UNIVERSITETET I OSLO
|
|
- Stine Andersson
- 5 år siden
- Visninger:
Transkript
1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: juni 208 Tid for eksamen: 09:00 3:00 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter i fysikk og teknikk eller Angell, Lian, Øgrim: Fysiske størrelser og enheter: Navn og symboler Rottmann: Matematisk formelsamling Elektronisk kalkulator av godkjent type. Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene. Husk å forklare hvordan du løser problemene og begrunn svarene dine. Oppgave (5 poeng) Forklar forskjellen mellom sentripetalkraft og sentrifugalkraft. Sentripetalkraften står vinkelrett på bevegelsesretningen og gjør at et legeme beveger seg på en krumlinjet bane. Forskjellige typer krefter kan fungere som en sentripetalkraft, for eksempel gravitasjonskraften som holder en planet på sin bane rundt en stjerne, snordraget i en pendel, normalkraften som virker i en looping, eller friksjonskraften som trengs for at en bil kjører rundt en svinge. En slik sentripetalkraft virker alltid inn mot kurvens sentrum. Sentrifugalkraften derimot er en fiktiv kraft som brukes for å beskrive et legeme i et roterende referansesystem. Sentrifugalkraften eksisterer ikke når legemet beskrives ved hjelp av et inertialsystem. Sentrifugalkraften er alltid rettet bort fra rotasjonsaksen. Oppgave 2 (5 poeng) Vi antar at det blir mulig å reise med meget høy hastighet i framtiden. I en amerikansk by er alle gatene rettvinklet. En person som går gjennom gatene måler at et kvartal er 800 m lang i retning nord-sør og 640 m lang i retning øst-vest. Du flyr over byen i et meget rask fly og observerer at kvartalene er kvadratisk. Hvor rask og i hvilken retning kjører du? Forklar! På grunn av din høye hastighet er lengden kontrahert i bevegelsesretning, men ikke i retning vinkelrett på bevegelsen. For at kvartalet ser kvadratisk ut må du bevege deg fra sør til nord eller fra nord til sør. I så fall er kvartalet 640 m lang i begge retningene. I retning nord-sør måler du lengden L = γ L = L ( v c ) 2 ( v c ) 2 = ( L 2 L )
2 v c = ( 640 m m ) = 0.64 = 0.6 Du beveger deg med hastighet v = 0.6c enten fra nord til sør eller fra sør til nord. Oppgave 3 (3 poeng) En homogen stang av lengde L = m og vekt mg = 00 N er festet i en vegg som vist i figuren. Den ene enden av stangen ligger på en feste i veggen, mens den andre enden holdes av en snor. Stangen er horisontal og vinkelen mellom stangen og snoren er θ = 30. a. Tegn et frilegemediagram for stangen og navngi alle krefter. (3 poeng) Gravitasjonskraft G, snordrag T, kraft fra festen F b. Hvor stor er snordraget? (3 poeng) Vi ser på kraftmomenter om kontaktpunkt med veggen. Snordraget gir et positivt kraftmoment om z aksen, gravitasjonskraften gir et negativt kraftmoment. Siden systemet er i likevekt må nettokraftmomentet være null: LT sin θ 2 Lmg = 0 2 T 2 mg = 0 T = mg = 00 N c. Finn størrelse og retning til kraften fra festen i veggen på stangen. (3 poeng) Vi ser på kreftene i x retning: F cos θ T cos 30 = 0, hvor θ er den ukjente vinkelen mellom brettet og kraften fra festet i veggen. Vi ser på kraftmomentene om massesenteret: T sin 30 F sin θ = 0 Man ser lett at kreftene T og F må være symmetrisk, med F = T = 00 N og θ = θ = 30. d. Det maksimale snordraget som konstruksjonen tåler er T max = 400 N. Du ønsker å feste en liten metallkloss som veier Mg = 200 N på stangen. Hvor langt fra veggen kan du feste klossen uten at snoren ryker? (4 poeng) Vi fester klossen i avstand x fra veggen og ser igjen på kraftmoment om kontaktpunktet med veggen. Vi bruker det maksimale snordraget for å finne x. LT max sin 30 xmg 2 Lmg = 0 2 T max x L Mg 2 mg = 0 x L = T max mg 400 N 00 N = 2Mg 400 N x = 3 L = 0.75 m 4 = 3 4
3 Oppgave 4 (5 poeng) En kiste med masse m er festet i en lett snor som går over en sylindrisk trinse med radius R. Trinsen har samme masse m som kisten og kan rotere friksjonsfritt om en akse som er festet i taket. Treghetsmomentet til trinsen er I = 2 mr2. Massen til snoren er neglisjerbart og vi ser bort fra luftmotstanden. Du ønsker å løfte kisten ved å dra i den frie enden av snoren med en kraft F som vist i figuren. Når du løfter kisten roterer trinsen uten at snoren glipper. Du bruker en konstant kraft F slik at kisten beveger seg oppover med konstant akselerasjon a = 2 g. a. Tegn frilegemediagrammer separat for kisten og for trinsen. Navngi alle krefter. (4 poeng) Det virker to krefter på kisten: tyngdekraften G og snordraget T. På trinsen virker det fire krefter: tyngdekraften G, snordraget T på den siden hvor kisten er, kraften F som tilsvarer snordraget på den siden hvor du drar, og kraften N fra aksen på trinsen. F er større enn T som er større enn G. Kraften N er summen av de andre tre kreftene. b. Hvor stor er snordraget når akselerasjon til kisten oppover er a = g? Uttrykk 2 resultatet som funksjon av massen m og tyngdeakselerasjonen g. (3 poeng) Vi bruker Newtons andre lov: T mg = ma = 2 mg T = mg + 2 mg = 3 2 mg c. Hvor stor må kraften F være for at kisten beveger seg med akselerasjon a = 2 g oppover? Uttrykk resultatet som funksjon av m og g. (4 poeng) Vi ser på kraftmomenter om aksen til trinsen. Gravitasjonskraften og normalkraften gir ingen kraftmoment fordi de angriper i rotasjonsaksen. Vi får: RT RF = Iα Snordraget T gir et positivt kraftmoment om z aksen, kraften F et negativt kraftmoment. Vi vet at snoren ikke glipper og derfor er: a = Rα. Kraften F må være større enn T for å få en negativ vinkelakselerasjon om z aksen, som gir en positiv akselerasjon til kisten oppover. Man kan også bruke koordinatsystemet som er definert i frilegemediagrammet og regne ut kryssproduktene med hjelp av enhetsvektorer. RF RT = Iα = I a R Vi setter inn snordraget og akselerasjonen: RF 3 2 mgr = 2 mr2 a R = 2 mr 2 g = 4 mgr F = 3 2 mg + 4 mg = 7 4 mg d. Hvor stor er akselerasjonen til kisten og snordraget hvis du slipper den frie enden av snoren? Uttrykk resultatene igjen som funksjon av m og g. Du kan fortsatt anta at snoren ikke glipper på trinsen. (4 poeng)
4 Vi bruker igjen Newtons andre lov for kisten: T mg = ma Den eneste kraften som gir et (positivt) kraftmoment på trinsen er snordraget: TR = Iα = ( a) mr2 2 R = 2 mra, T = 2 ma hvor lineærakselerasjon og vinkelakselerasjon er fortsatt relatert som a = Rα siden snoren ikke glipper. Vi har to ligninger med to ukjente, a og T. Vi eliminerer T: mg + ma = 2 ma 3 ma = mg 2 a = 2 3 g Akselerasjonen er negativ, som betyr at kisten beveger seg nedover. For snordraget finner vi: T = 2 ma = 3 mg Oppgave 5 (9 poeng) En kule med masse m og radius R befinner seg på et skråplan med helningsvinkel θ. Kulen er i ro ved høyde h over bunnen og slippes. Det er nok friksjon slik at kulen ruller uten å skli. Etterpå kommer kulen til en oppoverbakke med samme helningsvinkel. Denne siden er dekket av is slik at det er ingen friksjon. Treghetsmomentet til en kule som roterer om massesenteret er I = 2 5 mr2. Vi ser bort fra luftmotstand. a. Tegn et frilegemediagram for kulen når den befinner seg på nedoverbakken med friksjon og navngi alle krefter. (3 poeng) Vi har gravitasjonskraft G, normalkraft N og den statiske friksjonskraften f. b. Er den mekaniske energien bevart mens kulen beveger seg henholdsvis på den ene eller andre siden? Begrunn! (4 poeng) Vi vet at kulen ruller uten å skli på veien ned. Derfor er friksjonskraften statisk og ikke dynamisk. I en ren rullebevegelse har kontaktpunktet mellom kulen og skråplanet ingen hastighet relativ til skråplanet, og den statiske friksjonskraften gjør ingen arbeid. Normalkraften står vinkelrett på bevegelsesretningen og gjør ingen arbeid heller. Gravitasjonskraften er konservativ, og derfor er energien på veien ned bevart. På veien opp på den andre siden er det ingen friksjon. Normalkraften gjør ingen
5 arbeid og gravitasjonskraften er konservativ. Derfor er energien bevart også på veien opp. c. Finn hastighet til kulen når den har kommet ned til bunnen av den første helningen, uttrykt som funksjon av høyden h og tyngdeakselerasjonen g. (4 poeng) Vi bruker energibevaring: mgh = 2 mv2 + 2 Iω2 Vi vet at kulen ruller uten å skli og kan derfor bruke rullebetingelsen som relaterer hastighet med vinkelhastighet: v = ωr: mgh = 2 mv2 + 2 v2 mr2 2 5 R 2 = ( ) mv2 = 7 0 mv2 v = 0 7 gh d. Hvor høyt kommer kulen opp på den andre siden uten friksjon? (4 poeng) Vi bruker igjen energibevaring. Kulen roterer med vinkelhastighet ω i bunnen av skråplanet. Uten friksjon fortsetter kulen å rotere med samme vinkelhastighet mens den sklir opp skråplanet. 2 mv2 + 2 Iω2 = mgh + 2 Iω2 h = 2g v2 = 0 2g 7 gh = 5 7 h e. Forklar hvorfor kulen ikke kommer opp til den samme høyden h til tross at det er ingen friksjon. (4 poeng) Kulen er i ro når den begynner å rulle ned ved høyde h. På veien opp er det ingen friksjon, slik at kulen fortsetter å roterer når den sklir opp. Kulen roterer fortsatt med vinkelhastighet ω når den kommer opp til den største høyden h. Energien som er bundet i rotasjonsbevegelsen, E rot = 2 Iω2, er ikke tilgjengelig som potensiell energi, og derfor kommer kulen ikke like høyt opp på den siden uten friksjon. Oppgave 6 ( poeng) Et fly som beveger seg på høyde h = 000 m med hastighet v 0 = 00 m/s i horisontal retning slipper en pakke med masse m = 0 kg. Vi antar at luftmotstandskraften kan beskrives ved kvadratloven, F D = Dv 2, der D = 0. kg/m er en konstant. a. Tegn et frilegemediagram for pakken noen få sekunder etter pakken ble sluppet og navngi alle krefter. (3 poeng) Kort tid etter pakken blir sluppet har den hastighet både i horisontal og i negativ vertikal retning. Luftmostandskraften F D har motsatt retning til bevegelsen. Gravitasjonskraften G virker nedover. b. Skriv et program som beregner hastighet og posisjon til pakken over bakken. Det er tilstrekkelig å skrive kun integrasjonsløkken. (5 poeng)
6 Pakken inneholder en mekanisme som utløser en fallskjerm ved høyde h = 500 m. I det øyeblikket når fallskjermen utløses endrer luftmotstandskoeffisienten seg fra D = 0. kg/m til D = 0.5 kg/m. c. Modifiser programmet ditt for å ta hensyn på fallskjermen. (3 poeng)
7 Oppgave 7 (27 poeng) En tynn, homogen stang med masse M = 3m og lengde L er festet horisontalt på et bord med en akse som går gjennom massesenteret. Stangen kan rotere fritt om aksen uten friksjon. Treghetsmomentet til stangen som roterer om sitt massesenter er I S = 2 ML2. Et prosjektil med masse m skytes horisontalt og vinkelrett på stangen. Prosjektilet, som kan anses som et punkt, treffer enden til stangen med hastighet v 0 og stanses der. a. Hvilke av følgende størrelser er bevart under kollisjonen: energi, bevegelsesmengde, spinn? Begrunn! (3 poeng) Vi har en fullstendig uelastisk kollisjon mellom prosjektilet og stangen, så energi er ikke bevart. Det oppstår en ytre kraft fra aksen på stangen, og derfor er bevegelsesmengden ikke bevart heller. Siden det er ingen friksjon fra bordet og kraften fra aksen har ingen kraftarm så virker det ingen ytre kraftmomenter. Derfor er spinnet bevart. b. Vis at treghetsmoment til stangen om aksen etter at prosjektilet er stanset i enden er: (3 poeng) Vi bruker superposisjonsprinsippet: I tot = 2 ml2 I tot = 2 ML2 + m ( 2 L) 2 = ( 3m 2 + m 4 ) L2 = 2 ml2 c. Finn vinkelhastigheten til stangen etter kollisjonen. (4 poeng) Vi bruker bevaring av spinn. Spinnet til prosjektilet før kollisjonen er l = 2 Lmv 0. Spinnet etter kollisjonen er l = I tot ω, hvor I tot er det totale treghetsmomentet for systemet som består av stangen og prosjektilet. Spinnbevaring gir: 2 Lmv 0 = I tot ω = 2 ml2 ω ω = v 0 L I det følgende ser vi på situasjonen hvor stangen ligger fritt på bordet uten en akse gjennom massesenteret. Vi antar fortsatt at det er ingen friksjon mellom stangen og bordet. Prosjektilet treffer stangen på samme måte som før. d. Hvilke størrelser (energi, bevegelsesmengde, spinn) er bevart i denne situasjonen? Begrunn! (3 poeng) Kollisjonen er også i denne situasjonen fullstendig uelastisk og energi er ikke bevart. Uten en fast rotasjonsakse og uten friksjon virker det ingen ytre krefter i horisontal retning og bevegelsesmengden er bevart. Uten ytre krefter er det ingen kraftmomenter heller og spinnet er også bevart. e. Finn massesenteret til systemet som består av stangen og prosjektilet. (3 poeng)
8 Vi legger origo til sentrum av stangen. Massesenteret til stangen er x S = 0 og prosjektilet befinner seg i posisjon x P = L. Vi bruker definisjon til massesenteret: 2 x cm = Mx S + mx P M + m = ml 4m = 8 L f. Finn hastigheten til massesenteret. (3 poeng) Vi bruker bevaring av bevegelsesmengde: mv 0 = 4mV V = mv 0 4m = 4 v 0 g. Vis at treghetsmomentet til systemet om massesenteret er: (4 poeng) I cm = 7 6 ml2 Vi kan bruke parallellaksteoremet. Vi vet allerede fra b) at treghetsmomentet for systemet som består av stangen og prosjektilet om aksen som går gjennom senteret av stangen er I tot = 2 ml2. Det geometriske senteret til stangen ligger i avstand 8 L fra fellesmassesenteret. Vi får: I cm + 4m ( L 8 ) 2 = 2 ml2 I cm = 2 ml2 4mL2 64 = ( 2 6 ) ml2 = 7 6 ml2 Alternativ kan vi tar utgangspunkt i treghetsmomentet til stangen alene, bruke parallellaksteoremet for å finne treghetsmoment til stangen om fellesmassesenteret, og superposisjonsprinsippet for å finne det totale treghetsmoment om massesenteret. Avstand mellom prosjektilet og massesenteret er 3 8 L. I cm = 2 ML2 + M ( L 8 ) 2 + m ( 3 8 L) 2 = 3m 2 L2 + 3m 64 L2 + 9m 64 L2 = 7 6 ml2 h. Finn vinkelhastigheten om massesenteret etter kollisjonen. (4 poeng) Etter kollisjonen roterer stangen om massesenteret, og spinn om massesenteret er bevart. Prosjektilet treffer stangen i avstand 3 L fra massesenteret. Spinnbevaring gir: Lmv 0 = I cm ω = 7 6 ml2 ω ω = 6 v 0 7 L *** Dette er siste ark i oppgavesettet. Lykke til med oppgavene!
9 Formelark FYS-MEK 0 F = ma = dp dr dv, hvor p = mv = m og a = = d2 r dt dt dt dt 2 Konstant a : v = v 0 + a t, r = r 0 + v 0 t + 2 a t2, v 2 v 0 2 = 2a (r r 0 ) Konstant α: ω = ω 0 + αt, θ = θ 0 + ω 0 t + 2 αt2, ω 2 ω 0 2 = 2α(θ θ 0 ) Baneakselerasjon: a = dv dt u T + v2 ρ u N Rotasjon: v = ω r, a = α r + ω (ω r ) Galilei transformasjon: r = R + r, v = V + v Fjærkraft: F(x) = k(x x 0 ), luftmotstand: F v = kv eller F v = Dvv Statisk friksjon: F s μ s N, dynamisk friksjon: F d = μ d N Arbeid: W AB = B A F dr = K B K A, kinetisk energi: K = 2 mv2 Potensiell energi for gravitasjon: U = mgy, for fjærkraft: U = 2 k(x x 0) 2 Konservativ kraft: F = U(r ) t Impuls: J = F dt = p = p (t ) p (t 0 ) t 0 Rakettligningen: F ext + v rel dm dt = ma Massesenter: R = m M ir i = i M M r dm, M = i m i = dm M Kraftmoment: τ = r F, spinn: L = r p Spinnsats: τ = dl dt, stive legemer: L z = I z ω z, τ z = I z α z Kinetisk energi: K = 2 Iω2, treghetsmoment: I = i m i ρ 2 i = ρ 2 dm M Parallellakseteoremet: I = I cm + Md 2 Rullebetingelse: V = ωr Fiktive krefter: ma = F ext ma m dω dt r 2mω v mω (ω r ) Gravitasjon: F (r ) = G m m 2 u r, U(r) = G m m 2 r 2 r Spenning og tøyning: σ xx = F x = E x = Eε A x x xx, y y x = x Lorentz transformasjon: x = γ(x ut), y = y, z = z, t = γ (t u c 2 x), = Lorentz transformasjon for hastighet: v = v u u c 2v u2 c 2
UNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 6 juni 2017 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 6 juni 0 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK1110 Eksamensdag: Onsdag 6. juni 2012 Tid for eksamen: Kl. 0900-1300 Oppgavesettet er på 4 sider + formelark
DetaljerUNIVERSITETET I OSLO
Side av 5 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: Onsdag. juni 2 Tid for eksamen: Kl. 9-3 Oppgavesettet er på 5 sider + formelark Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 14 juni 2019 Tid for eksamen: 14:30 18:30 (4 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Tirsdag, 3. juni 2014 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet omfatter 6 oppgaver på 4 sider
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 22 mars 2017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Side 1 Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: Onsdag, 5. juni 2013 Tid for eksamen: kl. 9:00 13:00 Oppgavesettet er på 3 sider Vedlegg: formelark
DetaljerUNIVERSITETET I OSLO
Side 1 av 4 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK111 Eksamensdag: Mandag 22. mars 21 Tid for eksamen: Kl. 15-18 Oppgavesettet er på 4 sider + formelark Tillatte
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: mars 017 Tid for eksamen: 14:30 17:30 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
Side 1 UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Eksamensdag: 16 mars 2016 Tid for eksamen: 15:00 18:00 (3 timer) Oppgavesettet er på 4 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
vx [m/s] vy [m/s] Side UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK Eksamensdag: 3 mars 8 Tid for eksamen: 9: : (3 timer) Oppgavesettet er på 3 sider Vedlegg: Formelark
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
DetaljerUNIVERSITETET I OSLO. Introduksjon. Det matematisk-naturvitenskapelige fakultet 1.1
Introduksjon UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 1110 Tid for eksamen: 3 timer Vedlegg: Formelark Tillatte hjelpemidler: Øgrim og Lian: Størrelser og enheter
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS-MEK 0 Eksamensdag: 3 juni 205 Tid for eksamen: 4:30 8:30 (4 timer) Oppgavesettet er på 5 sider Vedlegg: Formelark Tillatte
DetaljerRepetisjon
Repetisjon 18.05.017 Eksamensverksted: Mandag, 9.5., kl. 1 16, Origo Onsdag, 31.5., kl. 1 16, Origo FYS-MEK 1110 18.05.017 1 Lorentz transformasjon ( ut) y z y z u t c t 1 u 1 c transformasjon tilbake:
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2010
Side av Løsningsforslag Eksamen i Fys-mek våren Oppgave (Denne oppgaven teller dobbelt) Ole og Mari vil prøve om lengdekontraksjon virkelig finner sted. Mari setter seg i sitt romskip og kjører forbi Ole,
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk.4.4 FYS-MEK.4.4 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Jeg ønsker mer bruk av tavlen og mindre bruk av powerpoint. 6 35 5 5 3 4 3
DetaljerFYS-MEK 1110 Løsningsforslag Eksamen Vår 2014
FYS-MEK 1110 Løsningsforslag Eksamen Vår 2014 Oppgave 1 (4 poeng) Forklar hvorfor Charles Blondin tok med seg en lang og fleksibel stang når han balanserte på stram line over Niagara fossen i 1859. Han
DetaljerStivt legemers dynamikk
Stivt legemers dynamikk 5.04.05 FYS-MEK 0 5.04.05 Forelesning Tempoet i forelesningene er: Presentasjonene er klare og bra strukturert. Det er bra å vise utregninger på smart-board / tavle Diskusjonsspørsmålene
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2009
Løsningsforslag Eksamen i Fys-mek våren 9 Side av 8 Oppgave a) Du skyver en kloss med konstant hastighet bortover et horisontalt bord. Identifiser kreftene på klossen og tegn et frilegemediagram for klossen.
DetaljerKeplers lover. Statikk og likevekt
Keplers lover Statikk og likevekt 30.04.018 FYS-MEK 1110 30.04.018 1 Ekvivalensprinsippet gravitasjonskraft: gravitasjonell masse m m F G G r m G 1 F g G FG R Gm J J Newtons andre lov: inertialmasse m
DetaljerA) 1 B) 2 C) 3 D) 4 E) 5
Side 2 av 5 Oppgave 1 Hvilket av de følgende fritt-legeme diagrammene representerer bilen som kjører nedover uten å akselerere? Oppgave 2 A) 1 B) 2 C) 3 D) 4 E) 5 En lampe med masse m er hengt opp fra
DetaljerFYSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,)
YSMEK1110 Eksamensverksted 31. Mai 2017 (basert på eksamen 2004, 2013, 2014, 2015,) Oppgave 1 (2014), 10 poeng To koordinatsystemer og er orientert slik at tilsvarende akser peker i samme retning. System
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 11. desember 2008 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato:
DetaljerRepetisjon
Repetisjon 1.5.13 FYS-MEK 111 1.5.13 1 Lorentz transformasjon x ( x t) y z y z t t 1 1 x transformasjon tilbake: omven fortegn for og bytte S og S x ( x t) y z y z t t x små hastighet : 1 og x t t x t
DetaljerEKSAMENSOPPGAVE Njål Gulbrandsen / Ole Meyer /
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: 21.2.2017 Klokkeslett: 09:00 13:00 Sted: Åsgårdvegen 9 Tillatte hjelpemidler: Fire A4-sider (to dobbeltsidige
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.03 FYS-MEK 0 3.04.03 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm NL for rotasjoner: O, I for et stivt legeme med treghetsmoment I translasjon og rotasjon:
DetaljerLøsningsforslag Eksamen i Fys-mek1110 våren 2008
Løsningsforslag Eksamen i Fys-mek0 våren 008 Side av 0 Oppgave a) Atwoods fallmaskin består av en talje med masse M som henger i en snor fra taket. I en masseløs snor om taljen henger to masser m > m >
DetaljerLøsningsforslag Eksamen i Fys-mek1110/Fys-mef1110 høsten 2007
Løsningsforslag Eksamen i Fys-mek0/Fys-mef0 høsten 007 Side av 9 Oppgave a) En kule ruller med konstant hastighet bortover et horisontalt bord Gjør rede for og tegn inn kreftene som virker på kulen Det
DetaljerEKSAMENSOPPGAVE. Dato: Fredag 01. mars 2013. Tid: Kl 09:00 13:00. Administrasjonsbygget B154
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Fredag 01. mars 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget B154 Tillatte hjelpemidler:
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKMÅL Oppgaver og formler på 5 vedleggsider EKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Tirsdag 11 desember
DetaljerOppsummert: Kap 1: Størrelser og enheter
Oppsummert: Kap 1: Størrelser og enheter s = 3,0 m s = fysisk størrelse 3,0 = måltall = {s} m = enhet = dimensjon = [s] OBS: Fysisk størrelse i kursiv (italic), enhet opprettet (roman) (I skikkelig teknisk
DetaljerStivt legemers dynamikk
Stivt legemers dnamikk 3.04.04 FYS-MEK 0 3.04.04 kraftmoment: O r F O rf sin F F R r F T F sin r sin O kraftarm N for rotasjoner: O, for et stivt legeme med treghetsmoment translasjon og rotasjon: F et
DetaljerSG: Spinn og fiktive krefter. Oppgaver
FYS-MEK1110 SG: Spinn og fiktive krefter 04.05.017 Oppgaver 1 GYROSKOP Du studerer bevegelsen til et gyroskop i auditoriet på Blindern og du måler at presesjonsbevegelsen har en vinkelhastighet på ω =
DetaljerLøsningsforslag til ukeoppgave 4
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 4 Oppgave 4.03 W = F s cos(α) gir W = 1, 2 kj b) Det er ingen bevegelse i retning nedover, derfor gjør ikke tyngdekraften noe arbeid. Oppgave
DetaljerFiktive krefter
Fiktive krefter 29.04.2015 FYS-MEK 1110 29.04.2015 1 Eksempel: Gyroskop spinn i x retning: L I z y x r L gravitasjon: G mgkˆ angrepspunkt: r G riˆ G kraftmoment: r G G riˆ ( mgkˆ) rmg ˆj spinnsats: d L
DetaljerEKSAMENSOPPGAVE I FYS-1001
side 1 av 6 sider FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI EKSAMENSOPPGAVE I FYS-1001 Eksamen i : Fys-1001 Mekanikk Eksamensdato : 06.12.2012 Tid : 09.00-13.00 Sted : Åsgårdvegen 9 Tillatte hjelpemidler
DetaljerFiktive krefter
Fiktive krefter Materiale for: Fiktive krefter Spesiell relativitetsteori 02.05.2016 http://www.uio.no/studier/emner/matnat/fys/fys-mek1110/v16/materiale/ch17_18.pdf Ingen forelesning på torsdag (Himmelfart)
DetaljerFagnr: FIOIA I - Dato: Antall oppgaver: 2 : Antall vedlegg: 3 - - -
;ag: Fysikk i-gruppe: Maskin! EkSarnensoppgav-en I består av ~- - Tillatte hjelpemidler: Fagnr: FIOIA A Faglig veileder: FO lo' Johan - Hansteen I - - - - Dato: Eksamenstidt 19. August 00 Fra - til: 09.00-1.00
DetaljerLØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS119 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerObligatorisk oppgave i fysikk våren 2002
Obligatorisk oppgave i fysikk våren 2002 Krav til godkjenning av oppgaven: Hovedoppgave 1 kinematikk Hovedoppgave 2 dynamikk Hovedoppgave 3 konserveringslovene Hovedoppgave 4 rotasjonsbevegelse og svigninger
DetaljerLØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017
LØSNINGSFORSLAG EKSAMEN FYS120 VÅR 2017 Oppgave 1 a) Bruker bevaring av bevegelsesmengde i - og y-retning og velger positiv -akse mot høyre og positiv y-akse oppover, og lar vinkelen være = 24. Dekomponerer
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 2013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Fredag 13.des 013 Tid: Kl 09:00 13:00 Sted: Administrasjonsbygget: Aud.max og B154 Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann:
DetaljerLøsningsforslag til ukeoppgave 2
Oppgaver FYS1001 Vår 2018 1 Løsningsforslag til ukeoppgave 2 Oppgave 2.15 a) F = ma a = F/m = 2m/s 2 b) Vi bruker v = v 0 + at og får v = 16 m/s c) s = v 0 t + 1/2at 2 gir s = 64 m Oppgave 2.19 a) a =
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK: LØSNINGSFORSLAG
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK EKSAMEN I FY og TFY445 MEKANISK FYSIKK: LØSNINGSFORSLAG Fredag 6. desember 2 kl. 9-3 Oppgave. Ti flervalgsspørsmål (teller 2.5 25 % a.
DetaljerLøsningsforslag. Eksamen i Fys-mek1110 våren 2011
Side av 5 Løsningsforslag Eksamen i Fys-mek0 våren 0 Oppgave Tarzan hopper fra en klippe og griper en liane. Han hopper horisontalt ut fra klippen med hastighet ved tiden. Lianen har massen og lengden,
DetaljerF B L/2. d A. mg Mg F A. TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten Løsningsforslag til øving 6. Oppgave 1
TFY4104 Fysikk. Institutt for fysikk, NTNU. Høsten 2016. Løsningsforslag til øving 6. Oppgave 1 L/2 d A F A B F B L mg Stupebrettet er i ro, dvs vi har statisk likevekt. Det betyr at summen av alle krefter
DetaljerEKSAMENSOPPGA VE. Fagnr: FO 44JA Dato: Antall oppgaver:
Høgsko/l'n imm m Avdeling for ingeniørutdanning EKSAMENSOPPGA VE Fag: FYSIKK / TERMODYNAMIKK Gruppe(r) KA,3K Eksamensoppgaven består av Tillatte hjelpemidler: Antall sider inkl forside: 7 Fagnr: FO 44JA
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 3.01.018 snuble-gruppe i dag, kl.16:15-18:00, Origo FYS-MEK 1110 3.01.018 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon
DetaljerEKSAMEN. EMNE: FYS 120 FAGLÆRER: Margrethe Wold. Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 120 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 120 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 7 Antall oppgaver:
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerSykloide (et punkt på felgen ved rulling)
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Spinn (dreieimpuls):
DetaljerFAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS122 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Tore Vehus (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
DetaljerLøsningsforslag Fys-mek1110 V2012
Løsningsforslag Fys-mek1110 V01 Side 1 av 11 Oppgave 1 a) Et hjul ruller uten å skli bortover en flat, horisontal vei. Hjulet holder konstant hastighet. Tegn et frilegemediagram for hjulet. b) En lastebil
DetaljerKap. 3 Arbeid og energi. Energibevaring.
Kap. 3 Arbeid og energi. Energibevaring. Definisjon arbeid, W Kinetisk energi, E k Potensiell energi, E p. Konservative krefter Energibevaring Energibevaring når friksjon. Arbeid = areal under kurve F(x)
Detaljer6. Rotasjon. Løsning på blandede oppgaver.
6 otasjon Løsninger på blandede oppgaver ide 6-6 otasjon Løsning på blandede oppgaver Oppgave 6: O tanga har lengde L m Når stanga dreies fra horisontal til vertikal stilling, synker massesenteret en høyde
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 2. Oppgave 1 Nettokraften pa en sokk som sentrifugeres ved konstant vinkelhastighet pa vasketrommelen er A null B rettet radielt utover C rettet radielt
DetaljerEKSAMEN I FY1001 og TFY4145 MEKANISK FYSIKK
TFY4145/FY1001 18. des. 2012 Side 1 av 8 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK Kontakt under eksamen: Jon Andreas Støvneng, telefon: 45 45 55 33 / 73 59 36 63 EKSAMEN I FY1001
DetaljerEKSAMENSOPPGAVE. Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max.
EKSAMENSOPPGAVE Eksamen i: FYS 0100 Generell fysikk Dato: Onsdag 26.feb 2014 Tid: Kl 09:00 13:00 Sted: Aud max. Tillatte hjelpemidler: Kalkulator med tomt dataminne Rottmann: Matematisk Formelsamling Oppgavesettet
DetaljerBachelor i idrettsvitenskap med spesialisering i idrettsbiologi 2014/2016. Utsatt individuell skriftlig eksamen. IBI 240- Basal biomekanikk
Bachelor i idrettsvitenskap med spesialisering i idrettsbiologi 14/16 Utsatt individuell skriftlig eksamen i IBI 4- Basal biomekanikk Torsdag 6. februar 15 kl. 1.-13. Hjelpemidler: kalkulator formelsamling
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rep) Sentripetalakselerasjon, baneakselerasjon (rep) Rotasjonsenergi E k Treghetsmoment I Kraftmoment τ Rulling Spinn
DetaljerArbeid og energi. Energibevaring.
Arbeid og energi. Energibevaring. Arbeid = dw = F ds Kinetisk energi E k = ½ m v 2 Effekt = arbeid/tid = P = dw /dt Arbeid på legeme øker E k : Potensiell energi E p (x,y,z) dw = de k (Tyngdefelt: E p
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 3.1.17 Innlevering av oblig 1: neste mandag, kl.14 Devilry åpner snart. Diskusjoner på Piazza: https://piazza.com/uio.no/spring17/fysmek111/home Gruble-gruppe i dag etter
DetaljerEKSAMEN I TFY4145 MEKANISK FYSIKK OG FY1001 MEKANISK FYSIKK Eksamensdato: Torsdag 16. desember 2010 Eksamenstid: 09:00-13:00
Norges teknisk-naturvitenskapelige universitet Institutt for fysikk BOKÅL Eksamensteksten består av 6 sider inklusiv denne frontsida EKSAEN I TFY4145 EKANISK FYSIKK OG FY1001 EKANISK FYSIKK Eksamensdato:
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 7.1.14 oblig #1: prosjekt 5. i boken innlevering: mandag, 3.feb. kl.14 papir: boks på ekspedisjonskontoret elektronisk: Fronter data verksted: onsdag 1 14 fredag 1 16 FYS-MEK
DetaljerHøgskolen i Agder Avdeling for EKSAMEN
Høgskolen i Agder Avdeling for EKSAMEN Emnekode: FYS101 Emnenavn: Mekanikk Dato: 08.1.011 Varighet: 0900-1300 Antall sider inkl. forside 6 sider illatte hjelpemidler: Lommekalkulator uten kommunikasjon,
DetaljerEKSAMEN. EMNE: FYS 119 FAGLÆRER: Margrethe Wold. Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: Antall sider (ink.
EKSAMEN EMNE: FYS 119 FAGLÆRER: Margrethe Wold MÅLFORM: Bokmål Klasser: FYS 119 Dato: 09. mai 2017 Eksamenstid: 09 00 14 00 Eksamensoppgaven består av følgende: Antall sider (ink. forside): 6 Antall oppgaver:
DetaljerFAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS118 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
DetaljerLøsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 22. september kl 12:15 15:00. Løsningsforslag til øving 3: Impuls, bevegelsesmengde, energi. Bevaringslover. Oppgave 1 a)
DetaljerNewtons 3.lov. Kraft og motkraft. Kap. 4+5: Newtons lover. kap Hvor er luftmotstanden F f størst? F f lik i begge!!
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerEksamen i FYS Oppgavesettet, inklusiv ark med formler, er på 7 sider, inkludert forside. FAKULTET FOR NATURVITENSKAP OG TEKNOLOGI
Eksamen i FYS-0100 Eksamen i : Fys-0100 Generell fysikk Eksamensdag : 16. desember, 2011 Tid for eksamen : kl. 9.00-13.00 Sted : Åsgårdveien 9 Hjelpemidler : K. Rottmann: Matematisk Formelsamling, O. Øgrim:
DetaljerNewtons lover i én dimensjon (2)
Newtons lover i én dimensjon () 1..16 YS-MEK 111 1..16 1 Identifikasjon av kreftene: 1. Del problemet inn i system og omgivelser.. Tegn figur av objektet og alt som berører det. 3. Tegn en lukket kurve
DetaljerFAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel)
UNIVERSITETET I AGDER Grimstad E K S A M E N S O P P G A V E : FAG: Fysikk FYS121 LÆRER: Fysikk : Per Henrik Hogstad (fellesdel) Kjetil Hals (linjedel) Klasse(r): Dato: 22.05.18 Eksamenstid, fra-til: 09.00
DetaljerKap. 6+7 Arbeid og energi. Energibevaring.
TFY4145/FY11 Mekanisk fysikk Størrelser og enheter (Kap 1) Kinematikk i en, to og tre dimensjoner (Kap. +3) Posisjon, hastighet, akselerasjon. Sirkelbevegelse. Dynamikk (krefter): Newtons lover (Kap. 4)
DetaljerNorges Informasjonstekonlogiske Høgskole
Oppgavesettet består av 10 (ti) sider. Norges Informasjonstekonlogiske Høgskole RF3100 Matematikk og fysikk Side 1 av 10 Tillatte hjelpemidler: Kalkulator, vedlagt formelark Varighet: 3 timer Dato: 11.desember
DetaljerEKSAMEN I TFY4145 OG FY1001 MEKANISK FYSIKK
NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR FYSIKK LØSNINGSFORSLAG (5 sider): EKSAMEN I TFY445 OG FY00 MEKANISK FYSIKK Fredag 8. desember 2009 kl. 0900-00 Oppgave. Tolv flervalgsspørsmål
DetaljerLøysingsframlegg TFY 4104 Fysikk Kontinuasjonseksamen august 2010
NTNU Fakultet for Naturvitskap og Teknologi Institutt for Fysikk Løysingsframlegg TFY 404 Fysikk Kontinuasjonseksamen august 200 Faglærar: Professor Jens O Andersen Institutt for Fysikk, NTNU Telefon:
DetaljerTFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5.
TFY4106 Fysikk. Institutt for fysikk, NTNU. Test 5. Oppgave 1 CO 2 -molekylet er linert, O = C = O, med CO bindingslengde (ca) 1.16 A. (1 A = 10 10 m.) Praktisk talt hele massen til hvert atom er samlet
DetaljerAristoteles (300 f.kr): Kraft påkrevd for å opprettholde bevegelse. Dvs. selv UTEN friksjon må oksen må trekke med kraft S k
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
DetaljerEKSAMEN 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT
KANDIDATNUMMER: EKSAMEN FAGNAVN: FAGNUMMER: Fysikk REA2041 EKSAMENSDATO: 14. mai 2008 KLASSE: 07HBINBPL, 07HBINBLAN, 0HBINBK, 07HBINEA, 07HBINET, 07HBINDA, 07HBINDT TID: kl. 9.00 13.00 FAGLÆRER: Are Strandlie
DetaljerØving 2: Krefter. Newtons lover. Dreiemoment.
Lørdagsverksted i fysikk. Institutt for fysikk, NTNU. Høsten 2007. Veiledning: 15. september kl 12:15 15:00. Øving 2: Krefter. Newtons lover. Dreiemoment. Oppgave 1 a) Du trekker en kloss bortover et friksjonsløst
DetaljerHøgskoleni østfold. Avdeling for ingeniorfag. Eksamen ingeniodysikk
3 //i Høgskoleni østfold Avdeling for ingeniorfag Eksamen ingeniodysikk Fag:IRF00 Ingeniørfysikk Faglærer: Per Erik Skogh Nilsen 47 8 85 3 Sensurfrist..4 Dato: 8.desember 03 Tid: 0900 00 Antall oppgavesider:
DetaljerStivt legemers dynamikk
Stvt legemers dynamkk 8.04.06 FYS-MEK 0 8.04.06 otasjon av et stvt legeme: defnsjon: z m treghetsmoment for legemet om aksen z (som går gjennom punktet O) kontnuerlg legeme med massetetthet (r) m ) dv
DetaljerFysikkolympiaden Norsk finale 2017
Norsk fysikklærerforening Fysikkolympiaden Norsk finale 7 Fredag. mars kl. 8. til. Hjelpemidler: abell/formelsamling, lommeregner og utdelt formelark Oppgavesettet består av 6 oppgaver på sider Lykke til!
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon.01.014 Interessert å være studentrepresentant for YS-MEK kurset? ta kontakt med meg. YS-MEK 1110.01.014 1 Bok på bordet Gravitasjon virker på boken om den ligger på bordet
DetaljerFysikkolympiaden Norsk finale 2018 Løsningsforslag
Fysikkolympiaden Norsk finale 018 øsningsforslag Oppgave 1 Det virker tre krefter: Tyngden G = mg, normalkrafta fra veggen, som må være sentripetalkrafta N = mv /R og friksjonskrafta F oppover parallelt
DetaljerFAG: FYS105 Fysikk (utsatt eksamen) LÆRER: Per Henrik Hogstad KANDIDATEN MÅ SELV KONTROLLERE AT OPPGAVESETTET ER FULLSTENDIG
UNIVERSITETET I AGDER Gristad E K S A M E N S O P P G A V E : FAG: FYS105 Fysikk (utsatt eksaen) LÆRER: Per Henrik Hogstad Klasse(r): Dato: 6.11.11 Eksaenstid, fra-til: 09.00 14.00 Eksaensoppgaven består
DetaljerEKSAMENSOPPGAVE. To dobbeltsidige ark med notater. Stian Normann Anfinsen
Fakultet for naturvitenskap og teknologi EKSAMENSOPPGAVE Eksamen i: FYS-1001 Mekanikk Dato: Onsdag 28. februar 2018 Klokkeslett: 09:00 13:00 Sted: Administrasjonsbygget, 1. etg., rom B.154 Tillatte hjelpemidler:
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Midtveiseksamen i: FYS1000 Eksamensdag: 23. mars 2017 Tid for eksamen: 14.30-17.30, 3 timer Oppgavesettet er på 8 sider Vedlegg: Formelark
DetaljerNewtons lover i én dimensjon
Newtons lover i én dimensjon 6.01.017 YS-MEK 1110 6.01.017 1 Hva er kraft? Vi har en intuitivt idé om hva kraft er. Vi kan kvantifisere en kraft med elongasjon av en fjær. YS-MEK 1110 6.01.017 Bok på bordet
DetaljerRotasjon: Translasjon: F = m dv/dt = m a. τ = I dω/dt = I α. τ = 0 => L = konstant (N1-rot) stivt legeme om sym.akse: ω = konst
Translasjon: Rotasjon: Bevegelsesmengde (linear momentum): p = m v Spinn (angular momentum): L = r m v L = I ω Stivt legeme om sym.akse N2-trans: F = dp/dt Stivt legeme (konst. m): F = m dv/dt = m a N2-rot
DetaljerTFY4108 Fysikk: Løysing kontinuasjonseksamen 13. aug. 2014
TFY48 Fysikk: Løysing kontinuasjonseksamen 3. aug. 4 Oppgåve (a) Reknar først ut venstresida av TUSL. Sidan bølgjefunksjonen i dette tilfellet er uavhengig av θ og φ, forsvinn ledda som involverer deriverte
DetaljerKap. 8 Bevegelsesmengde. Kollisjoner. Massesenter.
Kap. 8 Bevegelsesmengde. Kollisjoner. Massesenter. Vi skal se på: Newtons 2. lov på ny: Definisjon bevegelsesmengde Kollisjoner: Kraftstøt, impuls. Impulsloven Elastisk, uelastisk, fullstendig uelastisk
DetaljerKap Rotasjon av stive legemer
Kap. 9+10 Rotasjon av stive legemer Vi skal se på: Vinkelhastighet, vinkelakselerasjon (rask rekap) Sentripetalakselerasjon, baneakselerasjon (rask rekap) Rotasjonsenergi E k Treghetsmoment I Kraftmoment
DetaljerUNIVERSITETET I OSLO
UNIVERSITETET I OSLO Det matematisk-naturvitenskapelige fakultet Eksamen i: FYS 1000 Eksamensdag: 11. juni 2012 Tid for eksamen: 09.00 13.00, 4 timer Oppgavesettet er på 5 sider inkludert forsiden Vedlegg:
DetaljerKap. 4+5: Newtons lover. Newtons 3.lov. Kraft og motkraft. kap Hvor er luftmotstanden F f størst?
TFY4115 Fysikk Mekanikk: (kap.ref Young & Freedman) SI-systemet (kap. 1); Kinematikk (kap. 2+3). (Rekapitulasjon) Newtons lover (kap. 4+5) Energi, bevegelsesmengde, kollisjoner (kap. 6+7+8) Rotasjon, spinn
Detaljerr+r TFY4104 Fysikk Eksamenstrening: Løsningsforslag
TFY4104 Fysikk Eksamenstrening: Løsningsforslag 1) I oljebransjen tilsvarer 1 fat ca 0.159 m 3. I går var prisen for WTI Crude Oil 97.44 US dollar pr fat. Hva er dette i norske kroner pr liter, når 1 NOK
Detaljer