3.9 Teori og praksis for Minste kvadraters metode.

Størrelse: px
Begynne med side:

Download "3.9 Teori og praksis for Minste kvadraters metode."

Transkript

1 3.9 Teori og praksis for Minste kvadraters metode. Vi fortsetter med minste kvadraters problem. Nå skal vi se nærmere på noen teoretiske spørsmål, bl.a. hvordan normallikningene utledes. Minner om MK problemstillingen: La A være en m n matrise (der typisk m>n)ogla b IR m og betrakt det overbestemte lineære likningssystemet Ax = b. Systemet har vanligvis ingen løsning. For enhver vektor x IR n defineres residualet r = r(x) som feilen r(x) = Ax b. En vektor x som gir minst mulig residual vektor (målt i Euklidsk norm) kalles en minste kvadraters løsning av Ax = b. Altså: Ax b Ax b for alle x IR n. Lin.alg. Seksjon 3.9: #1 of 9

2 Minste kvadraters problem i IR n. Vi diskuterer MK problemet med vekt på geometrisk forståelse. La x som vanlig være vektoren x 1 x =. x n. Husk at avstanden (Euklidsk avstand) mellom vektorene x og y er x y = (x y) T (x y)=( (x j y j ) 2 ) 1/2. j Vi er interessert i følgende problem: Minste kvadraters problem i IR n : La W være et underrom av IR n og la v IR n være gitt. Finn en vektor w W slik at v w v w for alle w W. En slik vektor w kalles en beste minste-kvadraters approksimasjon til v. Altså: nærmeste punkt til v i W. v v-w* w* Lin.alg. Seksjon 3.9: #2 of 9

3 Geometrisk tyder figuren på atbeste minste-kvadraters approksimasjon kjennetegnes av at residualet (feilen) v w er ortogonal på underrommet W, dvs. ortogonal på alle vektorer i W. Vi viser nå at dette faktisk er tilfelle helt generelt! Teorem 18. La W være et p-dimensjonalt underrom av IR n og la v IR n. Anta at en vektor w oppfyller (v w ) T w = 0 for alle w W. Da er w beste minste-kvadraters approksimasjon til v. Bevis. La w W. Ortogonaliteten, eller Pythagoras, gir at v w 2 = (v w )+(w w) 2 = (v w ) T (v w )+2(v w ) T (w w)+ (w w) T (w w) = v w 2 + w w 2 v w 2. Dette viser også at beste minste-kvadraters approksimasjon er entydig: Fra siste ulikhet ser vi at hvis v w = v w,såmåw=w. Lin.alg. Seksjon 3.9: #3 of 9

4 Hvordan finne beste approksimasjon? Forrige teorem sier at vi bør lete etter en vektor w som oppfyller (v w ) T w = 0 for alle w W. Heldigvis er det nok å sjekke denne ortogonaliteten for et fåtall vektorer, nemlig en basis for W. Teorem 19. La W være et p-dimensjonalt underrom av IR n og la u 1,...,u p være en basis for W. Da holder (v w ) T w = 0 for alle w W hvis og bare hvis (v w ) T u i = 0 for i = 1,...,p. (2) (Bevis: hver vektor w W er på formenw= ia i u i ; bruk linearitet av matriseproduktet). Legg merke til at likning (2) er et system av p lineære likninger som den ukjente vektoren w skal oppfylle. Vi finner da en beste minste kvadraters løsning ved å løse dette likningssystemet. Mer om dette følger! Eksistems og entydighet av beste approksimasjon. Teorem 20. La W være et p-dimensjonalt underrom av IR n og la v IR n. Da er det nøyaktig én beste minste kvadraters løsning til v i W. Lin.alg. Seksjon 3.9: #4 of 9

5 Bevis. Eksistens. Vi kan finne en løsning av likning (2) på følgende måte. Vi kan anta at basisen u 1,...,u p er ortogonal (for eller kan vi bruke Gram-Schmidt). Siden w skal ligge i W fins skalarer a 1,...,a p slik at p w = a i u i. i=1 Setter dette inn i likning (2) og får pga. ortogonaliteten at (v) T u i a i u T i u i = 0 for i = 1,...,p. Dette gir at a i = (v) T u i /u T i u i for i = 1,...,p. Med disse koeffisientene blir w gitt ved p w = ((v) T u i /u T i u i)u i. (4) i=1 og likning (2) holder. Ut fra Teorem 18 og 19 ser vi da at w er en beste approksimasjon til v i W. Entydighet. Dette viste vi foran (side 3). Lin.alg. Seksjon 3.9: #5 of 9

6 Minste-kvadraters løsning til inkonsistente systemer Ax = b. Vi vender tilbake til problemet: finn minste kvadraters løsning x av Ax = b, dvs. Ax b Ax b for alle x IR n. Hva er forbindelsen til approksimasjonsproblemet vårt? Vi har jo at x Ax er en lineær transformasjon og når x gjennomløper hele IR n vil y = Ax gjennomløpe underrommet R(A) av IR m ; dette er rekkevidden eller kolonnerommet til A. Såtilhvery R(A) fins minst én x slik at y = Ax. Videre er min{ Ax b : x IR n }=min{ y b : y R(A)}. Vi lar nå W = R(A) og får: La y være en beste minste-kvadraters approksimasjon til b i W = R(A). Daerx IR n en minste kvadraters løsning av Ax = b hvis og bare hvis Ax = y. Vi vet at y er løsningen av w T (y b) = 0 for alle w W. Her er det nok å kreve dette for alle vektorer w i en basis for W.Og,idetW =R(A), vil jo kolonnene A j, j = 1,...,nutspenne W.Altså: A T i (y b) = 0 som på matriseform blir for j = 1,...,n A T (y b) = 0. Lin.alg. Seksjon 3.9: #6 of 9

7 Siden y = Ax ser vi derfor at x er løsning av systemet A T (Ax b) = 0 eller A T Ax = A T b. Dette er jo nettopp normallikningene! Ut fra denne diskusjonen får vi et bevis for vårt hovedresultat om MK problemet, nemlig Teorem 17. Betrakt systemet Ax = b. Da gjelder: (i) Systemet A T Ax = A T b er konsistent. (ii) Minste kvadraters løsninger av Ax = b er nettopp løsningene av A T Ax = A T b. (iii) MK (minste kvadraters) løsningen av Ax = b er unik hvis og bare hvis A har rang n. Entydighet av minste-kvadraters løsning til Ax = b. Vi har sett at det er en entydig beste minste kvadraters løsning y til v i W (når W er underrom og v er gitt). MEN: dette betyr ikke at man alltid har entydig minste kvadraters løsninger av Ax = b. Grunnen til dette er at selv om y er entydig såkandet være mange løsninger (og minst én løsning) x av Ax = y. Lin.alg. Seksjon 3.9: #7 of 9

8 Hvis kolonnene i A er lineært uavhengige,så er det en entydig løsning x (dette følger direkte av definisjonen av lineær uavhengighet). Men hvis kolonnene i A er lineært avhengige, vil det være uendelig mange slike løsninger. Man kan da f.eks. være interessert i en minste kvadraters løsning x med minst norm, så x =min{ x : Ax = y }. Pseudoinvers. Det kan vises at for enhver m n matrise A så fins det en entydig n m matrise X slik at AX I m F blir minst mulig. Her bruker vi Frobenius normen for matriser definert ved m n A F = a 2 i,j. i=1 j=1 (Dette er det samme som å oppfatte matrisen som en lang vektor av dimensjon mn og beregne Euklidsk norm.) Denne entydige løsningen X betegnes med A + og kalles den pseudoinverse til A. La nå x være minimum norm minste kvadraters løsning av Ax = b. Da kan det vises at x = A + b. Hvis A er ikkesingulær, har man at A + = A 1,såvihar en videreføring av formelen x = A 1 b for vilkårlige matriser!! Lin.alg. Seksjon 3.9: #8 of 9

9 MATLAB og minste-kvadraters løsninger. MATLAB kommandoen x=a \ b returner minimum norm minste kvadraters løsning av Ax = b, dvs.a + b. Hvis m = n og Ax = b er inkonsistent, vil x=a \ b gi en advarsel og ingen MK løsning. Hvis man likevel ønsker en MK løsning, så kan man gjøre dette ved å stille opp normallikningene og løse disse på vanlig måte. MATLAB kommandoen pinv(a) resturnerer den pseudoinverse til matrisen A. Derfor kan man også finne minimum norm minste kvadraters løsning av Ax = b ved kommandoen pinv(a) b. Lin.alg. Seksjon 3.9: #9 of 9

6.5 Minste kvadraters problemer

6.5 Minste kvadraters problemer 6.5 Minste kvadraters problemer I mange anvendte situasjoner møter man lineære likningssystemer som er inkonsistente, dvs. uten løsninger, samtidig som man gjerne skulle ha funnet en løsning. Hva gjør

Detaljer

Kap. 6 Ortogonalitet og minste kvadrater

Kap. 6 Ortogonalitet og minste kvadrater Kap. 6 Ortogonalitet og minste kvadrater IR n er mer enn bare et vektorrom: den har et naturlig indreprodukt, nemlig prikkproduktet av vektorer. Dette indreproduktet gjør det mulig å tenke geometrisk og

Detaljer

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7.

MAT Onsdag 7. april Lineær uavhengighet (forts. 1.8 Underrom av R n, nullrom, basis MAT Våren UiO. 7. MAT 2 april 2.7 Lineær.8 Underrom MAT 2 Våren 2 UiO 7. april 2 / 23 MAT 2 april 2.7 Lineær.8 Underrom Minner om:.7 Lineær (fortsettelse) Definisjon. To vektorer u og v i R n kalles lineært avhengige dersom

Detaljer

6.4 Gram-Schmidt prosessen

6.4 Gram-Schmidt prosessen 6.4 Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av R n. (Senere skal vi mer generelt betrakte indreprodukt rom; se seksjon 6.7). Vi skal se hvordan vi kan starte med en vanlig

Detaljer

6.4 (og 6.7) Gram-Schmidt prosessen

6.4 (og 6.7) Gram-Schmidt prosessen 6.4 (og 6.7) Gram-Schmidt prosessen La W {0} være et endeligdimensjonalt underrom av et indreprodukt rom V. Man kan starte med en vanlig basis for W og konstruere en ortogonal basis for W. Ønskes det en

Detaljer

6.8 Anvendelser av indreprodukter

6.8 Anvendelser av indreprodukter 6.8 Anvendelser av indreprodukter Vektede minste kvadraters problemer Anta at vi approksimerer en vektor y = (y 1,..., y m ) R m med ŷ = (ŷ 1,..., ŷ m ) R m. Et mål for feilen vi da gjør er y ŷ, der betegner

Detaljer

Lineære likningssystemer og matriser

Lineære likningssystemer og matriser Kapittel 3 Lineære likningssystemer og matriser I dette kapittelet skal vi sette sammen Kapittel 1 og 2. 3.1 Den utvidede matrisen til et likningssystem Vi starter med et lineært likningssystem med m likninger

Detaljer

4.2 Nullrom, kolonnerom og lineære transformasjoner

4.2 Nullrom, kolonnerom og lineære transformasjoner 4.2 Nullrom, kolonnerom og lineære transformasjoner Utover Span {v 1, v 2,..., v p } er det en annen måte vi får lineære underrom på! Ser nå på V = R n. Skal se at det er visse underrom knyttet til en

Detaljer

7.4 Singulærverdi dekomposisjonen

7.4 Singulærverdi dekomposisjonen 7.4 Singulærverdi dekomposisjonen Singulærverdi dekomposisjon til en matrise A er en av de viktigste faktoriseringene av A (dvs. A skrives som et produkt av matriser). Den inneholder nyttig informasjon

Detaljer

MA1201/MA6201 Høsten 2016

MA1201/MA6201 Høsten 2016 MA/MA6 Høsten 6 Norges teknisk naturvitenskapelige universitet Institutt for matematikk Med forebehold om feil Hvis du finner en, ta kontakt med Karin Kapittel 4 8 Vi benevner matrisen vi skal frem til

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } V kalles en basis for et vektorrom V dersom B er lineært uavhengig og B utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer

Detaljer

MAT1120 Repetisjon Kap. 1

MAT1120 Repetisjon Kap. 1 MAT1120 Repetisjon Kap. 1 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Idag skal vi repetere fra kap. 1 i Lays bok. Det handler bl.a. om : Matriser Vektorer

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjonen (også kalt koordinatmatrisen) til en lineær avbildning mellom to endeligdimensjonale vektorrom

Detaljer

5.8 Iterative estimater på egenverdier

5.8 Iterative estimater på egenverdier 5.8 Iterative estimater på egenverdier Det finnes ingen eksplisitt formel for beregning av egenverdiene til en kvadratisk matrise. Iterative metoder som finner (ofte) en (meget god) approksimasjon til

Detaljer

MAT1120 Notat 2 Tillegg til avsnitt 5.4

MAT1120 Notat 2 Tillegg til avsnitt 5.4 MAT1120 Notat 2 Tillegg til avsnitt 54 Dette notatet utfyller bokas avsnitt 54 om matriserepresentasjoner (også kalt koordinatmatriser) av lineære avbildninger mellom endeligdimensjonale vektorrom En slik

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. Kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0

TMA4110 Eksamen høsten 2018 EKSEMPEL 1 Løsning Side 1 av 8. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: x 1 7x 4 = 0 TMA4 Eksamen høsten 28 EKSEMPEL Løsning Side av 8 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 2 2 2 4 2 6 2 4 2 6 2 2 Dette gir likningene og 2 2 4 2 6 7 2. x 7x 4 = x 2 + 2x

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-1004 Vårsemester 017 Prøveeksamen Contents 0.1 Forord................................. 1 1 OPPGAVE OPPGAVE OPPGAVE 6 4 OPPGAVE 7 5 OPPGAVE 10 6 OPPGAVE 11 7 OPPGAVE 11 8 OPPGAVE 1 9 Formatering av

Detaljer

Eksamensoppgave MAT juni 2010 (med løsningsforslag)

Eksamensoppgave MAT juni 2010 (med løsningsforslag) Eksamensoppgave MAT-4 juni (med løsningsforslag) Contents OPPGAVE OPPGAVE 4 OPPGAVE 5 4 OPPGAVE 6 5 Fasit 7 5 Oppgave 7 5 Oppgave 7 5 Oppgave 8 54 Oppgave 8 6 Løsningsforslag 9 6 Oppgave 9 6 Oppgave 6

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

Diagonalisering. Kapittel 10

Diagonalisering. Kapittel 10 Kapittel Diagonalisering I te kapitlet skal vi anvende vår kunnskap om egenverdier og egenvektorer til å analysere matriser og deres tilsvarende lineærtransformasjoner Eksempel Vi begynner med et eksempel

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 0 Lineær algebra Eksamensdag: Mandag 0. desember 0 Tid for eksamen: 4.30 8.30. Oppgavesettet er på 7 sider. Vedlegg: Tillatte

Detaljer

Kap. 6 Ortogonalitet og minste kvadraters problemer

Kap. 6 Ortogonalitet og minste kvadraters problemer Kap. 6 Ortogonalitet og minste kvadraters problemer vanlig indreprodukt (prikkprod.) i IR n, egenskaper. ortogonalitet i IR n Pythagoras teorem: u og v i IR n er ortogonale hvis og bare hvis u + v 2 =

Detaljer

Minste kvadraters løsning, Symmetriske matriser

Minste kvadraters løsning, Symmetriske matriser Minste kvadraters løsning, Symmetriske matriser NTNU, Institutt for matematiske fag 19. november 2013 Inkonsistent ligningsystem Anta at Ax = b er et inkonsistent ligningsystem, da er b ikke i Col(A).

Detaljer

Egenverdier for 2 2 matriser

Egenverdier for 2 2 matriser Egenverdier for matriser (Bearbeidet versjon av tidligere notat på nett-sidene til MA101 - Lineær algebra og geometri Versjon oppdatert med referanser til 10utg av læreboken) Egenvektorer og egenverdier

Detaljer

MAT-1004 Vårsemester 2017 Prøveeksamen

MAT-1004 Vårsemester 2017 Prøveeksamen MAT-4 Vårsemester 7 Prøveeksamen Contents. Forord................................. OPPGAVE OPPGAVE OPPGAVE 7 4 OPPGAVE 8 OPPGAVE 6 OPPGAVE 7 OPPGAVE 8 OPPGAVE 9 Formatering av svarene 4 9. Rasjonale tall.............................

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

MAT1120 Repetisjon Kap. 1, 2 og 3

MAT1120 Repetisjon Kap. 1, 2 og 3 MAT1120 Repetisjon Kap. 1, 2 og 3 Kap. 1, avsn. 2.1-2.3 og kap. 3 i Lays bok er for det meste kjent fra MAT1100 og MAT1110. Fra kap. 1 repeterer vi: Matriser Vektorer og lineære kombinasjoner Lineæravbildninger

Detaljer

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer:

TMA4110 Matematikk 3 Eksamen høsten 2018 Løsning Side 1 av 9. Løsningsforslag. Vi setter opp totalmatrisen og gausseliminerer: TMA4 Matematikk 3 Eksamen høsten 8 Løsning Side av 9 Løsningsforslag Oppgave Vi setter opp totalmatrisen og gausseliminerer: 8 5 4 8 3 36 8 4 8 8 8 Den siste matrisen her er på redusert trappeform, og

Detaljer

Lineærtransformasjoner

Lineærtransformasjoner Kapittel 8 Lineærtransformasjoner I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

12 Projeksjon TMA4110 høsten 2018

12 Projeksjon TMA4110 høsten 2018 Projeksjon TMA0 høsten 08 En projeksjon er en lineærtransformasjon P som tilfredsstiller P x = P x for alle x Denne ligningen sier at intet nytt skjer om du benytter lineærtransformasjonen for andre gang,

Detaljer

6.6 Anvendelser på lineære modeller

6.6 Anvendelser på lineære modeller 6.6 Anvendelser på lineære modeller Skal først se på lineær regresjon for gitte punkter i planet: det kan formuleres og løses som et minste kvadraters problem! I mere generelle lineære modeller er man

Detaljer

4.4 Koordinatsystemer

4.4 Koordinatsystemer 4.4 Koordinatsystemer Minner om at B = { b 1, b 2,..., b n } kalles en basis for et vektorrom V dersom B er lineært uavhengig og utspenner V. I samme vektorrom kan vi innføre ulike koordinatsystemer ;

Detaljer

4.1 Vektorrom og underrom

4.1 Vektorrom og underrom 4.1 Vektorrom og underrom Vektorrom er en abstraksjon av R n. De kan brukes til å utlede egenskaper, resultater og metoder for tilsynelatende svært ulike klasser av objekter : n-tupler, følger, funksjoner,

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015

Rang og Vektorrom. Magnus B. Botnan NTNU. 4. august, 2015 Rang og Vektorrom Magnus B. Botnan NTNU 4. august, 2015 Lineær Uavhengighet La v (1),..., v (m) være vektorer av samme størrelse. Vi sier at vektorene er lineært avhengige hvis det finnes konstanter c

Detaljer

MAT 1110: Bruk av redusert trappeform

MAT 1110: Bruk av redusert trappeform Tom Lindstrøm 10/5, 2006: MAT 1110: Bruk av redusert trappeform I Lays bok brukes den reduserte trappeformen til matriser til å løse en rekke problemer knyttet til ligningssystemer, lineærkombinasjoner,

Detaljer

10 Radrommet, kolonnerommet og nullrommet

10 Radrommet, kolonnerommet og nullrommet Radrommet kolonnerommet og nullrommet La A være en m n matrise Vi kan beskrive matrisen ved hjelp av dens rader r A r r i R n r m eller dens kolonner A [ c c c n ci R m Definisjon (se Def 7 i boka) For

Detaljer

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer:

A 2 = PDP 1 PDP 1 = PD 2 P 1. og ved induksjon får vi. A k = PD k P 1. Kommentarer: 5.3 Diagonalisering Det ville være fint om en matrise A var similær med en diagonalmatrise D: da har vi funnet egenverdiene, og kan f.eks. lett beregne A k. Når er dette tilfelle? Det er tema i denne seksjonen.

Detaljer

Egenverdier og egenvektorer

Egenverdier og egenvektorer Kapittel 9 Egenverdier og egenvektorer Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer Hvis A er en m n-matrise, så gir A en transformasjon

Detaljer

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon.

Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. 4.6 Rang Til enhver m n matrise A kan vi knytte et tall, rangen til A, som gir viktig informasjon. Definisjon: Rangen til en m n matrise A betegnes med rank A og er definert som dimensjonen til kolonnerommet

Detaljer

Repetisjon: om avsn og kap. 3 i Lay

Repetisjon: om avsn og kap. 3 i Lay Repetisjon: om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p der b j -ene er i R n for hver j. Produktet

Detaljer

Repetisjon: Om avsn og kap. 3 i Lay

Repetisjon: Om avsn og kap. 3 i Lay Repetisjon: Om avsn. 2.1-2.4 og kap. 3 i Lay Matrisemultiplikasjon. La A = [a ij ] være en m n matrise og B = [b kl ] være en n p matrise. ] Skriv B = [b 1 b 2 b p. Produktet AB er m p matrisen definert

Detaljer

Lineær algebra-oppsummering

Lineær algebra-oppsummering Kapittel 9 Lineær algebra-oppsummering Matriser 1 Matriser er et rektangulært sett av elementer ordnet i rekker og kolonner: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij m n a m1 a n2 a mn 2 Kvadratisk matrise:

Detaljer

9 Lineærtransformasjoner TMA4110 høsten 2018

9 Lineærtransformasjoner TMA4110 høsten 2018 9 Lineærtransformasjoner MA4 høsten 8 I forrige kapittel begynte vi å formulere lineær algebra på en generell måte, ved å gi en abstrakt definisjon av vektorrom For å beskrive sammenhenger mellom forskjellige

Detaljer

LP. Kap. 17: indrepunktsmetoder

LP. Kap. 17: indrepunktsmetoder LP. Kap. 17: indrepunktsmetoder simpleksalgoritmen går langs randen av polyedret P av tillatte løsninger et alternativ er indrepunktsmetoder de finner en vei i det indre av P fram til en optimal løsning

Detaljer

4 Matriser TMA4110 høsten 2018

4 Matriser TMA4110 høsten 2018 Matriser TMA høsten 8 Nå har vi fått erfaring med å bruke matriser i et par forskjellige sammenhenger Vi har lært å løse et lineært likningssystem ved å sette opp totalmatrisen til systemet og gausseliminere

Detaljer

MAT UiO. 10. mai Våren 2010 MAT 1012

MAT UiO. 10. mai Våren 2010 MAT 1012 MAT Våren UiO. / 7 Betrakt et system x = A x der A M n (R) er diagonaliserbar. Vi har sett at systemet kan løses ved frakoblingsmetoden: Vi finner da P = [v v n ] (inverterbar) og D (diagonal) som diagonaliserer

Detaljer

Forelesning i Matte 3

Forelesning i Matte 3 Forelesning i Matte 3 Determinanter H. J. Rivertz Institutt for matematiske fag 1. februar 008 Innhold 1. time 1 Determinanter og elementære radoperasjoner Innhold 1. time 1 Determinanter og elementære

Detaljer

UNIVERSITET I BERGEN

UNIVERSITET I BERGEN UNIVERSITET I BERGEN Det matematisk-naturvitenskapelige fakultet BOKMÅL Løsningsforslag eksamen MAT - Lineær algebra H Med forbehold om skrivefeil. Oppgave. Betrakt A = 6 5, b = 6 b (a) (b) Finn den reduserte

Detaljer

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden

LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden LP. Leksjon 1. Kapittel 1 og 2: eksempel og simpleksmetoden Dette emnet gir en innføring i lineær optimering og tilgrensende felt. hva er LP (lin.opt.=lin.programmering) mer generelt: matematisk optimering

Detaljer

15 Hovedprinsippet for vektorrom med et indre produkt

15 Hovedprinsippet for vektorrom med et indre produkt Hovedprinsippet for vektorrom med et indre produkt La oss minne Hovedprinsippet (Seksjon 8.): Alle (endelig dimensjonale dvs. de som har en endelig basis) vektorrom kan beskrives som R n der n dim V. Alle

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: 9. desember 2014. Tid for eksamen: 14.30 18.30. Oppgavesettet er på 6 sider. Vedlegg: Tillatte

Detaljer

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type

GENERELLE VEKTORROM. Hittil har vi bare snakket om vektorrom av type Emne 8 GENERELLE VEKTORROM Hittil har vi bare snakket om vektorrom av type og underrom av dette. Vi definerte en mengde V som et underrom av hvis det inneholdt og var lukket under addisjon og skalar multiplikasjon.

Detaljer

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse

MAT3000/ Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse MAT3000/4000 - Våren 2013 Obligatorisk oppgavesett nr. 2 Løsningsskisse Oppgave 1 Din offentlig nøkkel er N = 377 og a = 269, mens lederen av klubben har valgt N = 1829 og a = 7. Passordet som du har mottatt

Detaljer

Lineær uavhengighet og basis

Lineær uavhengighet og basis Lineær uavhengighet og basis NTNU, Institutt for matematiske fag 19. oktober, 2010 Lineær kombinasjon En vektor w sies å være en lineær kombinasjon av vektorer v 1, v 2,..., v k hvis det finnes tall c

Detaljer

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler

Lineære ligningssystemer. Forelesning, TMA4110 Torsdag 17/9. Lineære ligningssystemer (forts.) Eksempler Lineære ligningssystemer Generell form; m ligninger i n ukjente, m n-system: Forelesning, TMA4110 Torsdag 17/9 Martin Wanvik, IMF MartinWanvik@mathntnuno a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1

Detaljer

Lineære likningssett.

Lineære likningssett. Lineære likningssett. Forelesningsnotater i matematikk. Lineære likningssystemer. Side 1. 1. Innledning. La x 1, x, x n være n ukjente størrelser. La disse størrelsene være forbundet med m lineære likninger,

Detaljer

Vektorligninger. Kapittel 3. Vektorregning

Vektorligninger. Kapittel 3. Vektorregning Kapittel Vektorligninger I denne uken skal vi bruke enkel vektorregning til å analysere lineære ligningssystemer. Vi skal ha et spesielt fokus på R, for det går an å visualisere; klarer man det, går det

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente Oppvarming Her er et eksempel på et

Detaljer

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3

(3/2)R 2+R 3 R 1 +R 2,( 2)R 1 +R 3 ( 2)R 1 +R 4 6/5R 3 +R 4 1/5R 3 NTNU Institutt for matematiske fag TMA4115 Matematikk 3 våren 2009 Løsningsforslag - Øving 10 Fra Edwards & Penney, avsnitt 4.4 5 Vi bruker Algoritme 1 og 2 i EP på sidene 190 og 193 for å finne en basis

Detaljer

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side).

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences. Matlab-utskrift (1 side). UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Examination in: MAT 2 Lineær algebra Day of examination: 9. desember 2. Examination hours: 4.3 8.3. This problem set consists of 6 pages.

Detaljer

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts.

Gauss-Jordan eliminasjon; redusert echelonform. Forelesning, TMA4110 Fredag 18/9. Reduserte echelonmatriser. Reduserte echelonmatriser (forts. Gauss-Jordan eliminasjon; redusert echelonform Forelesning, TMA4110 Fredag 18/9 Martin Wanvik, IMF MartinWanvik@mathntnuno En matrise vil normalt være radekvivalent med flere echelonmatriser; med andre

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT 1120 Lineær algebra Eksamensdag: Mandag 5 desember 2016 Tid for eksamen: 09.00 13.00 Oppgavesettet er på 6 sider. Vedlegg:

Detaljer

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 10 Faglig kontakt under eksamen: Truls Fretland (73 55 89 87) EKSAMEN I MA1202 LINEÆR ALGEBRA MED ANVENDELSER LØSNINGSFORSLAG

Detaljer

8 Vektorrom TMA4110 høsten 2018

8 Vektorrom TMA4110 høsten 2018 8 Vektorrom TMA4 høsten 8 I de foregående kapitlene har vi tatt en lang vandring gjennom den lineære algebraens jungel. Nå skal vi gå opp på en fjelltopp og skue ut over landskapet vi har vandret gjennom.

Detaljer

Kap. 7 Symmetriske matriser og kvadratiske former

Kap. 7 Symmetriske matriser og kvadratiske former Kap. 7 Symmetriske matriser og kvadratiske former Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på symmetriske matriser som har uvanlig pene egenskaper mht. diagonalisering.

Detaljer

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger

Notat2 - MAT Om matriserepresentasjoner av lineære avbildninger Notat2 - MAT1120 - Om matriserepresentasjoner av lineære avbildninger Dette notatet uftfyller bokas avsn 54 om matriserepresentasjoner av lineære avbildninger mellom endelig dimensjonale vektorrom En matriserepresentasjon

Detaljer

Løsningsforslag øving 6

Løsningsforslag øving 6 Løsningsforslag øving 6 7 Husk Teorem 79 i notatet: En delmengde U av et vektorrom V er et underrom hvis ) nullvektoren er i U, ) summen av to vektorer i U er i U igjen, og 3) et skalarmultiplum av en

Detaljer

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse

LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse LP. Leksjon 6: Kap. 6: simpleksmetoden i matriseform, og Seksjon 7.1: følsomhetsanalyse matrisenotasjon simpleksalgoritmen i matrisenotasjon eksempel negativ transponert egenskap: bevis følsomhetsanalyse

Detaljer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer

(a) R n defineres som mengden av kolonnevektorer. a 1 a 2. a n. (b) R n defineres som mengden av radvektorer 5 Vektorrom Et vektorrom er en mengde V med tre algebraiske operasjoner (addisjon, negasjon og skalærmultiplikasjon) som tilfredsstiller de 10 betingelsene fra Def. 4.1.1. Jeg vil ikke gi en eksamensoppgave

Detaljer

Emne 10 Litt mer om matriser, noen anvendelser

Emne 10 Litt mer om matriser, noen anvendelser Emne 10 Litt mer om matriser, noen anvendelser (Reelle) ortogonale matriser La A være en reell, kvadratisk matrise, dvs. en (n n)-matrise hvor hvert element Da vil A være ortogonal dersom: og Med menes

Detaljer

Gauss-eliminasjon og matrisemultiplikasjon

Gauss-eliminasjon og matrisemultiplikasjon DUMMY Gauss-eliminasjon og matrisemultiplikasjon Lars Sydnes 9 september 2015 Sammendrag Dette notatet handler om hvordan man løser lineære ligningssystemer, altså systemer av flere ligninger i flere ukjente,

Detaljer

7 Egenverdier og egenvektorer TMA4110 høsten 2018

7 Egenverdier og egenvektorer TMA4110 høsten 2018 7 Egenverdier og egenvektorer TMA4 høsten 8 Det er ofte hensiktsmessig å tenke på en matrise ikke bare som en tabell med tall, men som en transformasjon av vektorer. Hvis A er en m n-matrise, så gir A

Detaljer

OBLIG 2 - MAT 1120 Høsten 2005

OBLIG 2 - MAT 1120 Høsten 2005 > with(linearalgebra): with(linalg):with(plots): Warning, the name GramSchmidt has been rebound Warning, the protected names norm and trace have been redefined and unprotected Warning, the name changecoords

Detaljer

Lineære ligningssystemer og gausseliminasjon

Lineære ligningssystemer og gausseliminasjon Kapittel Lineære ligningssystemer og gausseliminasjon Vi skal lære en metode for å finne og beskrive alle løsninger av systemer av m lineære ligninger med n ukjente. Oppvarming Her er et eksempel på et

Detaljer

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder

x 1 x 2 x = x n b 1 b 2 b = b m Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder 4 Noen merknader 4. Lineære systemer Ax = b Gitt systemet Ax = b, A = [a i,j ] i=,,...,m, j=,,...,n x = b = Det kan være vanskelig (beregningsmessig) og bearbeide utrykk som inneholder b i. Med det finnes

Detaljer

Eksamensoppgave i TMA4110/TMA4115 Calculus 3

Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Institutt for matematiske fag Eksamensoppgave i TMA4110/TMA4115 Calculus 3 Faglig kontakt under eksamen: Markus Szymik Tlf: 411 16 793 Eksamensdato: August 2018 Eksamenstid (fra til): 09:00 13:00 Hjelpemiddelkode/Tillatte

Detaljer

Lineær algebra. 0.1 Vektorrom

Lineær algebra. 0.1 Vektorrom Lineær algebra Siden dette temaet er alt for stort til å kunne gjennomgås på en halvtime, med alle de teoremene og denisjonene som skal til, har jeg laget dette notatet. Det bygger hovedsakelig på notatene

Detaljer

Løsningsforslag øving 7

Løsningsforslag øving 7 Løsningsforslag øving 7 8 Husk at en funksjon er injektiv dersom x y gir f(x) f(y), men her ser vi at f(3) 9 f( 3), eller generelt at f(z) z f( z) for alle z C, som betyr at f ikke er injektiv Vi ser også

Detaljer

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på

Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Kap. 7 Innledning Vi skal koble diagonalisering av matriser sammen med ortogonalitet. Skal bl.a. se på Symmetriske matriser. Disse matrisene har uvanlig pene egenskaper mht. diagonalisering. Kvadratiske

Detaljer

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer?

Vektorrom. Kapittel 7. Hva kan vi gjøre med vektorer? Kapittel 7 Vektorrom Vårt mål i dette kapitlet og det neste er å generalisere og abstrahere ideene vi har jobbet med til nå Især skal vi stille spørsmålet Hva er en vektor? Svaret vi skal gi, vil virke

Detaljer

Polynomisk interpolasjon

Polynomisk interpolasjon Polynomisk interpolasjon Hans Munthe-Kaas 1. jaunar 2002 Abstract Dette notatet tar for seg interpolasjon med polynomer. Notatet er ment som et tillegg til læreboken i I162, og forsøker å framstille dette

Detaljer

Kap. 5 Egenverdier og egenvektorer

Kap. 5 Egenverdier og egenvektorer Kap. 5 Egenverdier og egenvektorer Egenverdier, egenvektorer og diagonaliserbarhet er sentrale begreper for kvadratiske matriser. Mye er kjent fra tidligere, skal repetere dette og gå videre. Sammenhengen

Detaljer

MAT Oblig 1. Halvard Sutterud. 22. september 2016

MAT Oblig 1. Halvard Sutterud. 22. september 2016 MAT1110 - Oblig 1 Halvard Sutterud 22. september 2016 Sammendrag I dette prosjektet skal vi se på anvendelsen av lineær algebra til å generere rangeringer av nettsider i et web basert på antall hyperlinker

Detaljer

Lineære likningssystemer

Lineære likningssystemer Kapittel 1 Lineære likningssystemer Jeg tenker på et tall slik at π ganger tallet er 12. 1.1 Lineære likninger Matematikk dreier seg om å løse problemer. Problemene gjøres ofte om til likninger som så

Detaljer

Obligatorisk oppgavesett 1 MAT1120 H16

Obligatorisk oppgavesett 1 MAT1120 H16 Obligatorisk oppgavesett MAT0 H6 Innleveringsfrist: torsdag /09 06, innen kl 4.30. Besvarelsen leveres på Matematisk institutt, 7. etasje i N.H. Abels hus. Husk å bruke forsiden som du finner via hjemmesiden.

Detaljer

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning

Lineær Algebra og Vektorrom. Eivind Eriksen. Høgskolen i Oslo, Avdeling for Ingeniørutdanning Lineær Algebra og Vektorrom Eivind Eriksen Høgskolen i Oslo, Avdeling for Ingeniørutdanning c Eivind Eriksen 2005. Innhold Kapittel 1. Lineære likningssystemer 1 1.1. Lineære likningssystemer i to variable

Detaljer

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0.

Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. Ax = b, f(x) = 0. Interpolasjon Opp til nå har problemstilling vart: Gitt en funksjon f, finn for hvilket verdier av de variabler f tar en bestemt verdi. 1/9 Ax = b, f(x) = 0. Ved interpolasjon, er problemet det motsatte:

Detaljer

MAT1120 Oppgaver til plenumsregningen torsdag 18/9

MAT1120 Oppgaver til plenumsregningen torsdag 18/9 MAT1120 Oppgaver til plenumsregningen torsdag 18/9 Øyvind Ryan (oyvindry@i.uio.no) September 2008 Oppgaver fra 4.8 Teorem 16 s. 282: y k+n + a 1 y k+n 1 + + a n 1 y k+1 + a n y k = z k har alltid en løsning

Detaljer

MA1201, , Kandidatnummer:... Side 1 av 5. x =.

MA1201, , Kandidatnummer:... Side 1 av 5. x =. MA1201, 05.10.2016, Kandidatnummer:... Side 1 av 5 Oppgave 1 Løs ligningssystemet S T S T 1 1 0 1 W X W X U2 1 1 V x = U5V. 1 0 2 1 x =. Oppgave 2 Regn ut: S T S T 1 2 1 1 1 W X W X U 3 0 1 V U0 1 V =

Detaljer

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010

TMA4122/TMA4130 Matematikk 4M/4N Høsten 2010 Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag TMA4122/TMA410 Matematikk 4M/4N Høsten 2010 1 Oppgave: Løs følgende ligningssystemer ved hjelp av Gauss-eliminasjon med delvis

Detaljer

= 3 11 = = 6 4 = 1.

= 3 11 = = 6 4 = 1. MAT3000/4000 Eksamen V3 Løsningsforslag Oppgave [0 poeng] Sjekk at 3 er en kvadratisk rest i Z/(3) og finn løsningene av likningen x = 3 i Z/(3) (uten å lage en tabell for x ) Du får lov til å bruke at

Detaljer

13 Oppsummering til Ch. 5.1, 5.2 og 8.5

13 Oppsummering til Ch. 5.1, 5.2 og 8.5 3 Oppsummering til Ch. 5. 5. og 8.5 3. Motivasjon Det er veldig viktig å kunne beregne funksjonsverdier f (A) for kvadratiske matriser A. I kalkulus (teori av differensiallikninger) er det viktig å beregne

Detaljer

Emne 9. Egenverdier og egenvektorer

Emne 9. Egenverdier og egenvektorer Emne 9. Egenverdier og egenvektorer Definisjon: Vi starter med en lineær transformasjon fra til, hvor Dersom, hvor, sier vi at: er egenverdiene til A er tilhørende egenvektorer. betyr at er et reelt eller

Detaljer

EKSAME SOPPGAVE MAT-1004 (BOKMÅL)

EKSAME SOPPGAVE MAT-1004 (BOKMÅL) EKSAME SOPPGAVE MAT-00 (BOKMÅL) Eksamen i : Mat-00 Lineær algebra. Dato : Torsdag 09. juni. Tid : 09.00 -.00. Sted: : Teorifagb., hus, plan. Tillatte hjelpemidler : Godkjent kalkulator, to A ark egne notater

Detaljer

12 Lineære transformasjoner

12 Lineære transformasjoner 2 Lineære transformasjoner 2 Funksjoner Definisjon 2 En funksjon ( a function) f : A B er en regel, som tilordner en entydig bestemt verdi f (a) B til ethvert element a A Mengden A kalles domenet til f

Detaljer

UNIVERSITETET I OSLO

UNIVERSITETET I OSLO UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: MAT Lineær algebra Eksamensdag: Mandag,. desember 7. Tid for eksamen: 4. 8.. Oppgavesettet er på 8 sider. Vedlegg: Tillatte hjelpemidler:

Detaljer

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER Norges teknisk naturvitenskapelige universitet Institutt for matematiske fag Side 1 av 3 Faglig kontakt under eksamen: Carl Fredrik Berg (975 05 585) EKSAMEN I MA1202 OG MA6202 LINEÆR ALGEBRA MED ANVENDELSER

Detaljer