Emne 7. Vektorrom (Del 1)

Størrelse: px
Begynne med side:

Download "Emne 7. Vektorrom (Del 1)"

Transkript

1 Emne 7. Vektorrom (Del 1) Første del av dette emnet innholder lite nytt regnemessig, men vi innfører en rekke nye begreper. Avbildning (image). R m T R n n image(t) Vi kan starte med samme skjematiske figur som vi har brukt tidligere. Vi tenker oss en lineær transformasjon (T) fra til, dvs. Vi sier da at er bildet eller avbildningen (engelsk: image ) av under transformasjonen T Bilderommet blir samlingen av alle slike vektorer som funksjonen kan anta i codomenet. Vi skriver dette bilderommet som: Dette bilderommet utgjør et vektorrom som igjen er et underrom av. Dersom transformasjonen er invertibel, dvs., må og

2 Eksempel 1 z T:. Projeksjon ned på xy-planet y x Siden samtlige vektorer vil avbilde vektorer på formen er det klart at bilderommet er nettopp xy-planet. Eksempel 2 Lineær transformasjon Hva slags transformasjon er dette? Omskrevet: Alle vektorer retningsvektor avbildes på en rett linje med, dvs. på linjen

3 Span Gitt et sett med vektorer i. Alle lineære kombinasjoner vi kan lage med disse, dvs. spennet (engelsk: span ). Skrives: kalles Vektorene vil altså spenne ut et underrom av Når vi har en lineær transformasjon vil bilderommet være lik spennet av kolonnevektorene i A. Det er ikke noe mystisk i dette, som eksemplet under viser. Eksempel 1 (på nytt) Vi kan foreta en omskrevning: Dvs. at ( Nullvektoren gir ikke noe fra eller til i denne sammenheng og kan derfor sløyfes ) Det som står igjen er at bilderommet,, er lik vektorrommet utspent av enhetsvektorene og. Det stemmer jo bra, vi vet at ethvert punkt i xy-planet kan beskrives med og. Noen egenskaper ved bilderommet: Gitt en lineær transformasjon fra til, 1. Nullvektoren i er også med i bilderommet, 2. Bildet et lukket under addisjon, hvis så vil 3. Bildet et lukket under skalar multiplikasjon, hvis så vil

4 Kjerne ( kernel ). Gitt en lineær transformasjon fra til, Kjernen (engelsk: kernel ) er alle løsninger av homogent likningssett. Skrives:, dvs. løsningen av et Kjernerommet er altså samlingen av alle vektorer i domenet som ved transformasjon blir til (nullvektor) i. Forsøkt illustrert: R m T R n n im(t) ker(t) Eksempel 1 (nok en gang!) z Åpenbart at x y Enhver vektor på z-aksen transformeres til en 0-vektor ved projeksjon. z-aksen utgjør derfor kjernen. Vi kan skrive: Kjernerommet har de samme egenskapene som bilderommet: Gitt en lineær transformasjon fra til, 1. Nullvektoren i er også med i kjernen, 2. Kjernen et lukket under addisjon, hvis så vil 3. Kjernen et lukket under skalar multiplikasjon, hvis så vil Obs! Vi snakker ikke nødvendigvis om samme 0-vektor i hhv.

5 Eksempel 3 I emne 5 ( Lineære likningssett, del 1 ) hadde vi følgende eksempel: Symbolsk:, hvor Med løsning: Den første vektoren i løsningen,, forteller oss nettopp at, nærmere bestemt, hvor er ditto kolonnevektorer i A. ( Obs! Dette er helt ekvivalent med ) Kontroll: Kolonne 3 og 5 er overflødige i dette tilfellet, slik at Dersom ikke b-vektor hadde vært med i billedrommet hatt noen løsning., ville ikke likningssettet Merk! Vi har nøyaktig samme forhold i, dvs.,

6 De 2 siste vektorene i løsningsmengden, er begge løsninger av det homogene likningssettet ( og ) Kontroll:, Slik at: Løsningen på likningssettet : Siden: Kommentar: I forbindelse med likningssett slik som i dette eksempelet, opererer mange lærebøker med begrepene radrom, kolonnerom og nullrom De to sistnevnte er identiske med hhv. billedrom og kjerne, dvs.: er utspent av radvektorene i A, eller i praksis av de 3 radene med ledende 1 er i M ( akkurat som for kolonnene har vi 2 overflødige rader i dette eksempelet ).

7 Dimensjon Dimensjonen til et vektorrom forteller oss hvor mange vektorer som er nødvendig for å spenne ut (beskrive) vektorrommet. Som tidligere nevnt er både og eksempler på vektorrom. I eksempel 3 fant vi. Dvs. at selv om alle 5 kolonnevektorene i A inngår i billedrommet, er bare 3 av vektorene nødvendige ( kan beskrives vha. ). Her er derfor I samme eksempel er, siden Det gir, som heller ikke er tilfeldig. Dersom et vektorrom kun består av (nullrommet), vil Rang (rank) og nullitet (nullity) Rangen til en matrise ( engelsk: rank ) er et begrep som kanskje hører mer naturlig hjemme i emnet lineære likningssett, men det er samtidig nær knyttet til. Rangen til en matrise A er lik antall ledende 1 ere i matrisen. En annen måte å si dette på: Rangen er lik antall radervektorer som ikke er -vektorer etter en Gausseliminasjon. I eksempel 3 satt vi igjen med 3 ledende 1 ere i, slik at:. I praksis viser det seg (alltid) at Hvis A er en -matrise, vil. Dvs. det er den minste av verdiene og som bestemmer den maksimale rangen. Eksempel: Nulliteten til A er det samme som dimensjonen på kjernen, dvs.

8 Type løsning av et likningssett Gitt et lineært likningssett, hvor, Det betyr altså at likningssettet har likninger og ukjente. siden blir en -matrise (én ekstra kolonne) Vi vil alltid ha: Eller ekvivalent 1. Dersom : Likningssettet har entydig løsning. 2. Dersom : Likningssettet har uendelig mange løsninger Antall frie variable 3. Dersom : Likningssettet har ingen løsning Eksempel:. Ingen løsning siden Her også nokså åpenbart siden vi ikke kan ha

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over.

Lineær algebra. H. Fausk 09.03.2015. i=1 a ix i. Her har vi oppgitt hva ledd nummer i skal være og hvilke indekser i vi summerer over. Lineær algebra H. Fausk 09.03.2015 Første utkast Linære likningsystem lar seg løse ved bruk av de elementære regneartene. Selv om løsningen av lineære likingsystem i prinsippet er elementært blir det fort

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra

Universitet i Bergen. Eksamen i emnet MAT121 - Lineær algebra Universitet i Bergen Det matematisk-naturvitenskapelige fakultet Bokmål Eksamen i emnet MAT - Lineær algebra Onsdag 5 september, 0, kl. 09.00-4.00 Tillatte hjelpemidler. kalkulator, i samsvar med fakultetets

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

3.9 Teori og praksis for Minste kvadraters metode.

3.9 Teori og praksis for Minste kvadraters metode. 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen:

Detaljer

Forelesning 10 Cramers regel med anvendelser

Forelesning 10 Cramers regel med anvendelser Forelesning 10 Cramers regel med anvendelser Eivind Eriksen 25. mars 2010 Lineære likningssystemer Vi minner om at ethvert lineært likningssystem Ax = b kan løses ved hjelp av Gauss eliminasjon, som er

Detaljer

Forelesning 14 Systemer av dierensiallikninger

Forelesning 14 Systemer av dierensiallikninger Forelesning 14 Systemer av dierensiallikninger Eivind Eriksen 9. april 010 Dierensiallikninger En dierensiallikning inneholder en avhengig variabel (typisk y ) og en uavhengig variabel (typisk x), som

Detaljer

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14.

Utkast til løsningsforslag til eksamen i emnet MAT 121 - Lineær algebra Utan ansvar for feil og mangler Mandag 31. mai 2010, kl. 09-14. Utkast til løsningsforslag til eksamen i emnet MAT 2 - Lineær algebra Utan ansvar for feil og mangler Mandag 3. mai 2, kl. 9-4. Oppgave En bisverm flyr mellom to kuber, A og B, på dagtid, og hver bi blir

Detaljer

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK)

100 ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) ENKLERE OPPGAVER MED HINT OG LØSNINGSFORSLAG I LINEÆR ALGEBRA (OG NOEN I DISKRET MATEMATIKK) EIVIND ERIKSEN, TROND STØLEN GUSTAVSEN, AND HELGE HÜLSEN Introduksjon Dette kompendiet inneholder oppgaver med

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Digital Arbeidsbok i ELE 3719 Matematikk

Digital Arbeidsbok i ELE 3719 Matematikk Eivind Eriksen Digital Arbeidsbok i ELE 3719 Matematikk 3. april 215 Handelshøyskolen BI Innhold Del I Forelesninger i ELE3719 Matematikk 1 Vektorer og vektorregning......................................

Detaljer

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2

Forelesning 22 MA0003, Mandag 5/11-2012 Invertible matriser Lay: 2.2 Forelesning 22 M0003, Mandag 5/-202 Invertible matriser Lay: 2.2 Invertible matriser og ligningssystemet x b Ligninger på formen ax b, a 0 kan løses ved å dividere med a på begge sider av ligninger, noe

Detaljer

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z

KOMPLEKSE TALL. hvor x og y er reelle tall. x = Re z og y = Im z KOMPLEKSE TALL. Innledning og definisjoner Mengden av komplekse tall danner en utvidelse av den reelle tallmengden. Denne utvidelsen skjer ved at vi innfører en ny størrelse (et tall) i som er slik at

Detaljer

Emne 11 Differensiallikninger

Emne 11 Differensiallikninger Emne 11 Differensiallikninger Differensiallikninger er en dynamisk beskrivelse av et system eller en prosess, basert på de balanselikningene vi har satt opp for prosessen. (Matematisk modellering). Vi

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium i MAT00 Matematikk Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT00! Selv om

Detaljer

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver.

Tiden går og alt forandres, selv om vi stopper klokka. Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver. Kapittel 4 Anvendelser av lineære likningssystemer Tiden går og alt forandres, selv om vi stopper klokka Stoffet i dette kapittelet vil være en utømmelig kilde med tanke på eksamensoppgaver 4 Populasjonsdynamikk

Detaljer

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13

Innlevering FO929A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 2014 kl. 14 Antall oppgaver: 13 Innlevering FO99A - Matematikk forkurs HIOA Obligatorisk innlevering 3 Innleveringsfrist Fredag 14. november 014 kl. 14 Antall oppgaver: 13 Løsningsforslag 1 Finn volumet til tetraederet med hjørner O(0,

Detaljer

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5

Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Oppgaver som illustrerer alle teknikkene i 1.4 og 1.5 Gitt 3 punkter A 1,1,1,B 2,1,3,C 3,4,5 I Finne ligning for plan gjennom 3 punkt Lager to vektorer i planet: AB 1, 0,2 og AC 2,3, 4 Lager normalvektor

Detaljer

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3

DAFE ELFE Matematikk 1000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2015 Antall oppgaver: 10 + 3 Innlevering DAFE ELFE Matematikk HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 26. mars 2 Antall oppgaver: + 3 For hver av matrisene nedenfor nn den ekvivalente matrisen som er på redusert

Detaljer

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430

MAT 1001. Vår 2010. Oblig 1. Innleveringsfrist: Fredag 19.februar kl. 1430 MAT Vår Oblig Innleveringsfrist: Fredag 9februar kl 43 Oppgaven leveres stiftet med forsideark på ekspedisjonskontoret til Matematisk institutt i 7 etg i Niels Henrik Abels hus innen fristen Oppgaven vil

Detaljer

Manual for wxmaxima tilpasset R2

Manual for wxmaxima tilpasset R2 Manual for wxmaxima tilpasset R Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si at den kan forenkle uttrykk,

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

Obligatorisk innlevering 3 - MA 109, Fasit

Obligatorisk innlevering 3 - MA 109, Fasit Obligatorisk innlevering - MA 9, Fasit Vektorer Oppgave: Avgjør om, og er lineært uavhengige Dette er spørsmålet om det finnes vekter x, x, x - ikke alle lik - slik at x + x + x = Vi skriver det på augmentert

Detaljer

Matematikk 15 V-2008

Matematikk 15 V-2008 Matematikk 5 V-008 Løsningsforslag til øving 9 OPPGVE Husk at N = {alle naturlige tall} = {0,,,,... }, Z = {alle heltall} = {...,,, 0,,,,... }, R = {alle reelle tall} og = {alle komplekse tall} = { z :

Detaljer

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995

Løsningsforslag eksamen STE 6038 Geometrisk modellering 9/8 1995 Løsningsforslag eksamen STE 638 Geometrisk modellering 9/8 995. a) Vi skal bestemme hvilke av avbildningene/transformasjonene som er homeomorfier. f 4 6 Determinanten til matrisen er lik, dvs at den har

Detaljer

Vektorer og matriser

Vektorer og matriser DUMMY Vektorer og matriser Lars Sydnes 1.september 2014 OBS: UNDER UTVIKLING Oppgaver Det finnes passende oppgaver og løsningsforslag til dette notatet. 1 Innledning La oss se på et system av tre lineære

Detaljer

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse.

tilfeller tatt for gitt ved universiteter og høyskoler. Her er framstillingen kortfattet, meningen er at dette kan brukes som referanse. Forord Denne læreboken gir en innføring i lineær algebra, rettet mot begynnerkurs på Universitets- og Høyskolenivå. Arbeidet med dette stoffet tok til som en del av et større prosjekt, som omfattet datastøttet

Detaljer

Øving 4 Egenverdier og egenvektorer

Øving 4 Egenverdier og egenvektorer Øving Egenverdier og egenvektorer En egenvektor til en matrise A er løsning av likningen A.x = Λ x hvor Λ er en konstant. Det betyr at virkningan av å multiplisere en matirse med en vektor gir en ny vektor

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

DISKRET MATEMATIKK FINNES IKKE. Dan Laksov KTH, Stockholm

DISKRET MATEMATIKK FINNES IKKE. Dan Laksov KTH, Stockholm DISKRET MATEMATIKK FINNES IKKE Dan Laksov KTH, Stockholm matematikk/thorup/dlbook/april 11, 2005 DISKRET MATEMATIKK FINNES IKKE Diskret matematikk finnes ikke Dan Laksov Notater for Forum för Matematiklärare.

Detaljer

Sammendrag R1. Sandnes VGS 19. august 2009

Sammendrag R1. Sandnes VGS 19. august 2009 Sammendrag R1 Sandnes VGS 19. august 2009 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A

Detaljer

Obligatorisk oppgave 1 MAT1120 H15

Obligatorisk oppgave 1 MAT1120 H15 Obligatorisk oppgave MAT20 H5 Innleveringsfrist: torsdag 24/09-205, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Sammendrag R2. www.kalkulus.no. 31. mai 2009

Sammendrag R2. www.kalkulus.no. 31. mai 2009 Sammendrag R2 www.kalkulus.no 31. mai 2009 1 1 Trigonometri Definisjon av sinus og cosinus Sirkelen med sentrum i origo og radius 1 kalles enhetssirkelen. La v være en vinkel i grunnstilling, og la P være

Detaljer

Sammendrag R1. 26. januar 2011

Sammendrag R1. 26. januar 2011 Sammendrag R1 26. januar 2011 1 1 Notasjon Implikasjon Vi skriver A B hvis påstanden A impliserer B. Det vil si at hvis påstand A er riktig, så er påstand B riktig. Ekvivalens Vi skriver A B hvis to påstander

Detaljer

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010

Løsningsforslag, midtsemesterprøve MA1103, 2.mars 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side av 5 Løsningsforslag, midtsemesterprøve MA03,.mars 00 Oppgave Tegn figur og finn en parametrisering for skjæringskurven

Detaljer

Emne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall.

Emne 12 Mengdelære. ( bokstaven g er ikke et element i mengden B ) Betyr: B er mengden av alle positive oddetall. Emne 12 Mengdelære En mengde er en samling elementer. Mengden er veldefinert hvis vi entydig kan avgjøre om et vilkårlig element tilhører mengden eller ikke. Mengder på listeform. Endelige mengder:, Uendelige

Detaljer

Lineære likningssystemer, vektorer og matriser

Lineære likningssystemer, vektorer og matriser Lineære likningssystemer, vektorer og matriser Kompendium 1 i MAT1001 Matematikk 1 Høsten 2008 Inger Christin Borge Matematisk institutt, UiO Forord Velkommen til Universitetet i Oslo, og til MAT1001!

Detaljer

Obligatorisk innlevering 2 - MA 109

Obligatorisk innlevering 2 - MA 109 Obligatorisk innlevering 2 - MA 9 Skriv fullt navn og studentnummer øverst på besvarelsen. Du skal bruke sifrene fra studentnummeret i besvarelsen. Studentnummeret ditt er E. Er studentnummeret ditt da

Detaljer

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b)

Løsningsforslag B = 1 3 A + B, AB, BA, AB BA, B 2, B 3 C + D, CD, DC, AC, CB. det(a), det(b) Innlevering BYFE DAFE Matematikk 1000 HIOA Obligatorisk innlevering 2 Innleveringsfrist Fredag 05. februar 2016 kl 14:00 Antall oppgaver: 5 Løsningsforslag 1 Vi denerer noen matriser A [ 1 5 2 0 B [ 1

Detaljer

MAT3010. Rapport - skoleprosjekt Gruppe R 3. Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime.

MAT3010. Rapport - skoleprosjekt Gruppe R 3. Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime. MAT3010 Rapport - skoleprosjekt Gruppe R 3 Figur 1: Slik kan en elev oppfatte lærerens skriblerier på tavlen under en mattetime. Any fool can know. The point is to understand. Albert Einstein Av: Randi

Detaljer

Numerisk løsning av differensiallikninger Eulers metode,eulers m

Numerisk løsning av differensiallikninger Eulers metode,eulers m Numerisk løsning av differensiallikninger Eulers metode, Eulers midtpunktmetode, Runge Kuttas metode, Taylorrekkeutvikling* og Likninger av andre orden MAT-INF1100 Diskretsering Utgangspunkt: differensiallikning

Detaljer

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal

TFE4100 Kretsteknikk Kompendium. Eirik Refsdal <eirikref@pvv.ntnu.no> TFE4100 Kretsteknikk Kompendium Eirik Refsdal 16. august 2005 2 INNHOLD Innhold 1 Introduksjon til elektriske kretser 4 1.1 Strøm................................ 4 1.2 Spenning..............................

Detaljer

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9

Innlevering BYPE2000 Matematikk 2000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 24. april 2014 før forelesningen Antall oppgaver: 9 Innlevering BYPE000 Matematikk 000 HIOA Obligatorisk innlevering 3 Innleveringsfrist Torsdag 4. april 014 før forelesningen Antall oppgaver: 9 1 Regn ut determinanten til følgende matriser. (Det er også

Detaljer

RF5100 Lineær algebra Leksjon 12

RF5100 Lineær algebra Leksjon 12 RF5100 Lineær algebra Leksjon 12 Lars Sydnes, NITH 26. november 2013 I. GAUSS-ELIMINASJON 2x + 3y + z = 1 2x + 5y z = 1 4x + 7y + 4z = 3 x + 3/2 y + 1/2 z = 1/2 x + 2z = 2 y z = 1 3z = 2 x + 2z = 2 y z

Detaljer

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016

NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 NTNU KOMPiS Studieplan for MATEMATIKK 2 (8.-13. trinn) med hovedvekt på 8.-10. trinn Studieåret 2015/2016 Profesjons- og yrkesmål Dette studiet er beregnet for lærere på ungdomstrinnet som ønsker videreutdanning

Detaljer

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0

Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008. i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. 0 1 0 0 Løsningsforslag Øving 9 TMA4140 Diskret matematikk Høsten 2008 8.4.27 Vi beregner matrisene W i for i = 0, 1, 2, 3, 4, og så er W 4 svaret. a) W 0 = W 1 = W 2 = 1 0 0 0 1 1 0 0 b) W 0 = c) W 0 = d) W 0

Detaljer

RF5100 Lineær algebra Leksjon 2

RF5100 Lineær algebra Leksjon 2 RF5100 Lineær algebra Leksjon 2 Lars Sydnes, NITH 27.august 2013 I. LINEÆRE SYSTEM SKJÆRINGSPUNKTET FOR TO LINJER l 1 : x + y = 1 P l 2 : x + y = 3 Geometri: (i) P ligger på linjen l 1 (ii) P ligger på

Detaljer

Øving 5 Diagonalisering

Øving 5 Diagonalisering Øving 5 Diagonalisering En matrise A er diagonaliserbar dersom den er similær med en diagonalmatrise, dvs. det eksisterer en invertibel matrise P og diagonal matrise D slik at P.D.P -1. I øving 4 lærte

Detaljer

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri

QED 5 10. Matematikk for grunnskolelærerutdanningen. Bind 2. Fasit kapittel 3 Geometri QED 5 0 Matematikk for grunnskolelærerutdanningen Bind Fasit kapittel Geometri Kapittel Oppgave a) ( +, + 7) = (4, 9) b) (0, 4 + 5) = (, ) c) ( + 0, + 6) = (, 9) Oppgave a) Vi får vektoren [4, ]. b) Vi

Detaljer

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(.

Algebra. Likningsløsning. tasten) for å komme ned til S, og bla videre nedover til du finner solve(. Algebra Algebra blir ofte referert til som bokstavregning, selv om man nok mister noe av det helhetlige bildet ved å holde seg til en slik oppfatning. Vi velger her å ta med ting som likningsløsning og

Detaljer

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue

wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue wxmaxima Brukermanual for Matematikk 1T Bjørn Ove Thue Om wxmaxima wxmaxima er en utvidet kalkulator som i tillegg til å regne ut alt en vanlig kalkulator kan regne ut, også regner symbolsk. Det vil si

Detaljer

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon.

De hele tall har addisjon, multiplikasjon, subtraksjon og lineær ordning, men ikke divisjon. Innledning til Matematikk Hans Petter Hornæs, hans.hornaes@hig.no Det er ofte vanskelig å komme i gang et fag. Innledningsvis er det gjerne en del grunnleggende begreper som må på plass. Mange studenter

Detaljer

Flervariabel analyse med lineær algebra

Flervariabel analyse med lineær algebra Flervariabel analyse med lineær algebra av Tom Lindstrøm og Klara Hveberg Matematisk institutt og Senter for matematikk for anvendelser (CMA) Universitetet i Oslo Revidert versjon for vårsemesteret 2009

Detaljer

Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays.

Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays. Kapittel 5 Matriseoperasjoner Det viktigste dataelementet som MATLAB benytter, er matriser, som også gjerne betegnes arrays. I det etterfølgende vil begrepet vektor bli benyttet enkelte steder som betegnelse

Detaljer

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver.

Tempoplan: Kapittel 4: 8/11 14/12. Kapittel 5: 2/1 1/2. Kapittel 6: 1/2 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. Tempoplan: Kapittel 4: 8/11 14/1. Kapittel 5: /1 1/. Kapittel 6: 1/ 1/3. Kapittel 7: 1/3 1/4. Resten av tida repetisjon og prøver. 3: Vektorer Dette kapitlet er meget spesielt og annerledes enn den matematikken

Detaljer

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals

Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat. Av Sigbjørn Hals Lær å bruke Microsoft Mathematics, Matematikk-tillegget i Word og WordMat Av Sigbjørn Hals 1 Innhold Hva er matematikktillegget for Word?... 2 Nedlasting og installasjon av matematikktillegget for Word...

Detaljer

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden.

löse likninger gôr ut pô Ô nne den ukjente verdien som gjör at venstresiden blir lik höyresiden. Likning En likning inneholder alltid et likhetstegn og minst e n ukjent. Den ukjente kaller vi som regel eller y, men alle bokstavene i alfabetet kan brukes. löse likninger gôr ut pô Ô nne den ukjente

Detaljer

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ

,QQOHGQLQJ 3-1/ )DJ 67( 6W\ULQJ DY URPIDUW \ / VQLQJVIRUVODJ WLO YLQJ 3-1/ )DJ 67( 6W\LQJ DY RPIDW \ / VQLQJVIRVODJ WLO YLQJ,QQOHGQLQJ Der det er angitt referanser, er det underforstått at dette er til sider, figurer, ligninger, tabeller etc., i læreboken, dersom andre referanser

Detaljer

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1

Løsningsforslag. Vedlegg C: Kapittel 2. e) Ingen løsning. f) Flere løsninger: x = 4 + 2t, y = t. c) x 1 = 2, x 2 = 3, x 3 = 1 Vedlegg C: Løsningsforslag Kapittel. a x =, y = 3 b x =, y = 0 cx =, y = 5 d x =, y = 3 e Ingen løsning. f Flere løsninger: x = 4 + t, y = t. a x = 7, x = 6, x 3 = bx =, x =, x 3 = c x =, x = 3, x 3 =.3

Detaljer

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008.

Løsningsforslag til problemløsningsoppgaver i MA-132 Geometri høsten 2008. Løsningsforslag til problemløsningsoppgaver i M-12 Geometri høsten 2008. Oppgave 1 a. Vi starter med å utføre abri-versjoner av standardkontruksjoner for de oppgitte vinklene. (t problem med abri er at

Detaljer

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være:

Vi anbefaler at elevene blir introdusert for likninger via en praktisk problemstilling. Det kan for eksempel være: Likninger og algebra Det er større sprang fra å regne med tall til å regne med bokstaver enn det vi skulle tro. Vi tror at både likninger og bokstavregning (som er den algebraen elevene møter i grunnskolen)

Detaljer

RF5100 Lineær algebra Leksjon 1

RF5100 Lineær algebra Leksjon 1 RF5100 Lineær algebra Leksjon 1 Lars Sydnes, NITH 20.august 2013 I. INFORMASJON FAGLÆRER Kontakt: Lars Sydnes lars.sydnes@nith.no 93035685 Bakgrunn: Doktorgrad i Matematikk fra NTNU (2012), Siv.ing. Industriell

Detaljer

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen

Plotting av data. Kapittel 6. 6.1 Plott med plot-funksjonen Kapittel 6 Plotting av data MATLAB har mange muligheter for plotting av data. Vi skal her konsentrere oss om de viktigste funksjonene og kommandoene for 2-dimensjonale plott. Plottefunksjoner listes opp

Detaljer

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00

SAMMENDRAG AV FORELESNING I TERMODYNAMIKK ONSDAG 23.02.00 SAMMENDRAG A FORELESNING I TERMODYNAMIKK ONSDAG 3.0.00 Tema for forelesningen var termodynamikkens 1. hovedsetning. En konsekvens av denne loven er: Energien til et isolert system er konstant. Dette betyr

Detaljer

MAT 1120: Obligatorisk oppgave 1, H-09

MAT 1120: Obligatorisk oppgave 1, H-09 MAT 110: Obligatorisk oppgave 1, H-09 Innlevering: Senest fredag 5. september, 009, kl.14.30, på Ekspedisjonskontoret til Matematisk institutt (7. etasje NHA). Du kan skrive for hånd eller med datamaskin,

Detaljer

MA1410: Analyse - Notat om differensiallikninger

MA1410: Analyse - Notat om differensiallikninger Høgskolen i Agder Avdeling for realfag MA40: Analyse - Notat om differensiallikninger Dato: Høsten 2000 Merknader: Dette notatet kommer i tillegg til 4.2 og 6. i læreboka. Ma 40: Analyse skal inneholde

Detaljer

Emneplaner for fysikk og matematikk 3-treterminordingen (TRE)

Emneplaner for fysikk og matematikk 3-treterminordingen (TRE) Emneplaner for fysikk og matematikk 3-treterminordingen (TRE) Heltid - ikke studiepoenggivende utdanning Godkjent av Avdelingsstyret ved ingeniørutdanningen 14. mars 2011 Fakultet for teknologi, kunst

Detaljer

Øvingsforelesning TDT4105 Matlab

Øvingsforelesning TDT4105 Matlab Øvingsforelesning TDT4105 Matlab Øving 2. Pensum: Funksjoner, matriser, sannhetsuttrykk, if-setninger. Benjamin A. Bjørnseth 8. september 2015 2 Innhold Funksjoner Matriser Matriseoperasjoner Sannhetsuttrykk

Detaljer

Løsning, Oppsummering av kapittel 10.

Løsning, Oppsummering av kapittel 10. Ukeoppgaver, uke 36 Matematikk 3, Oppsummering av kapittel. Løsning, Oppsummering av kapittel. Oppgave a) = +, = + z og z =z +. b) f(,, z) = +, + z,z + så (f(, 3, ) = +3, 3+, +3=7, 3, 5 c ) Gradienten

Detaljer

8 Likninger med to ukjente rette linjer

8 Likninger med to ukjente rette linjer 8 Likninger med to ukjente rette linjer 8. Likninger med to ukjente Per vil teste kameratens matematiske kunnskaper. Han forteller at han har ni mnter med en samlet verdi på 40 kroner i lommeboken sin.

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte Dato: vår 5 ENDRE Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver ar lik vekt. Oppgave a Gitt matrisene A regn ut A + B, AB. Løsningsforslag 4 og B 7 5 Vi

Detaljer

TDT4105 Informasjonsteknologi, grunnkurs (ITGK)

TDT4105 Informasjonsteknologi, grunnkurs (ITGK) 1 TDT4105 Informasjonsteknologi, grunnkurs (ITGK) Introduksjon til programmering i Matlab Rune Sætre satre@idi.ntnu.no 2 Læringsmål og pensum Mål Lære om programmering og hva et program er Lære å designe

Detaljer

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014

EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 EKSAMEN I 3MX-R2 (3MZ-S2), SPØRREUNDERSØKELSE AUGUST 2014 Matematikk R2 Oversikt over hovedområdene: Programfag Hovedområder Matematikk R1 Geometri Algebra Funksjoner Matematikk R2 Geometri Algebra Funksjoner

Detaljer

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK

KONTINUASJONSEKSAMEN I EMNE TFY 4102 FYSIKK BOKMÅL NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Faglig kontakt under eksamen: Magnus Borstad Lilledahl Telefon: 73591873 (kontor) 92851014 (mobil) KONTINUASJONSEKSAMEN I EMNE

Detaljer

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011

R2 2011/12 - Kapittel 2: 19. september 19. oktober 2011 R 011/1 - Kapittel : 19. september 19. oktober 011 Plan for skoleåret 011/01: Kapittel : 17/9-0/10. Kapittel 3:5/10 19/11. Kapittel 4: 19/11 1/1. Kapittel 5: 1/1 11/. Kapittel 6: 11/ 9/3. Kapittel 7: 19/3

Detaljer

3x + 2y 8, 2x + 4y 8.

3x + 2y 8, 2x + 4y 8. Oppgave En møbelfabrikk produserer bord og stoler Produksjonen av møbler skjer i to avdelinger, avdeling I og avdeling II Alle møbler må innom både avdeling I og avdeling II Det å produsere et bord tar

Detaljer

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup

Brukerveiledning for webapplikasjonen. Mathemateria 01.02.2015. Terje Kolderup Brukerveiledning for webapplikasjonen Mathemateria 01.02.2015 Terje Kolderup Innhold Brukerveiledning for webapplikasjonen...1 Mathemateria...1 Introduksjon...3 Typisk eksempel og bryterstyring...3 Innlogging...4

Detaljer

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4240 - Grunnleggende dataanalyse i Matlab For grunnleggende introduksjon til Matlab, se kursets hjemmeside https://wiki.math.ntnu.no/tma4240/2015h/matlab. I denne øvingen skal vi analysere to

Detaljer

Systemidentifikasjon Oppgaver

Systemidentifikasjon Oppgaver Telemark University College Department of Electrical Engineering, Information Technology and Cybernetics Systemidentifikasjon Oppgaver HANS-PETTER HALVORSEN, 2012.03.16 Faculty of Technology, Postboks

Detaljer

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den?

Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? side 1 Detaljert eksempel om Likninger - en introduksjon på 8. trinn Hva er en likning og hva betyr å løse den? Dette er et forslag til undervisningsopplegg der utgangspunktet er sentrale problemstillinger

Detaljer

Forelesning i konsumentteori

Forelesning i konsumentteori Forelesning i konsumentteori Drago Bergholt (Drago.Bergholt@bi.no) 1. Konsumentens problem 1.1 Nyttemaksimeringsproblemet Vi starter med en liten repetisjon. Betrakt to goder 1 og 2. Mer av et av godene

Detaljer

Grunnleggende matematikk for ingeniører Side 1 av 5

<kode> Grunnleggende matematikk for ingeniører Side 1 av 5 Grunnleggende matematikk for ingeniører Side 1 av 5 Emnebeskrivelse 1 Emnenavn og kode Grunnleggende matematikk for ingeniører 2 Studiepoeng 10 studiepoeng 3 Innledning Dette er det ene av

Detaljer

Løsningsforslag. og B =

Løsningsforslag. og B = Prøve i Matte EMFE DAFE ELFE BYFE Dato: august 25 Hjelpemiddel: Kalkulator og formelark Alle svar skal grunngis. Alle deloppgaver har lik vekt. Oppgave a) Gitt matrisene A = 2 3 2 4 2 Løsningsforslag og

Detaljer

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab

Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab Øving 1 TMA4245 - Grunnleggende dataanalyse i Matlab For grunnleggende bruk av Matlab vises til slides fra basisintroduksjon til Matlab som finnes på kursets hjemmeside. I denne øvingen skal vi analysere

Detaljer

Matriser og Kvadratiske Former

Matriser og Kvadratiske Former Eivind Eriksen Matriser og Kvadratiske Former 15 mars 2012 Handelshøyskolen BI Innhold 1 Matriser og vektorer 1 11 Matriser 1 12 Matriseaddisjon 2 13 Matrisesubtraksjon 3 14 Skalarmultiplikasjon 3 15

Detaljer

Forelesningsnotater i Partielle differensiallikninger. Dag Lukkassen

Forelesningsnotater i Partielle differensiallikninger. Dag Lukkassen Forelesningsnotater i Partielle differensiallikninger Dag Lukkassen UKE 1 (Klassisk teori)... 4 Mandag... 4 Introduksjon og motivasjon... 4 Viktige eksempler... 6 Hva er en løsning?... 7 Lineære partielle

Detaljer

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl.

Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG. Dato: 11. desember 2008 Varighet: 0900-1300. Antall sider inkl. Universitetet i Agder Fakultet for teknologi og realfag LØSNINGSFORSLAG Emnekode: Emnenavn: DAT2 Grafisk Databehandling Dato:. desember 28 Varighet: 9 - Antall sider inkl. forside 7 OPPGAVE. (2%) a) b)

Detaljer

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator

Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Prøve i FO929A - Matematikk Dato: 15. november 2012 Hjelpemiddel: Kalkulator Oppgave 1 a) Finn alle løsningene til likningen 10x 100 = 90x 1. b) Finn alle løsninger v til likningen slik at 0 v 4π. 2 cos

Detaljer

6 Sannsynlighetsregning

6 Sannsynlighetsregning MATEMATIKK: 6 Sannsynlighetsregning 6 Sannsynlighetsregning 6.1 Forsøk. Utfallsrom. Sannsynlighet (sjanse). Sannsynlighetsmodell Ved ett kast med en terning vet vi at terningen vil vise enten ett, to,

Detaljer

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK.

KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. KRITISK BLIKK PÅ NOEN SKOLEBØKER I MATEMATIKK. Som foreleser/øvingslærer for diverse grunnkurs i matematikk ved realfagstudiet på NTNU har jeg prøvd å skaffe meg en viss oversikt over de nye studentenes

Detaljer

En koordinat er ikke bare en koordinat

En koordinat er ikke bare en koordinat En koordinat er ikke bare en koordinat En enkel innføring i koordinatsystem og kartprojeksjoner i Norge Versjon 1.0 Yngvar Amlien og Terje Omtveit Gilde 15. mai 2013 http://hovedprosjekter.hig.no/v2013/tol/geo/utmntm/koordinatsystem.pdf

Detaljer

Differensiallikninger definisjoner, eksempler og litt om løsning

Differensiallikninger definisjoner, eksempler og litt om løsning Differensiallikninger definisjoner, eksempler og litt om løsning MAT-INF1100 Differensiallikninger i MAT-INF1100 Definsjon, litt om generelle egenskaper Noen få anvendte eksempler Teknikker for løsning

Detaljer

Forelesning nr.4 INF 1410

Forelesning nr.4 INF 1410 Forelesning nr.4 INF 1410 Flere teknikker for kretsanalyse og -transformasjon 1 Oversikt dagens temaer inearitet Praktiske Ekvivalente Nortons Thévenins Norton- og superposisjonsprinsippet (virkelige)

Detaljer

Desimaltall FRA A TIL Å

Desimaltall FRA A TIL Å Desimaltall FRA A TIL Å VEILEDER FOR FORELDRE MED BARN I 5. 7. KLASSE EMNER Side Innledning til desimaltall D - 2 2 Grunnleggende om desimaltall D - 2 2. Tideler, hundredeler og tusendeler D - 6 3 Å regne

Detaljer

1.2 Posisjonssystemer

1.2 Posisjonssystemer MMCDXCIII. c) Skriv som romertall: 1) Ditt fødselsår 2) 1993 3) År 2000. 1.2 Posisjonssystemer Vi ser her nærmere på begrepet plassverdi og ulike posisjonssystemer. Utgangspunktet er at en vil beskrive

Detaljer

x n+1 rx n = 0. (2.2)

x n+1 rx n = 0. (2.2) Kapittel 2 Første ordens lineære differenslikninger 2.1 Homogene likninger Et av de enkleste eksemplene på en følge fås ved å starte med et tall og for hvert nytt ledd multiplisere det forrige leddet med

Detaljer

Løsningsforslag Eksamen R1 - REA3022-28.05.2008

Løsningsforslag Eksamen R1 - REA3022-28.05.2008 Løsningsforslag Eksamen R1 - REA3022-28.05.2008 eksamensoppgaver.org September 14, 2008 2 Om løsningsforslaget Løsningsforslaget for matematikk eksamen i R1 er gratis, og det er lastet ned på eksamensoppgaver.org.

Detaljer

www.skoletorget.no Multiplikasjon Matematikk Side 1 av 6 4-gangen 0-4-8-12-16-20-24-28-32-36-40

www.skoletorget.no Multiplikasjon Matematikk Side 1 av 6 4-gangen 0-4-8-12-16-20-24-28-32-36-40 Side 1 av 6 4-gangen Tekst og illustrasjoner: Anne Schjelderup Filosofiske spørsmål: Anne Schjelderup og Øyvind Olsholt Sist oppdatert: 15. november 2003 Som vi nå har sett flere ganger kan gangetabellene

Detaljer