FYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)
|
|
- Philip Evensen
- 7 år siden
- Visninger:
Transkript
1 YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System beveger seg med hastighet i forhold til system langs -aksen. Lorentz transformasjonen fra system til system kan da skrives som:,,,. a. En observatør i system måler en konstant hastighet til en partikkel i -retning og finner. En observatør som befinner seg i system måler hastigheten. Vis at sammenhengen mellom og er: (5 poeng) a. I et eksperiment akselereres to protoner til høy hastighet i motsatt retning slik at de kolliderer. I laboratoriesystemet måler vi hastighetene og. Vi definerer systemet slik at det andre protonet er i ro,, målt i dette systemet. Hva er hastigheten til det første protonet i system? Med andre ord, hvis du er et av protonene, hva er hastigheten som du måler for protonet som kommer mot deg? (5 poeng) I system er:, I system er det andre protonet i ro: Relativhastigheten mellom de to systemer er dermed: Vi bruker resultatet fra oppgave a: Page 1 of 11
2 Oppgave 2 (2014), 16 poeng a. En kube med kantlengde og masse som roterer om en hovedakse gjennom sitt massesenter har treghetsmoment. Hva er treghetsmomentet for rotasjon om én av kantene (se figur)? (3 poeng) Vi bruker parallellakseteoremet: hvor vi har flyttet rotasjonsaksen en avstand. En kube med kantlengde og masse beveger seg med hastighet langs et friksjonsfritt bord. Du kan se bort fra luftmotstanden. Når den kommer til kanten til bordet treffer kuben på en list slik at den stanser plutselig og begynner å rotere. b. Del bevegelsen inn i forskjellige faser og diskuter hvilke størrelser som er bevart i de ulike fasene. (4 poeng) ase 1: Kuben sklir langs bordet. Siden overflaten er friksjonsfri og vi kan se bort fra luftmotstanden virker bare gravitasjon og normalkraften, slik at nettokraften er null. Derfor er både energi og bevegelsesmengde bevart. ase 2: Kollisjon med kanten. Vi vet ingen ting om selve kollisjonsprosessen. Kollisjonen er generelt ikke elastisk, og energi kan gå over til deformasjon, lyd og oppvarming. Det oppstår krefter fra listen på kuben og derfor er bevegelsesmengde ikke bevart heller. Siden angrepspunktene for disse kreftene ligger på rotasjonsaksen er kraftmomentet null og spinn er bevart. ase 3: Kuben roterer. Det virker gravitasjon og krefter fra listen på kuben, men sistnevnte gjør ingen arbeid fordi kanten ikke beveger seg. Derfor er energien bevart. På grunn av kreftene fra listen er bevegelsesmengde ikke bevart. Gravitasjon gir et kraftmoment, derfor Page 2 of 11
3 er spinn ikke bevart heller. ase 4: Kuben roterer enten tilbake til eller faller av bordet. c. inn vinkelhastigheten umiddelbart etter kollisjonen med kanten. Uttrykk vinkelhastigheten som funksjon av hastigheten og lengden. (4 poeng) Med argumentene fra b. ser vi at vi kan bruke spinnbevaring. Spinn til kuben om bordkanten umiddelbart før kollisjonen: Etter kollisjonen roterer kuben om kanten: Altså: d. Hva er minimumshastigheten som kuben må ha for å falle av bordet? Uttrykk svaret i form av lengden og tyngdeakselerasjonen. (5 poeng) Vinkelhastigheten må være stort nok for at massesenteret løftes til en høyde ( ) Vi bruker energibevaring: ( ) ( ) ( ) Page 3 of 11
4 Oppgave 3 (2015) 17 poeng I denne oppgaven skal vi studere et atom på en atomær overflate. Vi beskriver vekselvirkningen mellom atomet og overflaten ved den potensielle energien til atomet som funksjon av posisjonen x langs overflaten: U(x) = U 0 (1 cos ( 2πx x 0 )) Atomet har massen m og beveger seg kun langs x aksen. Du kan neglisjere alle andre krefter. a. inn et uttrykk for kraften som virker på atomet. (3 poeng) = du dx = 2π U x 0 sin ( 2πx ) 0 x 0 b. Vis at når x x 0 kan bevegelsesligningen tilnærmet skrives som: d 2 x dx 2 = ω2 x og finn ω. Beskriv bevegelsen til atomet i dette grensetilfelle. (5 poeng) Det ble kunngjort under eksamen at det var en skrivefeil i oppgaveteksten og at ligningen er: d 2 x dt 2 = ω2 x or små φ kan vi rekkeutvikle sin(φ) = φ + O(φ 3 ) φ d 2 x dt 2 = a = m = U 2 0 m (2π ) x = ω 2 x x 0 hvor ω = 2π U 0 x 0 m Denne ligningen beskriver en harmonisk oscillator. Atomet vil vibrere omkring med en periodetid T = 2π. Amplituden i oscillasjonen er avhengig av initialbetingelsene. ω Tilnærmingen gjelder kun for små utslag. c. Atomet starter i posisjonen x = 0 med hastigheten v 0. Hvor stor må v 0 være for at atomet skal nå posisjonen x = 4x 0? Skisser bevegelsen x(t) og v(t) til atomet i dette tilfellet. (4 poeng) Atomet beveger seg i et potensial og er ikke påvirket av noen ikke-konservative krefter. Den totale mekaniske energien til atomet er derfor bevart. or at atomet skal nå en avstand x = 4x 0 må den ha tilstrekkelig total energi til å komme ut av potensialbrønnen omkring x = 0. Den maksimale potensielle energien er U = 2U 0. Den initielle kinetiske energien må derfor være større enn dette: E = K 0 + U 0 = K 1 + U 1 hvor og K 0 + U 0 = 1 2 mv K 1 + U 1 = 1 2 mv U 0 Den minste kinetiske energien som skal til finner vi ved å sette v 1 = 0 slik at atomet Page 4 of 11
5 Massesenteret akkurat kommer beveger forbi seg med toppen konstant i energilandskapet. hastighet i x retning. Samtidig roterer systemet med konstant vinkelhastighet om massesenteret. 1 2 mv 0 2 = 2U 0 Oppgave 4 (7 poeng) v 0 = 4U 0 m Et pion oppstår i en kollisjon mellom høyenergetiske protoner i en partikkelakselerator. Etter det d. er or skapt å løse beveger bevegelsesligningene pionet seg med konstant for atomet høy hastighet i det generelle nær lysets tilfellet hastighet har før du det utviklet henfaller. et program som finner posisjonen og hastigheten til atomet numerisk ved hjelp av Euler Et pion i sitt hvilesystem har levetiden. inn hastigheten til pionet hvis du som observatør i metode. Du gjør en simulering med realistiske parametere og initialbetingelsene x = laboratoriet detekterer henfallet i en avstand fra kollisjonspunktet. inn et uttrykk for og v = v 0 ved tiden t = 0 og får resultatet i figuren nedenfor. Er resultatet fornuftig? hastigheten som funksjon av avstanden og konstantene og. orklar! (5 poeng) 3 Hendelse ørst 1: svinger pionet oppstår atomet i i kollisjonen, et hendelse 2: pionet henfaller. Tidsperioden mellom de to 2 hendelser potensialminimum, er levetiden til pionet. men I sitt hvilesystem S er pionet i ro og levetiden er. I 1 laboratoriesystemet etterpå klarer atomet S beveger å pionet seg med hastighet og levetiden er lenger på grunn av 0 tidsdilatasjon: komme over toppen i. I laboratoriesystemet S beveger pionet seg en strekning mellom -1 potensialet og bevege seg hendelse 1 og 2 og bruker en tidsperiode for denne strekningen. Hastigheten er derfor: t/t langs overflaten. ordi 0 2 atomet kun er påvirket av 1 kraften som er konservativ, skal den 0 totale energien være -1 bevart. Det er klart fra figuren at energien i t/t 0 simuleringen ikke er bevart. or eksempel ser vi at den maksimale hastigheten ved x = 0 øker med tiden. enomenet vi observerer er derfor ikke en fysisk effekt, men et resultat av at Eulers metode ikke er egnet til å løse dette problemet. Vi ville fått bedre resultater ved for eksempel å bruke Euler-Cromer metoden. Hensikten med denne oppgaven er at du skal bruke din fysiske innsikt om energibevaring til å vurdere et resultat. x/x 0 v/v 0 Oppgave 5 (26 poeng) Oppgave 4 (2013) 26 poeng En sylinder som roterer om massesenteret sitt er satt ned på et skråplan med helningsvinkel. Sylinderen har masse, radius og treghetsmomentet om massesenteret er. Vi definerer aksen langs skråplanet som vist i figuren. Sylinderen roterer med klokken med en initial vinkelhastighet. ( aksen peker ut av papirplanet.) Den dynamiske friksjonskoeffisienten mellom sylinderen og overflaten til skråplanet er. Når den er satt ned på Page 5 of 11
6 skråplanet ruller og sklir sylinderen samtidlig i en blandet bevegelse. I denne oppgaven er vi interessert i den første perioden fram til det blir en ren rullebevegelse. Du kan se bort fra luftmotstanden. a) Tegn et frilegemediagram for sylinderen og uttrykk alle kreftene ved hjelp av,,, og. (3 poeng) Gravitasjonskraft Normalkraft riksjonskraft Med koordinatsystem som vist i figuren: Ingen bevegelse i y retning: Siden sylinderen roterer med klokken er friksjonskraften rettet i positiv x retning. Siden sylindere sklir må vi bruke dynamisk friksjon: b) inn posisjonen til sylinderen som funksjon av tiden fra det øyeblikket sylinderen settes ned til den begynner å rulle uten å skli. (5 poeng) Newtons andre lov i x retning: Akselerasjonen i x retning er konstant og vi integrerer: Initialbetingelse: Vi integrerer igjen for å finne posisjonen: Page 6 of 11
7 Initialbetingelse: (i) c) Diskuter bevegelsen for forskjellige verdier for vinkelen. Hvordan beveger sylinderen seg hvis (i), (ii), (iii)? (3 poeng) Sylinderen beveger seg i positiv x retning opp på skråplanet. Det kan hende hvis vinkelen er liten eller friksjonskoeffisienten er stor. (ii) Sylinderen sklir ned skråplanet i negativ x retning. Det hender hvis vinkelen er stor eller hvis friksjonskoeffisienten er liten. (iii) Sylinderen roterer uten at massesenteret beveger seg. Dette gjelder bare så lenge sylinderen sklir og det virker en friksjonskraft som kompenserer komponenten av gravitasjonskraften ned langs skråplanet. d) inn vinkelhastigheten til sylinderen som funksjon av tiden fra det øyeblikket sylinderen settes ned til den begynner å rulle uten å skli. Vær oppmerksom på rotasjonsretningen og retning av vinkelakselerasjonen. (6 poeng) Gravitasjon angriper i massesenteret og gir ingen kraftmoment. Normalkraften er parallell med posisjonsvektoren til angrepspunktet og gir ingen kraftmoment. Bare friksjonskraften gir et kraftmoment: Spinnsats: Vi integrerer for å finne vinkelhastigheten: Initialbetingelse: Page 7 of 11
8 Vinkelhastigheten blir mindre over tiden på grunn av friksjon. e) Vi betrakter en situasjon hvor Vis at tiden det tar for sylinderen å rulle uten å skli er. Vær igjen oppmerksom på at sylinderen roterer i negativ - retning. (6 poeng) Siden beveger sylinderen seg oppover på skråplanet med positiv hastighet. Sylinderen roterer med klokken (i negativ z retning). Vi kan derfor formulere rullebetingelse som: Vi setter inn resultatene fra b) og d) for å finne tiden når sylinderen begynne å rulle uten å skli: f) Ved hvilken vinkelhastighet begynner sylinderen å rulle uten å skli hvis? Diskuter bevegelsen i dette tilfellet. (3 poeng) I dette tilfelle er og Denne tiden setter vi inn i resultatet fra d) Sylinderen roterer uten at massesenteret beveger seg opp eller ned skråplanet. På grunn av friksjonen blir vinkelhastigheten mindre og på tiden er sylinderen fullstendig i ro. Etterpå vil sylinderen rulle ned skråplanet. Page 8 of 11
9 Oppgave 5 (2015) (6 poeng) Romskipet Enterprise er forfulgt av et fiendtlig Klingon Bird-of-Prey romskip. En observatør på jorden (i system S) måler at hastigheten til Enterprise er v E = 0.4 c i retning bort fra jorden og hastigheten til Klingon skipet er v K = 0.5 c i samme retning. Hva er hastigheten v K til Klingon skipet som Captain Kirk måler fra Enterprise (i system S )? Relativhastighet mellom system S og S : u = v E Det søkes hastighet v K til Klingon skipet i system S. Vi bruker Lotrentz transformasjon: v K = x x x u t = t t u x = t u c 2 1 u x = v K v E 0.1 c 1 1 = = c v c 2 t c 2 K v E Oppgave 6 (2004) Et balltre hviler på en friksjonsfri horisontal flate. Balltreet har en lengde L = m, en masse M = kg, og massesenteret er L = m fra håndtak-enden av balltreet (se figur). Treghetsmomentet til balltreet om massesenteret er kg m 2. Balltreet blir truffet av en baseball L som beveger seg på tvers av balltreets lengderetning. I sammenstøtet virker ballen på balltreet med en horisontal kraft (gjerne tidsavhengig) i et punkt som er en avstand x fra håndtak-enden av balltreet. or hvilken verdi av x vil håndtak-enden av balltreet bli liggende omtrent i ro idet balltreet begynner å bevege seg? L x Det forutsettes at bevegelsen skjer i et horisontalt plan og at også kraften virker horisontalt. Da vil de to vertikale krefter som virker på balltreet (tyngden og normalkraften fra underlaget) alltid være like store slik at vi ikke vil ha noen bevegelse i vertikal retning. I horisontal retning antas det at friksjonen er så liten at vi kan se bort fra den (for vårt problem). Den eneste kraften som virker på balltreet, er da kraften ballen trykker på balltreet med. Dette vil være en tidsavhengig kraft, og vi kjenner ikke tidsforløpet, men det vil ikke spille noen rolle for beregningene. Idet ballen virker på balltreet, vil balltreet bli påvirket av en netto kraft, og denne vil gi en netto akselerasjon av massesenteret (Newtons 2. lov for stive legemer). Videre vil kraften ha et kraftmoment omkring f.eks. massesenteret, og da vil balltreet ifølge spinnsatsen få en vinkelakselerasjon omkring massesenteret. Page 9 of 11
10 Dersom håndtak-enden av balltreet skal bli liggende omtrent i ro idet bevegelsen starter, må vi justere translatorisk akselerasjon (Newtons 2. lov) med vinkelakselerasjon (spinnsats) slik at man får ønsket effekt. Vi har i prinsippet to uavhengige bevegelser, translasjon og rotasjon, som vist på skissen til høyre. Ved den translatoriske bevegelsen vil håndtaket bevege seg nedover på skissen, mens ved rotasjonsbevegelsen vil håndtaket bevege seg oppover (rel. ). Når disse to bevegelsene matcher hverandre i starten av bevegelsen, vil håndtaket i starten bli liggende omtrent i ro. Translatorisk akselerasjon Vinkelakselerasjon (rotasjon om ) α a Den translatoriske bevegelsen er gitt ut fra Newtons 2. lov: a = ---- M Dette blir også akselerasjonen til håndtakenden dersom vi bare tar med translatorisk bevegelse. Rotasjonsbevegelsen er gitt ut fra spinnsatsen anvendt om massesenteret. Den gir: τ = ( x L ) = I α hvor α er vinkelakselerasjonen om. (τ er kraftmoment - øvrige størrelser er forklart i oppgaveteksten.) Men dersom balltreet hadde en vinkelakselerasjon omkring alene, ville håndtakenden ha en tangentiell akselerasjon gitt ved: a t = rα = L α siden avstanden fra til håndtakenden nettopp er lik L. Den tangentielle akselerasjonen er rettet rett oppover på skissen helt i starten av bevegelsen, det vil si motsatt retningen den translatoriske akselerasjonen har dersom vi bare hadde translasjon alene. or å få null akselerasjon innledningsvis i balltreets håndtakende når både translasjon og rotasjon finner sted, må vi da ha: a tot = a translatorisk + a pga rotasjon = a L α = 0 hvor akselerasjon nedover er regnet som positiv. ølgelig: a = L α Innsatt for uttrykk funnet tidligere: Page 10 of 11
11 ( x L ) ---- = L M I Vi ser at kraften kan forkortes bort (ikke så rart siden både translatorisk akselerasjon og vinkelakselerasjon er proporsjonale med kraften), og vi ender opp med følgende uttrykk for x: x = I L M L Innsatt for våre tall: x = m = m Dette er lykkeligvis innenfor balltreets lengde, ellers ville vi hatt problemer! Page 11 of 11
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
DetaljerFYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
DetaljerRepetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerLøsningsforslag. Eksamen i Fys-mek1110 våren 2011
Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 14 juni 2019 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerRepetisjon
Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerLøsningsforslag. Eksamen i Fys-mek1110 våren !"!!!. Du kan se bort fra luftmotstand.
Side av 6 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,
DetaljerLøsningsforslag Fys-mek1110 V2012
Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2009
Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.
DetaljerLøsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007
Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerEKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
DetaljerKorrigert løsningsforslag til eksamen i
1 Korrigert løsningsforslag til eksamen i YS-MEK 1110 - Mekanikk / YS-ME 1110 - Mekanikk for ME / Y-ME100, torsdag 3. juni 2004 1. orståelsesspørsmål a) Kan et legeme som har konstant akselerasjon endre
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
DetaljerSG: Spinn og fiktive krefter. Oppgaver
FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =
DetaljerKeplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
DetaljerObligatorisk oppgave i fysikk våren 2002
Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger
DetaljerFYSMEK1110 Eksamensverksted 29. Mai 2017 (basert på eksamen I 2004, 2012,2013,2015)
FYSMEK1110 Eksamensverksted 29. Mai 2017 (basert på eksamen I 2004, 2012,2013,2015) Oppgave 1 (maks. 30 minutt med diskusjon) a) Kan et legeme som har konstant akselerasjon endre bevegelsesretning? Gi
DetaljerUNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
DetaljerLøsningsforslag. Midtveiseksamen i Fys-Mek1110 våren 2008
Side av Løsningsforslag idtveiseksaen i Fys-ek våren 8 Oppgave a) En roer sitter i en båt på vannet og ror ed konstant fart. Tegn et frilegeediagra for roeren, og navngi alle kreftene. Suen av kreftene
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Obligatorisk numerikkøving. Innleveringsfrist: Søndag 13. november kl 23.9. Volleyball på kvartsirkel Kvalitativ beskrivelse φ f r+r N Mg R Vi er
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerF B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter
DetaljerEKSAMENSOPPGAVE I FYS-1001
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler
DetaljerEKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige
DetaljerFiktive krefter
Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L
DetaljerLØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerFagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -
;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00
Detaljer6. Rotasjon. Løsning på blandede oppgaver.
6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerOppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerØving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
DetaljerBachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk
Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling
DetaljerImpuls, bevegelsesmengde, energi. Bevaringslover.
Impuls, bevegelsesmengde, energi. Bevaringslover. Kathrin Flisnes 19. september 2007 Bevegelsesmengde ( massefart ) Når et legeme har masse og hastighet, viser det seg fornuftig å definere legemets bevegelsesmengde
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
DetaljerEKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:
Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Side 1 av 11 Løsningsforslag Eksamen i ys-mek111 våren 8 Oppgave 1 Vi skal i denne oppgaven studere bevegelsen til en (fugle-)fjær i en tornado. Vi begynner med å finne ut hvordan vi kan modellere fjæras
DetaljerFiktive krefter
Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerLøsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)
DetaljerFiktive krefter. Gravitasjon og ekvivalensprinsippet
iktive krefter Gravitasjon og ekvivalensprinsippet 09.05.016 YS-MEK 1110 09.05.016 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i en
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 6. Oppgave 1 Figuren viser re like staver som utsettes for samme ytre kraft F, men med ulike angrepspunkt. Hva kan du da si om absoluttverdien A i til akselerasjonen
DetaljerEKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
DetaljerFiktive krefter. Gravitasjon og planetenes bevegelser
iktive krefter Gravitasjon og planetenes bevegelser 30.04.014 YS-MEK 1110 30.04.014 1 Sentrifugalkraft inertialsystem S f G N friksjon mellom passasjer og sete sentripetalkraft passasjer beveger seg i
DetaljerRotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst
Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerLøsningsforslag til øving 5
FY1001/TFY4145 Mekanisk fysikk. Institutt for fysikk, NTNU. Høsten 011. Løsningsforslag til øving 5 Oppgave 1 a) Energibevarelse E A = E B gir U A + K A = U B + K B Innsetting av r = L x i ligningen gir
DetaljerKrefter, Newtons lover, dreiemoment
Krefter, Newtons lover, dreiemoment Tor Nordam 13. september 2007 Krefter er vektorer En ting som beveger seg har en hastighet. Hastighet er en vektor, som vi vanligvis skriver v. Hastighetsvektoren har
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerEKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:
Detaljerr+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:
DetaljerRF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag.
RF3100 Matematikk og fysikk Regneoppgaver 7 Løsningsforslag. NITH 11. oktober 013 Oppgave 1 Skissér kraftutvekslingen i følgende situasjoner: En mann som dytter en bil: (b) En traktor som trekker en kjerre
DetaljerHøgskolen i Agder Avdeling for EKSAMEN
Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,
DetaljerEKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerLøsningsforslag til eksamen i REA2041 - Fysikk, 5.1.2009
Løsningsforslag til eksamen i EA04 - Fysikk, 5..009 Oppgae a) Klossen er i kontakt med sylinderen så lenge det irker en normalkraft N fra sylinderen på klossen og il forlate sylinderen i det N = 0. Summen
DetaljerMatematikk og fysikk RF3100
DUMMY Matematikk og fysikk RF3100 Øving 20. mars 2015 Tidsfrist: 7.april 2015, klokken 23.55 Onsdag 25. mars kom det til en ekstraoppgave: Oppgave 4. Denne kan du velge å gjøre istedenfor oppgave 3. Det
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerSpesiell relativitetsteori
Spesiell relativitetsteori 8.05.05 FYS-MEK 0 8.05.05 Einsteins postulatene. Fysikkens lover er de samme i alle inertialsystemer.. Lyshastigheten er den samme i alle inertialsystemer, og er uavhengig av
DetaljerT 1 = (m k + m s ) a (1)
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2008. Løsningsforslag til Øving 2. Oppgave 1 a) Vi ser på et system bestående av en kloss på et horisontalt underlag og en snor med masse. Vi
DetaljerFORELESNING 4/5 09, REPETISJON Kapittel 2: Bevegelseslære (kinematikk) langs en rett linje
FORELESNING 4/5 09, REPETISJON Kapittel 2: Bevegelseslære (kinematikk) langs en rett linje Bevegelsen er fullstendig beskrevet av x(t) Gjennomsnittshastighet: 1 Hastighet: stigningstall til tangenten til
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerEksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerTheory Norwegian (Norway) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet.
Q1-1 To problemer i mekanikk (10 poeng) Vær vennlig å lese de generelle instruksjonene i den separate konvolutten før du begynner på dette problemet. Del A. Den gjemte disken (3,5 poeng) Vi ser på en massiv
DetaljerEKSAMENSOPPGAVE. Fagnr: FO 443A Dato: Antall oppgaver:
Avdeling for ingeniørutdanning EKSAMENSOPPGAVE Fag: FYSIKK/TERMODYNAMIKK Gruppe(r): 1 KA Eksamensoppgaven består av Tillatte hjelpemidler: Oppgave 1 Antall sider inkl forside: 4 Fagnr: FO 443A Dato: 80501
DetaljerEKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie
DetaljerKinematikk i to og tre dimensjoner
Kinematikk i to og tre dimensjoner 4.2.216 Innleveringsfrist oblig 1: Tirsdag, 9.eb. kl.18 Innlevering kun via: https://devilry.ifi.uio.no/ Devilry åpnes snart. YS-MEK 111 4.2.216 1 v [m/s] [m] Eksempel:
DetaljerTFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. MgL + F B d. M + m
TFY4104 Fysikk. Institutt for fysikk, NTNU. Lsningsforslag til ving 6. Ogave 1 L/ d A F A B F B L mg Stuebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter i vertikal retning
DetaljerFY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20
FY1001/TFY4145 Mekanisk Fysikk Eksamen 9. august 2016 Side 1 av 20 1) Ei kule slippes (dvs med null starthastighet) fra en høyde 2.0 m over gulvet. Hva er kulas hastighet 0.5 s etter at den ble sluppet?
DetaljerFlervalgsoppgave. Kollisjoner. Kap. 6. Arbeid og energi. Energibevaring. Konstant-akselerasjonslikninger REP
Kap. 6. Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : dw = de k Potensiell energi E p (x,y,z) (Tyngdefelt:
DetaljerTittel: jan 7 15:00 (1 av 100)
Tittel: jan 7 15:00 (1 av 100) Tittel: jan 7 15:10 (2 av 100) Gjennomsnittsakselerasjon: Akselerasjon: Tittel: jan 7 15:25 (3 av 100) Bevegelse med konstant akselerasjon Andre relasjoner: Tittel: jan 7
Detaljer