4) med 3, dvs. sette x 1 = 3s 1. Da får vi {(3s 1, 5 5s 1 ): s 1 R}. (1.5) Parameterfremstillingene (1.3), (1.4) og (1.5) er alle eksempler på fremstillinger av samme mengde. Hvis det skulle spille noen rolle, hvilken skal vi velge? Vi vet at en mengde av 2-tupler gir oss punkter i planet R 2. Hvis vi fremstiller løsningsmengden geometrisk, får vi i dette tilfellet en linje (uendelig mange punkter) i (x 1, x 2 )-planet med stigningstall 5 og skjæringspunkt 3 med x 2 -aksen i punktet (0, 5). For å få frem dette tydeligst mulig, ser vi at parameterfremstillingen (1.4) kan være mest hensiktsmessig siden her er x- koordinaten en parameter, og likningen for linja leses av i y-koordinaten uten noe mer regning. 8

9 Vi minner om at dere har hatt om parameterfremstillinger av rette linjer i 2MX. 1.4 Lineære likningssystemer Akkurat som vi kan ha mange ukjente størrelser i problemet vårt, kan vi også ha flere opplysninger som gir oss ulike sammenhenger mellom de ukjente størrelsene. For eksempel kan vi ha fire tall slik at summen er 12, og i tillegg får vi vite at det ene tallet er dobbelt så stort som summen av de andre tre tallene. Dette kan vi gjøre om til likningene { L 1 : x 1 + x 2 + x 3 + x 4 = 12 (1.6) L 2 : x 1 = 2(x 2 + x 3 + x 4 ). Jo flere ekstra opplysninger vi har, jo flere likninger skal variablene oppfylle. Vi får dermed det vi kaller et likningssystem, og vi bruker en {-parentes for å samle likningene i systemet. Definisjon 1.17 En endelig mengde av lineære likninger i variablene x 1, x 2,..., x n kalles et lineært likningssystem i n variable. En løsning av et lineært likningssystem er et n-tuppel (s 1, s 2,..., s n ) slik at alle likningene i systemet er oppfylt når vi setter x 1 = s 1, x 2 = s 2,..., x n = s n. Mengden av alle løsninger kalles løsningsmengden, eller den generelle løsningen, til likningssystemet. Likningssystemene kan bli ganske kompliserte når vi har mange variable som avhenger av hverandre. Her er et eksempel: Eksempel 1.18 Vi studerer trafikken i et veinettverk mellom to punkter A og B, se figur nedenfor (en bydel i London kanskje?). Hver time kommer k biler inn til punkt A og etter hvert kommer alle de k bilene ut i punkt B. Bydelen har enveiskjørte gater, slik pilene viser, og mellom punktene A og B har vi 8 veibiter, delt opp av 3 knutepunkt C, D og E. La x i være trafikkstrømmen (målt i antall biler per time) langs veibit i. 9

10 k A x 1 x 2 D E x 5 x 8 B k x 3 x 4 x 7 C x 6 Vi kan nå sette opp lineære likninger som sier hvordan trafikken på de ulike veibitene avhenger av hverandre (siden dette er et problem som bare vil involvere summering av variable). Sammenhengene mellom veibitene er gitt av knutepunktene, og siden det er 5 knutepunkt, får vi 5 likninger: A : B : x 1 + x 2 + x 3 = k x 6 + x 7 + x 8 = k C : x 3 = x 4 + x 6 D : x 4 = x 5 + x 7 E : x 1 + x 2 + x 5 = x 8 Vi ønsker å løse dette systemet, og vi skal straks se på løsningsmetoder, både i dette og i det neste kapittelet. Du skal løse dette systemet i en av oppgavene. Kanskje bør man lage et knutepunkt til for at trafikken skal flyte bedre? Vi tar med en liten bemerkning om begrepet parameter. Størrelsen k i dette problemet kalles også en parameter, siden den har en spesiell rolle og vil variere innenfor dette problemet (den vil for eksempel variere alt etter hvilken tid på døgnet det er snakk om). Vi kan fort forestille oss at trafikken i London kan gi store likningssystemer. Eller hva med verdensøkonomien? Da kan man også sette opp kompliserte (men ofte lineære) avhengighetsforhold mellom sektorer som jordbruk, fiskeindustri, oljeindustri osv. Les (for eksempel på nettet) om Wassily Leontief, som fikk Nobelprisen i økonomi i Han drev nettopp med lineære sammenhenger innenfor store økonomiske enheter. I denne sammenhengen må vi nevne at den første Nobelprisen i økonomi (1969) gikk til nordmannen Ragnar Frisch (delt med Jan Tinbergen fra Ned- 10

11 erland), som også studerte likningssystemer, av lineære likninger og differensog differensiallikninger (de tre typene likninger vi lærer om i MAT1001!). På 1930-tallet ble disse studiene brukt til å planlegge den økonomiske politikken i Norge. Frisch har vært meget viktig for norsk økonomi. 1.5 Løsningsmetoder Vi skal løse likningssystemet (1.6), og se hvilken forskjell den ekstra opplysningen (likning L 2 ) gir oss i forhold til løsningen av likning (1.1). Vi minner om addisjonsmetoden og substitusjonsmetoden siden tankegangen her blir viktig videre: Addisjonsmetoden (Også kalt eliminasjonsmetoden.) Her eliminerer vi en eller flere av variablene i likningssystemet ved å multiplisere en av likningene i systemet med en passende konstant og legge dette multiplumet til en eller flere av de andre likningene (vi adderer likninger). Vi har systemet (1.6): { L 1 : x 1 + x 2 + x 3 + x 4 = 12 L 2 : x 1 2x 2 2x 3 2x 4 = 0 Vi kan nå velge hvilken variabel vi vil prøve å eliminere først, så det gjelder å få et overblikk over systemet som skal løses, og å være lur. Hvis vi legger 2 L 1 til L 2, får vi 2 L 1 : 2x 1 + 2x 2 + 2x 3 + 2x 4 = 24 L 2 : x 1 2x 2 2x 3 2x 4 = 0 3x 1 = 24 Dermed har vi eliminert tre av variablene, og sitter igjen med én likning i én variabel. Løsningen av likningen 3x 1 = 24 er x 1 = 8. Altså har vi funnet at tallet som er dobbelt så stort som summen av de tre andre tallene må være 8. Hva med de tre andre tallene? Vi har funnet at x 1 må være 8, så 11

12 likningssystemet er nå redusert til { L 1 : x 2 + x 3 + x 4 = 4 L 2 : 2x 2 2x 3 2x 4 = 8. La oss fortsette med addisjonsmetoden. Hvis vi legger 2 L 1 til L 2, får vi utsagnet 0 = 0, noe som utvilsomt er riktig. Utsagnet 0 = 0 forteller oss at vi i realiteten kun har én likning, siden begge likningene sier det samme. Vi trenger altså ikke den ekstra opplysningen L 2 gir oss, for den gir oss akkurat samme informasjon som likning L 1. Dermed vil likningssystemet vårt bare bestå av L 1 : x 2 + x 3 + x 4 = 4, dvs. vi har tre tall slik at summen er 4. Da har vi redusert det opprinnelige problemet til et problem av samme type som likning (1.1), og igjen innfører vi parametere for to av variablene. Dermed blir løsningen av likningssystemet (1.6) (x 1, x 2, x 3, x 4 ) = (8, s 2, s 3, 4 s 2 s 3 ) der s 2, s 3 R. Vi har fortsatt uendelig mange løsninger, siden vi kan velge hvilke verdier vi vil for både s 2 og s 3 (vi kunne godt ha kalt parameterne for s 1 og s 2 eller noe annet, men det er oversiktlig å følge indekseringen i variablene). Den ekstra opplysningen vi fikk (likning L 2 ) har gjort at vi ikke har så stor frihet når det gjelder å finne løsninger. For eksempel er (1, 1, 1, 9) ikke lenger en løsning, mens (8, 2, 1, 1) er en løsning (ved å velge s 2 = 2 og s 3 = 1). Systemet vi ser på har altså løsninger. Vi sier at likningssystemet er konsistent, dvs. at det gir mening. 12

13 Definisjon 1.19 Et lineært likningssystem kalles konsistent hvis det har minst én løsning. Et lineært system som ikke har noen løsninger kalles inkonsistent. Hadde det for eksempel stått 5 istedenfor 4 i L 1, hadde vi fått utsagnet 0 = 2, som er galt. Da ville systemet vært inkonsistent, dvs. systemet har ingen løsninger. Det betyr at hvis vi innfører en tilleggsopplysning som sier at summen av de andre tre tallene er 5, så har vi ikke noen løsninger av problemet. Substitusjonsmetoden Når vi bruker denne metoden løser vi ut for en av variablene i en av likningene og bytter ut (substituerer) denne variabelen med uttrykket vi får i alle de andre likningene. La oss se på systemet (1.6) igjen: { L 1 : x 1 + x 2 + x 3 + x 4 = 12 L 2 : x 1 2x 2 2x 3 2x 4 = 0 Vi kan velge hvilken variabel vi ønsker å bytte ut. Det er forøvrig her det matematiske talentet gjerne kommer inn (så lenge vi har en oppskrift går ting greit, men når vi skal ta valg er det noen valg som er bedre enn andre, da de ofte er tidsbesparende og/eller elegante!). Vi velger å bruke L 2, som gir x 1 = 2x 2 +2x 3 +2x 4. Bytter vi ut x 1 i L 1, får vi likningen 3x 2 + 3x 3 + 3x 4 = 12, som er det samme som likningen x 2 +x 3 +x 4 = 4. Vi kan videre sette inn 4 for x 2 +x 3 +x 4 i L 1, og får at x 1 = 8. Dermed har vi redusert likningssystemet til akkurat de samme likningene som ved å bruke addisjonsmetoden, og vi får (naturligvis) samme svar. Vi ser at så lenge vi ikke har nok informasjon til å bestemme en nøyaktig løsning på problemet vårt, for eksempel når vi har flere variable enn vi har likninger, må vi innføre parametere for å presentere den generelle løsningen til problemet. 13

14 Bemerkning 1.20 Hvis vi reduserer systemet vårt til én likning med n variable, må vi innføre n 1 parametere. Disse kan vi fritt velge verdier for, og når vi har gjort det, er verdien til den siste variabelen bestemt. Hvilke av de n 1 variablene som skal erstattes med en parameter, kan vi velge fritt. Dessuten kan vi manipulere med parameterne alt etter hvordan vi ønsker at løsningene skal se ut (lovlige manipuleringer er å multiplisere med konstanter og summere parametere). La oss løse et likningssystem med tre likninger og tre ukjente (der vi forøvrig ikke kommer til å trenge en parameter i løsningene fordi vi får nøyaktig én løsning): Eksempel 1.21 Vi vil løse systemet L 1 : x 1 + x 2 + 2x 3 = 9 L 2 : 2x 1 + 4x 2 3x 3 = 1 L 3 : 3x 1 + 6x 2 5x 3 = 0. Strategien er å bruke en av likningene til å eliminere en variabel fra de to andre likningene (eliminere samme variabel fra begge), slik at vi får frem et system med to likninger og to ukjente. Vi velger å bruke L 1 til å eliminere x 1 fra L 2 og L 3. Det kan enten gjøres ved substitusjonsmetoden ved å erstatte x 1 med 9 x 2 2x 3, eller ved addisjonsmetoden der vi legger 2 L 1 til L 2 og 3 L 1 til L 3. Vi velger den siste metoden, og får systemet: L 1 : x 1 + x 2 + 2x 3 = 9 L 2 : 2x 2 7x 3 = 17 L 3 : 3x 2 11x 3 = 27 Dette likningssystemet vil ha de samme løsningene som vårt opprinnelige system (vi har bare brukt likningene som systemet oppfyller til å forenkle systemet). Nå utgjør L 2 og L 3 et system av to likninger med to ukjente, og vi bruker addisjonsmetoden (eller substitusjonsmetoden) til å eliminere x 2. Vi utfører 14

15 operasjonene 3 L 2 og 2 L 3: L 1 : x 1 + x 2 + 2x 3 = 9 L 2 : 6x x 3 = 51 L 3 : 6x 2 22x 3 = 54 (Vi har fortsatt ikke forandret på løsningsmengden ved å gjøre dette.) Vi legger så sammen L 2 og L 3 og får x 3 = 3, dvs. x 3 = 3. Så kan vi nøste oss bakover: Vi setter inn x 3 = 3 i for eksempel L 3 : 6x 2 22x 3 = 54 og får 6x 2 = , dvs. x 2 = 2. Vi setter så inn x 2 = 2 og x 3 = 3 i L 1 : x 1 + x 2 + 2x 3 = 9, og får x 1 = 9 2 6, dvs. x 1 = 1. Likningssystemet vi startet med har altså nøyaktig én løsning, nemlig (x 1, x 2, x 3 ) = (1, 2, 3). Vi skal snart se hvordan vi kan løse større likningssystemer ved å sette addisjonsmetoden inn i et større maskineri. Bemerkning 1.22 Merk at vi har brukt x 1, x 2, x 3,... x n som navn på variablene våre, men så lenge vi kun har systemer med opptil tre (eventuelt fire) variable kaller vi de ofte x, y og z (og eventuelt w). 15

16 1.6 Geometriske løsninger Vi har sett hvordan vi kan løse lineære likningssystemer algebraisk. En løsning er et n-tuppel, der n er antall variable i systemet. Vi vet at et 1-tuppel kan tolkes som et punkt på tallinjen og et 2-tuppel som et punkt i planet. Et 3-tuppel gir oss et punkt i rommet R 3. På denne måten kan vi visualisere løsningene, og se for oss hva som skjer. La oss se litt nærmere på hvordan likningssystemene kan løses geometrisk. Bemerkning 1.23 Vår geometriske visualiseringsevne stopper etter tre dimensjoner (rommet R 3 ). Vi kan derfor kun se for oss løsningsmengden til systemer med opptil tre variable. Hver likning i et lineært likningssystem med opptil tre variable representerer en lineær figur i rommet. Lineære figurer er punkter, linjer og plan. (Tegn gjerne tegninger mens du leser videre, og vær stø på hånden hvis du ikke har linjal. Vi skal ikke ha noen krumning på figurene.) Én likning med én variabel (f.eks. πx = 12) har som geometrisk løsningsmengde ett punkt på talllinjen R (dvs. én løsning). Én likning med to variable (f.eks. 5x + 3y = 15) har en linje i R 2 (dvs. uendelig mange løsninger) som sin geometriske løsningsmengde. Den generelle likningen for en linje skrives ofte på formen y = ax + b (som vi får ved å flytte y alene på venstresiden), der a er stigningstallet til linja, og b er y-verdien der linja skjærer y-aksen. Én likning med tre variable (f.eks. 4x+2y+z = 10) har som geometrisk løsningsmengde et plan i rommet R 3 (dvs. uendelig mange løsninger). Den generelle likningen for et plan er ax + by + cz = d der a, b, c og d er reelle tall (og der a, b, c ikke alle er 0). (Prøv å overbevise deg om dette ved å sette hver av variablene lik 0, for eksempel x = 0 gir by + cz = d, som er en linje i (y, z)-planet. På den måten, 16

17 ved å sette sammen mange linjer, får vi et plan. Vi skal imidlertid ikke studere plan nærmere her, for oss er det viktigste å vite at lineære likninger i tre variable gir oss plan.) Og hvis du lurer: Én likning med n variable der n 4 (f.eks. 3x 1 + 4x 2 7x 3 + 8x 4 x 5 = 1) gir oss et (n 1)-dimensjonalt plan (vi trenger n 1 parametere) i det n-dimensjonale rommet R n. Men det kan vi altså ikke forestille oss. Imidlertid får vi fortsatt uendelig mange løsninger. Når vi skal løse et likningssystem, skal vi oppfylle flere likninger på en gang. Det betyr geometrisk å finne alle skjæringspunktene mellom de lineære figurene likningene representerer. To likninger med to variable: Geometrisk løsningsmengde er skjæringspunktene mellom to linjer. Vi har tre alternativer: linjene er parallelle (ingen løsning) linjene skjærer hverandre i ett punkt (én løsning) linjene faller sammen (uendelig mange løsninger) Illustrasjon: Tre likninger med to variable: Geometrisk løsningsmengde er skjæringspunktene mellom tre linjer. Se Oppgave 3. Fire likninger med to variable, fem likninger med to variable, osv. (Utforsk!) To likninger med tre variable: Geometrisk løsningsmengde er skjæringspunktene mellom to plan. Igjen har vi tre alternativer: 17

18 planene er parallelle (ingen løsning) planene skjærer hverandre i en linje (uendelig mange løsninger) planene faller sammen (uendelig mange løsninger) Vi ser også geometrisk at når vi har flere variable enn vi har likninger, er det umulig å få kun én løsning! I dette tilfellet ser vi for eksempel at to plan ikke kan skjære hverandre i bare ett punkt. Tre likninger med tre variable: Geometrisk løsningsmengde er skjæringspunktene mellom tre plan i rommet: 18

19 a) Tre parallelle plan. Ingen løsning (ingen felles punkter). b) To parallelle plan og et skjærende tredje plan. Ingen løsning (ingen felles punkter). c) Tre plan uten felles skjæringspunkter. Ingen løsning (ingen felles punkter). d) Tre sammenfallende plan. Uendelig mange løsninger (et felles plan). e) Tre plan som skjærer i en felles rett linje. Uendelig mange løsninger (en felles rett linje). f) Tre plan som skjærer i ett punkt. Én løsning (ett felles punkt). g) Et plan parallelt med to sammenfallende plan. Ingen løsning (ingen felles punkter). h) To sammenfallende plan og et skjærende tredje plan. Uendelig mange løsninger (en felles rett linje). Dere må gjerne utforske fire likninger med tre variable, fem likninger med tre variable osv. 1.7 Et viktig resultat Vi oppsummerer observasjonene våre i et viktig resultat: Teorem 1.24 Et lineært likningssystem har enten ingen, én eller uendelig mange løsninger. For å vise dette resultatet, må vi vise at hvis vi har mer enn én løsning, så får vi uendelig mange løsninger (og ikke bare to eller tre). Geometrisk er det ikke så vanskelig å overbevise seg selv om at dette resultatet må stemme: Lineære figurer vil alltid skjære hverandre ingen, én eller uendelig mange ganger, siden figurene ikke har noen krumning. (Hvis for eksempel to linjer skjærer hverandre i to punkter, må de falle sammen i alle punkter.) 19

20 Algebraisk blir beviset mest elegant når vi har innført matriser, for da får vi en ryddig måte å holde orden på alle likningene og variablene. Bemerkning 1.25 Noen sier en entydig løsning istedenfor én løsning. Du kan blant annet treffe dette i gamle eksamensoppgaver. 1.8 Nå skal du kunne definisjonene av (dvs. hva matematikere mener med): lineære likninger, lineære likningssystem og løsningsmengden av slike, vektorer, n-tupler og skalarprodukt av vektorer, samt konsistent likningssystem regne med vektorer og n-tupler parameterfremstille løsningsmengden til et lineært likningssystem løse lineære likningssystemer ved hjelp av addisjonsmetoden og substitusjonsmetoden tolke løsningene av lineære likningssystemer i 2 og 3 dimensjoner geometrisk fortelle til alle interesserte at et lineært likningssystem kan ha enten ingen, én eller uendelig mange løsninger, og gi en geometrisk forklaring på hvorfor 20

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge

Avdeling for lærerutdanning. Lineær algebra. for allmennlærerutdanningen. Inger Christin Borge Avdeling for lærerutdanning Lineær algebra for allmennlærerutdanningen Inger Christin Borge 2006 Innhold Notasjon iii 1 Lineære ligningssystemer 1 1.1 Lineære ligninger......................... 1 1.2 Løsningsmengde

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

Lineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge

Lineær algebra. Kurskompendium, Utøya, MAT1000. Inger Christin Borge Lineær algebra Kurskompendium, Utøya, MAT1000 Inger Christin Borge 2006 Forord Dette er et kompendium skrevet til bruk i MAT1000-varianten av Utøyaseminarene, arrangert av Matematisk fagutvalg ved Matematisk

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer.

I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. Kapittel 2 Matriser I dette kapittelet skal vi studerer noen matematiske objekter som kalles matriser. Disse kan blant annet brukes for å løse lineære likningssystemer. 2.1 Definisjoner og regneoperasjoner

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Mer om lineære likningssystemer, vektorer og matriser

Mer om lineære likningssystemer, vektorer og matriser Kapittel Mer om lineære likningssystemer, vektorer og matriser I dette kapittelet tar vi utgangspunkt i lineære likningssystemer, som vi lærte om i MAT, og setter dette inn i et større rammeverk, kalt

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Komplekse tall og trigonometri

Komplekse tall og trigonometri Kapittel Komplekse tall og trigonometri Grunnen til at vi har dette kapittelet midt i temaet Differenslikninger er for å kunne løse andre ordens differenslikninger. Da vil vi trenge å løse andregradslikninger.

Detaljer

Mer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014

Mer lineær algebra. Inger Christin Borge. Matematisk institutt, UiO. Kompendium i MAT1012 Matematikk 2. Våren 2014 Mer lineær algebra Kompendium i MAT Matematikk Våren 4 Inger Christin Borge Matematisk institutt, UiO Forord Dette kompendiet er skrevet til bruk i andre del av emnet MAT. I dette emnet jobber vi under

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1)

3.1 Første ordens lineære difflikninger. y + f(x)y = g(x) (3.1) Kapittel 3 Differensiallikninger 3.1 Første ordens lineære difflikninger Definisjon 3.1 En første ordens lineær difflikning er en likning på formen y + f(x)y = g(x) (3.1) der f og g er kjente funksjoner.

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer

Kapittel 3. Mer om egenverdier og egenvektorer. 3.1 Komplekse n-tupler og vektorer Kapittel 3 Mer om egenverdier og egenvektorer I neste kapittel skal vi lære å løse systemer av difflikninger. Da vil vi trenge egenverdier og egenvektorer, og selv om vi skal løse reelle problemer, vil

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Mer om kvadratiske matriser

Mer om kvadratiske matriser Kapittel 2 Mer om kvadratiske matriser Vi lader opp til anvendelser, og skal bli enda bedre kjent med matriser. I mange anvendelser er det ofte de kvadratiske matrisene som dukker opp, så fra nå skal vi

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle.

Tallfølger er noe av det første vi treffer i matematikken, for eksempel når vi lærer å telle. Kapittel 1 Tallfølger 1, 2, 3, 4, 5, 6, 7, 8,... Det andre temaet i kurset MAT1001 er differenslikninger. I en differenslikning er den ukjente en tallfølge. I dette kapittelet skal vi legge grunnlaget

Detaljer

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER

INNHOLD SAMMENDRAG ALGEBRA OG FUNKSJONER INNHOLD ALGEBRA OG FUNKSJONER... PARENTESER... USYNLIGE PARENTESER... USYNLIGE MULTIPLIKASJONSTEGN... DE TI GRUNNLEGGENDE ALGEBRAISKE LOVENE... REGNEUTTRYKK INNSATT FOR VARIABLER... 3 SETTE OPP FORMLER...

Detaljer

Linjegeometri. Kristian Ranestad. 3. Januar 2006

Linjegeometri. Kristian Ranestad. 3. Januar 2006 3. Januar 2006 Konveksitet Hva er en konveks mengde med punkter? En punktmengde er konveks dersom alle linjestykkene med endepunkter i mengden er helt inneholdt i mengden. Eksempler: Et linjestykke (den

Detaljer

Øving 3 Determinanter

Øving 3 Determinanter Øving Determinanter Determinanten til en x matrise er definert som Clear@a, b, c, dd K a b OF c d ad -bc Determinanten til en matrise er derfor et tall. Du skal se at det viktige for oss er om tallet er

Detaljer

GeoGebra for Sinus 2T

GeoGebra for Sinus 2T GeoGebra for Sinus 2T Innhold Vektorer med GeoGebra Skalarproduktet med GeoGebra Parameterframstilling med GeoGebra Ordnede utvalg eksempelet på side 89 med GeoGebra Uordnede utvalg eksempelet på side

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at

1 C z I G + + = + + 2) Multiplikasjon av et tall med en parentes foregår ved å multiplisere tallet med alle leddene i parentesen, slik at Ekstranotat, 7 august 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser og brøker... Funksjoner...3 Tilvekstform (differensialregning)...4 Telleregelen...7 70-regelen...8

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd.

SALG > KOSTNAD når mer enn 100 produkt selges. Virksomheten går da med overskudd. SALG > KOSTNAD y = 20x Salg y = 0 000 Kostnad 20x > 0 000 SALG > KOSTNAD mer enn 00 produkt selges. Virksomheten går da med overskudd. Slik kan ulikheter løses grafisk En ulikhet består av en venstre side,

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål

Eksamen REA3024 Matematikk R2. Nynorsk/Bokmål Eksamen 3.05.0 REA304 Matematikk R Nynorsk/Bokmål Nynorsk Eksamensinformasjon Eksamenstid: Hjelpemiddel på Del : Hjelpemiddel på Del : 5 timar: Del skal leverast inn etter timar. Del skal leverast inn

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

Elementær Matriseteori

Elementær Matriseteori Elementær Matriseteori Magnus B. Botnan NTNU 3. august, 2015 Kursinfo - Foreleser: Magnus B. Botnan http://www.math.ntnu.no/~botnan/ - Hjemmeside: https: //wiki.math.ntnu.no/tma4110/2015h/forkurs/start

Detaljer

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Komplekse tall og komplekse funksjoner

Komplekse tall og komplekse funksjoner KAPITTEL Komplekse tall og komplekse funksjoner. Komplekse tall.. Definisjon av komplekse tall. De komplekse tallene er en utvidelse av de reelle tallene. Dvs at de komplekse tallene er en tallmengde som

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Andre utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. I prinsippet er det enkelt, men det blir fort veldig mange regneoperasjoner som

Detaljer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer

LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer LP. Leksjon 7. Kapittel 13: Nettverk strøm problemer Skal studere matematiske modeller for strøm i nettverk. Dette har anvendelser av typen fysiske nettverk: internet, vei, jernbane, fly, telekommunikasjon,

Detaljer

Emne 7. Vektorrom (Del 1)

Emne 7. Vektorrom (Del 1) Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske

Detaljer

Forelesning 29: Kompleksitetsteori

Forelesning 29: Kompleksitetsteori MAT1030 Diskret Matematikk Forelesning 29: Kompleksitetsteori Roger Antonsen Institutt for informatikk, Universitetet i Oslo Forelesning 29: Kompleksitetsteori 13. mai 2009 (Sist oppdatert: 2009-05-17

Detaljer

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator

Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt Antall oppgaver 6. Tillatte hjelpemidler Godkjent kalkulator Oppgave 1 Eksamen i FO929A Matematikk Underveiseksamen Dato 9. desember 2008 Tidspunkt 09.00-14.00 Antall oppgaver 6 Vedlegg Formelsamling Tillatte hjelpemidler Godkjent kalkulator Løsningsforslag a) Likningen

Detaljer

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B

SAMMENDRAG OG FORMLER. Nye Mega 9A og 9B SAMMENDRAG OG FORMLER Nye Mega 9A og 9B 1 Sammendrag og formler Nye Mega 9A Kapittel A GEOMETRI Regulære mangekanter Når alle sidene er like lange og alle vinklene er like store i en mangekant, sier vi

Detaljer

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18

NAVN: INNHOLD. IVAR RICHARD LARSEN/algebra - oppsummering, Side 1 av 18 NAVN: INNHOLD FORORD... 2 LÆREPLAN... 3 ALGEBRA.... 3 REGNING MED VARIABLER... 3 MONOM... 3 POLYNOM... 3 TREKKE SAMMEN UTTRYKK (addisjon/subtraksjon)... 4 MULTIPLIKASJON... 4 DIVISJON... 4 ADDISJON AV

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

Ma Linær Algebra og Geometri Øving 1

Ma Linær Algebra og Geometri Øving 1 Ma0 - Linær Algebra og Geometri Øving Øistein Søvik 0. september 0 Excercise Set. = 4 x6 x x = x 6 4 x x = x 4 4 4 x x. In each part, determine whether the equation is linear in x, x and x Før vi begynner

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Oppgavesett med fasit

Oppgavesett med fasit TIL ENT3R ELEVENE Oppgavesett med fasit Tommy Odland Sist oppdatert: 1. november 2013 http://is.gd/ent3rknarvik http://tommyodland.com/ent3r 1 INNHOLD 1 Om dette dokumentet 3 1.1 Formål og oppbygging..................................

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x =

Løsningsforslag. a) Løs den lineære likningen (eksakt!) 11,1x 1,3 = 2 7. LF: Vi gjør om desimaltallene til brøker: x = Prøve i FO99A - Matematikk Dato: 1. desember 014 Målform: Bokmål Antall oppgaver: 8 (0 deloppgaver) Antall sider: 3 Vedlegg: Formelsamling Hjelpemiddel: Kalkulator Alle svar skal grunngis. Alle deloppgaver

Detaljer

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir

eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir eksamensoppgaver.org 4 oppgave1 a.i) Viharulikheten 2x 4 x + 5 > 0 2(x 2) x + 5 > 0 Sådaserviatløsningenpådenneulikhetenblir x, 5 2, eksamensoppgaver.org 5 a.ii) Vi har ulikheten og ordner den. 10 x 2

Detaljer

Tallregning og algebra

Tallregning og algebra 30 Tallregning og algebra Mål for opplæringen er at eleven skal kunne tolke, bearbeide og vurdere det matematiske innholdet i ulike tekster bruke matematiske metoder og hjelpemidler til å løse problemer

Detaljer

Del 1 - Uten hjelpemidler

Del 1 - Uten hjelpemidler Del 1 - Uten hjelpemidler Oppgaveteksten til del 1 ligger i: http://www.ulven.biz/r1/heldag/r1_hd_100516.docx (Oppgaveteksten til del er inkludert i dette dokumentet.) Oppgave 1 f x 3x 1 x 1 x (Husk: x

Detaljer

Oppfriskningskurs i matematikk 2008

Oppfriskningskurs i matematikk 2008 Oppfriskningskurs i matematikk 2008 Marte Pernille Hatlo Institutt for matematiske fag, NTNU 4.-9. august 2008 Velkommen! 2 Temaer Algebra Trigonometri Funksjoner og derivasjon Integrasjon Eksponensial-

Detaljer

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon.

Del 2: Alle hjelpemidler er tillatt, med unntak av Internett og andre verktøy som tillater kommunikasjon. Eksamensoppgavesettet er utarbeidet av Utdanningsdirektoratet. Avvik fra det originale eksamenssettet er eventuelle spesifiseringer og illustrasjoner. Løsningsforslagene i sin helhet er utarbeidet av matematikk.org.

Detaljer

Øving 2 Matrisealgebra

Øving 2 Matrisealgebra Øving Matrisealgebra Gå til menyen Edit Preferences... og sett Format type of new output cells til TraditionalForm hvis det ikke allerede er gjort. Start med to eksempelmatriser med samme dimensjon: In[]:=

Detaljer

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015

Enkel matematikk for økonomer 1. Innhold. Parenteser, brøk og potenser. Ekstranotat, februar 2015 Ekstranotat, februar 205 Enkel matematikk for økonomer Innhold Enkel matematikk for økonomer... Parenteser, brøk og potenser... Funksjoner...4 Tilvekstform (differensialregning)...5 Nyttige tilnærminger...8

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig

Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Sensurveiledning Emnekode: 4MX230UM1 Emnenavn: Matematikk 2 (5-10) KfK, emne 1 Semester: Høst År: 2015 Eksamenstype: Individuell skriftlig Oppgave 1 I denne oppgaven får du oppgitt tre situasjoner som

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

Oppgaver MAT2500. Fredrik Meyer. 27. oktober 2014

Oppgaver MAT2500. Fredrik Meyer. 27. oktober 2014 Oppgaver MAT2500 Fredrik Meyer 27. oktober 201 Oppgave 1. Finn sentrum og halvakser til kjeglesnittet med ligningen 25x 2 + 9y 2 18x + 2y = 0. Løsning 1. Vi vet at alle ikke degenererte kjeglesnitt er

Detaljer

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra

John Haugan. Matematikk for ingeniørstudenter: Lineær algebra John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg, 25-26 2 John Haugan Matematikk for ingeniørstudenter: Lineær algebra Studieprogram Energi og miljø i bygg,

Detaljer

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform

Studentene skal kunne. gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall. skrive mengder på listeform 1 10 Tall og tallregning Studentene skal kunne gjøre rede for begrepene naturlige, hele, rasjonale og irrasjonale tall definere og benytte de anerkjente skrivemåtene for åpne, halvåpne og lukkede intervaller

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann

Rekurrens. MAT1030 Diskret matematikk. Rekurrens. Rekurrens. Eksempel. Forelesning 16: Rekurrenslikninger. Dag Normann MAT1030 Diskret matematikk Forelesning 16: likninger Dag Normann Matematisk Institutt, Universitetet i Oslo INGEN PLENUMSREGNING 6/3 og 7/3 5. mars 008 MAT1030 Diskret matematikk 5. mars 008 Mandag ga

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Seksjonene : Vektorer

Seksjonene : Vektorer Seksjonene 10.2-3: Vektorer Andreas Leopold Knutsen 22. mars 2010 Vektorer i R 3 Vektor = objekt med både størrelse (lengde) og retning. Lengden til en vektor v betegnes med v Nullvektoren 0 er vektoren

Detaljer

Homogene lineære ligningssystem, Matriseoperasjoner

Homogene lineære ligningssystem, Matriseoperasjoner Homogene lineære ligningssystem, Matriseoperasjoner E.Malinnikova, NTNU, Institutt for matematiske fag September 22, 2010 Antall løsninger til et lineær ligningssystem Teorem Et lineært ligningssytem har

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

1 Mandag 22. februar 2010

1 Mandag 22. februar 2010 1 Mandag 22. februar 2010 Vi begynner med litt repetisjon fra forrige gang, med å sjekke om et vektorfelt er konservativt og dersom svaret er ja, regne ut potensialfunksjonen. Videre skal vi se på en variant

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

Diofantiske likninger Peer Andersen

Diofantiske likninger Peer Andersen Diofantiske likninger av Peer Andersen Peer Andersen 2013 Innhold Når en diofantisk likning har løsning... 3 Generell løsning av den diofantiske likningen... 4 Løsningsmetode når vi kjenner en spesiell

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra

Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Anne-Mari Jensen Utforsking av funksjonsuttrykk og de tilhørende grafene ved hjelp av GeoGebra Innledning I ungdomsskolen kommer funksjoner inn som et av hovedområdene i læreplanen i matematikk. Arbeidet

Detaljer

Oppgaver og fasit til seksjon

Oppgaver og fasit til seksjon 1 Oppgaver og fasit til seksjon 3.1-3.3 Oppgaver til seksjon 3.1 1. Regn ut a b når a) a = ( 1, 3, 2) b = ( 2, 1, 7) b) a = (4, 3, 1) b = ( 6, 1, 0) 2. Finn arealet til parallellogrammet utspent av a =

Detaljer

1 Gauss-Jordan metode

1 Gauss-Jordan metode Merknad I dette Kompendiet er det gitt referanser både til læreboka og til selve Kompendiet Hvordan å gjenkjenne dem? Referansene til boka er 3- tallede, som Eks 3 Vi kan også referere til 22, kap 22 eller

Detaljer

Sammendrag kapittel 9 - Geometri

Sammendrag kapittel 9 - Geometri Sammendrag kapittel 9 - Geometri Absolutt vinkelmål (radianer) Det absolutte vinkelmålet til en vinkel v, er folholdet mellom buelengden b, og radien r. Buelengde v = b r Med v i radianer! b = r v Omregning

Detaljer

1T kapittel 4 Likningssystemer og ulikheter

1T kapittel 4 Likningssystemer og ulikheter T kapittel 4 Likningssystemer og ulikheter Løsninger til oppgavene i oka Oppgave 4. a Vi tegner grafene til y = og y = + 3 i samme koordinatsystem. Skjæringspunktet mellom grafene har koordinatene (, ).

Detaljer